parent
13ee17cdcb
commit
7cfdbe0358
@ -1,38 +0,0 @@
|
||||
# 1. Prepare
|
||||
First, install `pytest-benchmark` via pip.
|
||||
```sh
|
||||
pip install pytest-benchmark
|
||||
```
|
||||
|
||||
# 2. Run
|
||||
Run the specific script for profiling.
|
||||
```sh
|
||||
pytest melspectrogram.py
|
||||
```
|
||||
|
||||
Result:
|
||||
```sh
|
||||
========================================================================== test session starts ==========================================================================
|
||||
platform linux -- Python 3.7.7, pytest-7.0.1, pluggy-1.0.0
|
||||
benchmark: 3.4.1 (defaults: timer=time.perf_counter disable_gc=False min_rounds=5 min_time=0.000005 max_time=1.0 calibration_precision=10 warmup=False warmup_iterations=100000)
|
||||
plugins: typeguard-2.12.1, benchmark-3.4.1, anyio-3.5.0
|
||||
collected 4 items
|
||||
|
||||
melspectrogram.py .... [100%]
|
||||
|
||||
|
||||
-------------------------------------------------------------------------------------------------- benchmark: 4 tests -------------------------------------------------------------------------------------------------
|
||||
Name (time in us) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
|
||||
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
test_melspect_gpu_torchaudio 202.0765 (1.0) 360.6230 (1.0) 218.1168 (1.0) 16.3022 (1.0) 214.2871 (1.0) 21.8451 (1.0) 40;3 4,584.7001 (1.0) 286 1
|
||||
test_melspect_gpu 657.8509 (3.26) 908.0470 (2.52) 724.2545 (3.32) 106.5771 (6.54) 669.9096 (3.13) 113.4719 (5.19) 1;0 1,380.7300 (0.30) 5 1
|
||||
test_melspect_cpu_torchaudio 1,247.6053 (6.17) 2,892.5799 (8.02) 1,443.2853 (6.62) 345.3732 (21.19) 1,262.7263 (5.89) 221.6385 (10.15) 56;53 692.8637 (0.15) 399 1
|
||||
test_melspect_cpu 20,326.2549 (100.59) 20,607.8682 (57.15) 20,473.4125 (93.86) 63.8654 (3.92) 20,467.0429 (95.51) 68.4294 (3.13) 8;1 48.8438 (0.01) 29 1
|
||||
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
Legend:
|
||||
Outliers: 1 Standard Deviation from Mean; 1.5 IQR (InterQuartile Range) from 1st Quartile and 3rd Quartile.
|
||||
OPS: Operations Per Second, computed as 1 / Mean
|
||||
========================================================================== 4 passed in 21.12s ===========================================================================
|
||||
|
||||
```
|
@ -1,125 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import urllib.request
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import paddle
|
||||
import torch
|
||||
import torchaudio
|
||||
|
||||
import paddlespeech.audio
|
||||
|
||||
wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
|
||||
if not os.path.isfile(os.path.basename(wav_url)):
|
||||
urllib.request.urlretrieve(wav_url, os.path.basename(wav_url))
|
||||
|
||||
waveform, sr = paddlespeech.audio.load(
|
||||
os.path.abspath(os.path.basename(wav_url)))
|
||||
waveform_tensor = paddle.to_tensor(waveform).unsqueeze(0)
|
||||
waveform_tensor_torch = torch.from_numpy(waveform).unsqueeze(0)
|
||||
|
||||
# Feature conf
|
||||
mel_conf = {
|
||||
'sr': sr,
|
||||
'n_fft': 512,
|
||||
'hop_length': 128,
|
||||
'n_mels': 40,
|
||||
}
|
||||
|
||||
mel_conf_torchaudio = {
|
||||
'sample_rate': sr,
|
||||
'n_fft': 512,
|
||||
'hop_length': 128,
|
||||
'n_mels': 40,
|
||||
'norm': 'slaney',
|
||||
'mel_scale': 'slaney',
|
||||
}
|
||||
|
||||
|
||||
def enable_cpu_device():
|
||||
paddle.set_device('cpu')
|
||||
|
||||
|
||||
def enable_gpu_device():
|
||||
paddle.set_device('gpu')
|
||||
|
||||
|
||||
log_mel_extractor = paddlespeech.audio.features.LogMelSpectrogram(
|
||||
**mel_conf, f_min=0.0, top_db=80.0, dtype=waveform_tensor.dtype)
|
||||
|
||||
|
||||
def log_melspectrogram():
|
||||
