pull/756/head
Hui Zhang 3 years ago
parent 16f4bdc5f1
commit 7d133368e5

@ -1,10 +0,0 @@
# Locales
export LC_ALL=en_US.UTF-8
export LANG=en_US.UTF-8
export LANGUAGE=en_US.UTF-8
# Aliases
alias nvs="nvidia-smi"
alias rsync="rsync --progress -raz"
alias his="history"

@ -3431,7 +3431,7 @@
" convolution_layer_args = (output_size, cnn_module_kernel, activation,\n",
" cnn_module_norm, causal)\n",
"\n",
" self.encoders = nn.ModuleList([\n",
" self.encoders = nn.LayerList([\n",
" ConformerEncoderLayer(\n",
" size=output_size,\n",
" self_attn=encoder_selfattn_layer(*encoder_selfattn_layer_args),\n",

@ -164,8 +164,6 @@ class AugmentationPipeline():
:param audio_segment: Audio segment to process.
:type audio_segment: AudioSegmenet|SpeechSegment
"""
if not self._train:
return
for augmentor, rate in zip(self._audio_augmentors, self._audio_rates):
if self._rng.uniform(0., 1.) < rate:
augmentor.transform_audio(audio_segment)
@ -176,8 +174,6 @@ class AugmentationPipeline():
Args:
spec_segment (np.ndarray): audio feature, (D, T).
"""
if not self._train:
return
for augmentor, rate in zip(self._spec_augmentors, self._spec_rates):
if self._rng.uniform(0., 1.) < rate:
spec_segment = augmentor.transform_feature(spec_segment)
@ -217,3 +213,4 @@ class AugmentationPipeline():
obj = class_obj(self._rng, **params)
except Exception:
raise ValueError("Unknown augmentor type [%s]." % augmentor_type)
return obj

@ -13,6 +13,7 @@
# limitations under the License.
from typing import Optional
import numpy as np
from paddle.io import Dataset
from yacs.config import CfgNode

@ -297,7 +297,7 @@ class RNNStack(nn.Layer):
share_weights=share_rnn_weights))
i_size = h_size * 2
self.rnn_stacks = nn.ModuleList(rnn_stacks)
self.rnn_stacks = nn.LayerList(rnn_stacks)
def forward(self, x: paddle.Tensor, x_len: paddle.Tensor):
"""

@ -54,7 +54,7 @@ __all__ = ["U2Model", "U2InferModel"]
logger = Log(__name__).getlog()
class U2BaseModel(nn.Module):
class U2BaseModel(nn.Layer):
"""CTC-Attention hybrid Encoder-Decoder model"""
@classmethod

@ -48,7 +48,7 @@ __all__ = ["U2STModel", "U2STInferModel"]
logger = Log(__name__).getlog()
class U2STBaseModel(nn.Module):
class U2STBaseModel(nn.Layer):
"""CTC-Attention hybrid Encoder-Decoder model"""
@classmethod

@ -33,7 +33,7 @@ logger = Log(__name__).getlog()
__all__ = ["TransformerDecoder"]
class TransformerDecoder(nn.Module):
class TransformerDecoder(nn.Layer):
"""Base class of Transfomer decoder module.
Args:
vocab_size: output dim
@ -86,7 +86,7 @@ class TransformerDecoder(nn.Module):
self.use_output_layer = use_output_layer
self.output_layer = nn.Linear(attention_dim, vocab_size)
self.decoders = nn.ModuleList([
self.decoders = nn.LayerList([
DecoderLayer(
size=attention_dim,
self_attn=MultiHeadedAttention(attention_heads, attention_dim,

@ -25,15 +25,15 @@ logger = Log(__name__).getlog()
__all__ = ["DecoderLayer"]
class DecoderLayer(nn.Module):
class DecoderLayer(nn.Layer):
"""Single decoder layer module.
Args:
size (int): Input dimension.
self_attn (nn.Module): Self-attention module instance.
self_attn (nn.Layer): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
src_attn (nn.Module): Self-attention module instance.
src_attn (nn.Layer): Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument.
feed_forward (nn.Module): Feed-forward module instance.
feed_forward (nn.Layer): Feed-forward module instance.
`PositionwiseFeedForward` instance can be used as the argument.
dropout_rate (float): Dropout rate.
normalize_before (bool):
@ -48,9 +48,9 @@ class DecoderLayer(nn.Module):
def __init__(
self,
size: int,
self_attn: nn.Module,
src_attn: nn.Module,
feed_forward: nn.Module,
self_attn: nn.Layer,
src_attn: nn.Layer,
feed_forward: nn.Layer,
dropout_rate: float,
normalize_before: bool=True,
concat_after: bool=False, ):

@ -358,7 +358,7 @@ class TransformerEncoder(BaseEncoder):
pos_enc_layer_type, normalize_before, concat_after,
static_chunk_size, use_dynamic_chunk, global_cmvn,
use_dynamic_left_chunk)
self.encoders = nn.ModuleList([
self.encoders = nn.LayerList([
TransformerEncoderLayer(
size=output_size,
self_attn=MultiHeadedAttention(attention_heads, output_size,
@ -438,7 +438,7 @@ class ConformerEncoder(BaseEncoder):
convolution_layer_args = (output_size, cnn_module_kernel, activation,
cnn_module_norm, causal)
self.encoders = nn.ModuleList([
self.encoders = nn.LayerList([
ConformerEncoderLayer(
size=output_size,
self_attn=encoder_selfattn_layer(*encoder_selfattn_layer_args),

@ -297,7 +297,7 @@ class RNNStack(nn.Layer):
share_weights=share_rnn_weights))
i_size = h_size * 2
self.rnn_stacks = nn.ModuleList(rnn_stacks)
self.rnn_stacks = nn.LayerList(rnn_stacks)
def forward(self, x: paddle.Tensor, x_len: paddle.Tensor):
"""

@ -32,7 +32,7 @@ collator:
keep_transcription_text: False
sortagrad: True
shuffle_method: batch_shuffle
num_workers: 0
num_workers: 2
model:
num_conv_layers: 2

Loading…
Cancel
Save