return log_mel_extractor(waveform_tensor).squeeze(0)
|
||||
|
||||
|
||||
def test_log_melspect_cpu(benchmark):
|
||||
enable_cpu_device()
|
||||
feature_audio = benchmark(log_melspectrogram)
|
||||
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
|
||||
feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_audio, decimal=3)
|
||||
|
||||
|
||||
def test_log_melspect_gpu(benchmark):
|
||||
enable_gpu_device()
|
||||
feature_audio = benchmark(log_melspectrogram)
|
||||
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
|
||||
feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_audio, decimal=2)
|
||||
|
||||
|
||||
mel_extractor_torchaudio = torchaudio.transforms.MelSpectrogram(
|
||||
**mel_conf_torchaudio, f_min=0.0)
|
||||
amplitude_to_DB = torchaudio.transforms.AmplitudeToDB('power', top_db=80.0)
|
||||
|
||||
|
||||
def melspectrogram_torchaudio():
|
||||
return mel_extractor_torchaudio(waveform_tensor_torch).squeeze(0)
|
||||
|
||||
|
||||
def log_melspectrogram_torchaudio():
|
||||
mel_specgram = mel_extractor_torchaudio(waveform_tensor_torch)
|
||||
return amplitude_to_DB(mel_specgram).squeeze(0)
|
||||
|
||||
|
||||
def test_log_melspect_cpu_torchaudio(benchmark):
|
||||
global waveform_tensor_torch, mel_extractor_torchaudio, amplitude_to_DB
|
||||
|
||||
mel_extractor_torchaudio = mel_extractor_torchaudio.to('cpu')
|
||||
waveform_tensor_torch = waveform_tensor_torch.to('cpu')
|
||||
amplitude_to_DB = amplitude_to_DB.to('cpu')
|
||||
|
||||
feature_audio = benchmark(log_melspectrogram_torchaudio)
|
||||
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
|
||||
feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_audio, decimal=3)
|
||||
|
||||
|
||||
def test_log_melspect_gpu_torchaudio(benchmark):
|
||||
global waveform_tensor_torch, mel_extractor_torchaudio, amplitude_to_DB
|
||||
|
||||
mel_extractor_torchaudio = mel_extractor_torchaudio.to('cuda')
|
||||
waveform_tensor_torch = waveform_tensor_torch.to('cuda')
|
||||
amplitude_to_DB = amplitude_to_DB.to('cuda')
|
||||
|
||||
feature_torchaudio = benchmark(log_melspectrogram_torchaudio)
|
||||
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
|
||||
feature_librosa = librosa.power_to_db(feature_librosa, top_db=80.0)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_torchaudio.cpu(), decimal=2)
|
@ -1,109 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import urllib.request
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import paddle
|
||||
import torch
|
||||
import torchaudio
|
||||
|
||||
import paddlespeech.audio
|
||||
|
||||
wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
|
||||
if not os.path.isfile(os.path.basename(wav_url)):
|
||||
urllib.request.urlretrieve(wav_url, os.path.basename(wav_url))
|
||||
|
||||
waveform, sr = paddlespeech.audio.load(
|
||||
os.path.abspath(os.path.basename(wav_url)))
|
||||
waveform_tensor = paddle.to_tensor(waveform).unsqueeze(0)
|
||||
waveform_tensor_torch = torch.from_numpy(waveform).unsqueeze(0)
|
||||
|
||||
# Feature conf
|
||||
mel_conf = {
|
||||
'sr': sr,
|
||||
'n_fft': 512,
|
||||
'hop_length': 128,
|
||||
'n_mels': 40,
|
||||
}
|
||||
|
||||
mel_conf_torchaudio = {
|
||||
'sample_rate': sr,
|
||||
'n_fft': 512,
|
||||
'hop_length': 128,
|
||||
'n_mels': 40,
|
||||
'norm': 'slaney',
|
||||
'mel_scale': 'slaney',
|
||||
}
|
||||
|
||||
|
||||
def enable_cpu_device():
|
||||
paddle.set_device('cpu')
|
||||
|
||||
|
||||
def enable_gpu_device():
|
||||
paddle.set_device('gpu')
|
||||
|
||||
|
||||
mel_extractor = paddlespeech.audio.features.MelSpectrogram(
|
||||
**mel_conf, f_min=0.0, dtype=waveform_tensor.dtype)
|
||||
|
||||
|
||||
def melspectrogram():
|
||||
return mel_extractor(waveform_tensor).squeeze(0)
|
||||
|
||||
|
||||
def test_melspect_cpu(benchmark):
|
||||
enable_cpu_device()
|
||||
feature_audio = benchmark(melspectrogram)
|
||||
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_audio, decimal=3)
|
||||
|
||||
|
||||
def test_melspect_gpu(benchmark):
|
||||
enable_gpu_device()
|
||||
feature_audio = benchmark(melspectrogram)
|
||||
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_audio, decimal=3)
|
||||
|
||||
|
||||
mel_extractor_torchaudio = torchaudio.transforms.MelSpectrogram(
|
||||
**mel_conf_torchaudio, f_min=0.0)
|
||||
|
||||
|
||||
def melspectrogram_torchaudio():
|
||||
return mel_extractor_torchaudio(waveform_tensor_torch).squeeze(0)
|
||||
|
||||
|
||||
def test_melspect_cpu_torchaudio(benchmark):
|
||||
global waveform_tensor_torch, mel_extractor_torchaudio
|
||||
mel_extractor_torchaudio = mel_extractor_torchaudio.to('cpu')
|
||||
waveform_tensor_torch = waveform_tensor_torch.to('cpu')
|
||||
feature_audio = benchmark(melspectrogram_torchaudio)
|
||||
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_audio, decimal=3)
|
||||
|
||||
|
||||
def test_melspect_gpu_torchaudio(benchmark):
|
||||
global waveform_tensor_torch, mel_extractor_torchaudio
|
||||
mel_extractor_torchaudio = mel_extractor_torchaudio.to('cuda')
|
||||
waveform_tensor_torch = waveform_tensor_torch.to('cuda')
|
||||
feature_torchaudio = benchmark(melspectrogram_torchaudio)
|
||||
feature_librosa = librosa.feature.melspectrogram(waveform, **mel_conf)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_torchaudio.cpu(), decimal=3)
|
@ -1,123 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import urllib.request
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import paddle
|
||||
import torch
|
||||
import torchaudio
|
||||
|
||||
import paddlespeech.audio
|
||||
|
||||
wav_url = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
|
||||
if not os.path.isfile(os.path.basename(wav_url)):
|
||||
urllib.request.urlretrieve(wav_url, os.path.basename(wav_url))
|
||||
|
||||
waveform, sr = paddlespeech.audio.load(
|
||||
os.path.abspath(os.path.basename(wav_url)))
|
||||
waveform_tensor = paddle.to_tensor(waveform).unsqueeze(0)
|
||||
waveform_tensor_torch = torch.from_numpy(waveform).unsqueeze(0)
|
||||
|
||||
# Feature conf
|
||||
mel_conf = {
|
||||
'sr': sr,
|
||||
'n_fft': 512,
|
||||
'hop_length': 128,
|
||||
'n_mels': 40,
|
||||
}
|
||||
mfcc_conf = {
|
||||
'n_mfcc': 20,
|
||||
'top_db': 80.0,
|
||||
}
|
||||
mfcc_conf.update(mel_conf)
|
||||
|
||||
mel_conf_torchaudio = {
|
||||
'sample_rate': sr,
|
||||
'n_fft': 512,
|
||||
'hop_length': 128,
|
||||
'n_mels': 40,
|
||||
'norm': 'slaney',
|
||||
'mel_scale': 'slaney',
|
||||
}
|
||||
mfcc_conf_torchaudio = {
|
||||
'sample_rate': sr,
|
||||
'n_mfcc': 20,
|
||||
}
|
||||
|
||||
|
||||
def enable_cpu_device():
|
||||
paddle.set_device('cpu')
|
||||
|
||||
|
||||
def enable_gpu_device():
|
||||
paddle.set_device('gpu')
|
||||
|
||||
|
||||
mfcc_extractor = paddlespeech.audio.features.MFCC(
|
||||
**mfcc_conf, f_min=0.0, dtype=waveform_tensor.dtype)
|
||||
|
||||
|
||||
def mfcc():
|
||||
return mfcc_extractor(waveform_tensor).squeeze(0)
|
||||
|
||||
|
||||
def test_mfcc_cpu(benchmark):
|
||||
enable_cpu_device()
|
||||
feature_audio = benchmark(mfcc)
|
||||
feature_librosa = librosa.feature.mfcc(waveform, **mel_conf)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_audio, decimal=3)
|
||||
|
||||
|
||||
def test_mfcc_gpu(benchmark):
|
||||
enable_gpu_device()
|
||||
feature_audio = benchmark(mfcc)
|
||||
feature_librosa = librosa.feature.mfcc(waveform, **mel_conf)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_audio, decimal=3)
|
||||
|
||||
|
||||
del mel_conf_torchaudio['sample_rate']
|
||||
mfcc_extractor_torchaudio = torchaudio.transforms.MFCC(
|
||||
**mfcc_conf_torchaudio, melkwargs=mel_conf_torchaudio)
|
||||
|
||||
|
||||
def mfcc_torchaudio():
|
||||
return mfcc_extractor_torchaudio(waveform_tensor_torch).squeeze(0)
|
||||
|
||||
|
||||
def test_mfcc_cpu_torchaudio(benchmark):
|
||||
global waveform_tensor_torch, mfcc_extractor_torchaudio
|
||||
|
||||
mel_extractor_torchaudio = mfcc_extractor_torchaudio.to('cpu')
|
||||
waveform_tensor_torch = waveform_tensor_torch.to('cpu')
|
||||
|
||||
feature_audio = benchmark(mfcc_torchaudio)
|
||||
feature_librosa = librosa.feature.mfcc(waveform, **mel_conf)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_audio, decimal=3)
|
||||
|
||||
|
||||
def test_mfcc_gpu_torchaudio(benchmark):
|
||||
global waveform_tensor_torch, mfcc_extractor_torchaudio
|
||||
|
||||
mel_extractor_torchaudio = mfcc_extractor_torchaudio.to('cuda')
|
||||
waveform_tensor_torch = waveform_tensor_torch.to('cuda')
|
||||
|
||||
feature_torchaudio = benchmark(mfcc_torchaudio)
|
||||
feature_librosa = librosa.feature.mfcc(waveform, **mel_conf)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_torchaudio.cpu(), decimal=3)
|
@ -1,13 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
@ -1,34 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import os
|
||||
import unittest
|
||||
import urllib.request
|
||||
|
||||
mono_channel_wav = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav'
|
||||
multi_channels_wav = 'https://paddlespeech.bj.bcebos.com/PaddleAudio/cat.wav'
|
||||
|
||||
|
||||
class BackendTest(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.initWavInput()
|
||||
|
||||
def initWavInput(self):
|
||||
self.files = []
|
||||
for url in [mono_channel_wav, multi_channels_wav]:
|
||||
if not os.path.isfile(os.path.basename(url)):
|
||||
urllib.request.urlretrieve(url, os.path.basename(url))
|
||||
self.files.append(os.path.basename(url))
|
||||
|
||||
def initParmas(self):
|
||||
raise NotImplementedError
|
@ -1,32 +0,0 @@
|
||||
|
||||
def get_encoding(ext, dtype):
|
||||
exts = {
|
||||
"mp3",
|
||||
"flac",
|
||||
"vorbis",
|
||||
}
|
||||
encodings = {
|
||||
"float32": "PCM_F",
|
||||
"int32": "PCM_S",
|
||||
"int16": "PCM_S",
|
||||
"uint8": "PCM_U",
|
||||
}
|
||||
return ext.upper() if ext in exts else encodings[dtype]
|
||||
|
||||
|
||||
def get_bit_depth(dtype):
|
||||
bit_depths = {
|
||||
"float32": 32,
|
||||
"int32": 32,
|
||||
"int16": 16,
|
||||
"uint8": 8,
|
||||
}
|
||||
return bit_depths[dtype]
|
||||
|
||||
def get_bits_per_sample(ext, dtype):
|
||||
bits_per_samples = {
|
||||
"flac": 24,
|
||||
"mp3": 0,
|
||||
"vorbis": 0,
|
||||
}
|
||||
return bits_per_samples.get(ext, get_bit_depth(dtype))
|
@ -1,13 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
@ -1,57 +0,0 @@
|
||||
import itertools
|
||||
from unittest import skipIf
|
||||
|
||||
from parameterized import parameterized
|
||||
from paddlespeech.audio._internal.module_utils import is_module_available
|
||||
|
||||
|
||||
def name_func(func, _, params):
|
||||
return f'{func.__name__}_{"_".join(str(arg) for arg in params.args)}'
|
||||
|
||||
|
||||
def dtype2subtype(dtype):
|
||||
return {
|
||||
"float64": "DOUBLE",
|
||||
"float32": "FLOAT",
|
||||
"int32": "PCM_32",
|
||||
"int16": "PCM_16",
|
||||
"uint8": "PCM_U8",
|
||||
"int8": "PCM_S8",
|
||||
}[dtype]
|
||||
|
||||
|
||||
def skipIfFormatNotSupported(fmt):
|
||||
fmts = []
|
||||
if is_module_available("soundfile"):
|
||||
import soundfile
|
||||
|
||||
fmts = soundfile.available_formats()
|
||||
return skipIf(fmt not in fmts, f'"{fmt}" is not supported by soundfile')
|
||||
return skipIf(True, '"soundfile" not available.')
|
||||
|
||||
|
||||
def parameterize(*params):
|
||||
return parameterized.expand(list(itertools.product(*params)), name_func=name_func)
|
||||
|
||||
|
||||
def fetch_wav_subtype(dtype, encoding, bits_per_sample):
|
||||
subtype = {
|
||||
(None, None): dtype2subtype(dtype),
|
||||
(None, 8): "PCM_U8",
|
||||
("PCM_U", None): "PCM_U8",
|
||||
("PCM_U", 8): "PCM_U8",
|
||||
("PCM_S", None): "PCM_32",
|
||||
("PCM_S", 16): "PCM_16",
|
||||
("PCM_S", 32): "PCM_32",
|
||||
("PCM_F", None): "FLOAT",
|
||||
("PCM_F", 32): "FLOAT",
|
||||
("PCM_F", 64): "DOUBLE",
|
||||
("ULAW", None): "ULAW",
|
||||
("ULAW", 8): "ULAW",
|
||||
("ALAW", None): "ALAW",
|
||||
("ALAW", 8): "ALAW",
|
||||
}.get((encoding, bits_per_sample))
|
||||
if subtype:
|
||||
return subtype
|
||||
raise ValueError(f"wav does not support ({encoding}, {bits_per_sample}).")
|
||||
|
@ -1,199 +0,0 @@
|
||||
#this code is from: https://github.com/pytorch/audio/blob/main/test/torchaudio_unittest/backend/soundfile/info_test.py
|
||||
|
||||
import tarfile
|
||||
import warnings
|
||||
import unittest
|
||||
from unittest.mock import patch
|
||||
|
||||
import paddle
|
||||
from paddlespeech.audio._internal import module_utils as _mod_utils
|
||||
from paddlespeech.audio.backends import soundfile_backend
|
||||
from tests.unit.audio.backends.common import get_bits_per_sample, get_encoding
|
||||
from tests.unit.common_utils import (
|
||||
get_wav_data,
|
||||
nested_params,
|
||||
save_wav,
|
||||
TempDirMixin,
|
||||
)
|
||||
|
||||
from common import parameterize, skipIfFormatNotSupported
|
||||
|
||||
import soundfile
|
||||
|
||||
|
||||
class TestInfo(TempDirMixin, unittest.TestCase):
|
||||
@parameterize(
|
||||
["float32", "int32"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
)
|
||||
def test_wav(self, dtype, sample_rate, num_channels):
|
||||
"""`soundfile_backend.info` can check wav file correctly"""
|
||||
duration = 1
|
||||
path = self.get_temp_path("data.wav")
|
||||
data = get_wav_data(dtype, num_channels, normalize=False, num_frames=duration * sample_rate)
|
||||
save_wav(path, data, sample_rate)
|
||||
info = soundfile_backend.info(path)
|
||||
assert info.sample_rate == sample_rate
|
||||
assert info.num_frames == sample_rate * duration
|
||||
assert info.num_channels == num_channels
|
||||
assert info.bits_per_sample == get_bits_per_sample("wav", dtype)
|
||||
assert info.encoding == get_encoding("wav", dtype)
|
||||
|
||||
@parameterize([8000, 16000], [1, 2])
|
||||
@skipIfFormatNotSupported("FLAC")
|
||||
def test_flac(self, sample_rate, num_channels):
|
||||
"""`soundfile_backend.info` can check flac file correctly"""
|
||||
duration = 1
|
||||
num_frames = sample_rate * duration
|
||||
#data = torch.randn(num_frames, num_channels).numpy()
|
||||
data = paddle.randn(shape=[num_frames, num_channels]).numpy()
|
||||
|
||||
path = self.get_temp_path("data.flac")
|
||||
soundfile.write(path, data, sample_rate)
|
||||
|
||||
info = soundfile_backend.info(path)
|
||||
assert info.sample_rate == sample_rate
|
||||
assert info.num_frames == num_frames
|
||||
assert info.num_channels == num_channels
|
||||
assert info.bits_per_sample == 16
|
||||
assert info.encoding == "FLAC"
|
||||
|
||||
#@parameterize([8000, 16000], [1, 2])
|
||||
#@skipIfFormatNotSupported("OGG")
|
||||
#def test_ogg(self, sample_rate, num_channels):
|
||||
#"""`soundfile_backend.info` can check ogg file correctly"""
|
||||
#duration = 1
|
||||
#num_frames = sample_rate * duration
|
||||
##data = torch.randn(num_frames, num_channels).numpy()
|
||||
#data = paddle.randn(shape=[num_frames, num_channels]).numpy()
|
||||
#print(len(data))
|
||||
#path = self.get_temp_path("data.ogg")
|
||||
#soundfile.write(path, data, sample_rate)
|
||||
|
||||
#info = soundfile_backend.info(path)
|
||||
#print(info)
|
||||
#assert info.sample_rate == sample_rate
|
||||
#print("info")
|
||||
#print(info.num_frames)
|
||||
#print("jiji")
|
||||
#print(sample_rate*duration)
|
||||
##assert info.num_frames == sample_rate * duration
|
||||
#assert info.num_channels == num_channels
|
||||
#assert info.bits_per_sample == 0
|
||||
#assert info.encoding == "VORBIS"
|
||||
|
||||
@nested_params(
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
[("PCM_24", 24), ("PCM_32", 32)],
|
||||
)
|
||||
@skipIfFormatNotSupported("NIST")
|
||||
def test_sphere(self, sample_rate, num_channels, subtype_and_bit_depth):
|
||||
"""`soundfile_backend.info` can check sph file correctly"""
|
||||
duration = 1
|
||||
num_frames = sample_rate * duration
|
||||
#data = torch.randn(num_frames, num_channels).numpy()
|
||||
data = paddle.randn(shape=[num_frames, num_channels]).numpy()
|
||||
path = self.get_temp_path("data.nist")
|
||||
subtype, bits_per_sample = subtype_and_bit_depth
|
||||
soundfile.write(path, data, sample_rate, subtype=subtype)
|
||||
|
||||
info = soundfile_backend.info(path)
|
||||
assert info.sample_rate == sample_rate
|
||||
assert info.num_frames == sample_rate * duration
|
||||
assert info.num_channels == num_channels
|
||||
assert info.bits_per_sample == bits_per_sample
|
||||
assert info.encoding == "PCM_S"
|
||||
|
||||
def test_unknown_subtype_warning(self):
|
||||
"""soundfile_backend.info issues a warning when the subtype is unknown
|
||||
|
||||
This will happen if a new subtype is supported in SoundFile: the _SUBTYPE_TO_BITS_PER_SAMPLE
|
||||
dict should be updated.
|
||||
"""
|
||||
|
||||
def _mock_info_func(_):
|
||||
class MockSoundFileInfo:
|
||||
samplerate = 8000
|
||||
frames = 356
|
||||
channels = 2
|
||||
subtype = "UNSEEN_SUBTYPE"
|
||||
format = "UNKNOWN"
|
||||
|
||||
return MockSoundFileInfo()
|
||||
|
||||
with patch("soundfile.info", _mock_info_func):
|
||||
with warnings.catch_warnings(record=True) as w:
|
||||
info = soundfile_backend.info("foo")
|
||||
assert len(w) == 1
|
||||
assert "UNSEEN_SUBTYPE subtype is unknown to PaddleAudio" in str(w[-1].message)
|
||||
assert info.bits_per_sample == 0
|
||||
|
||||
|
||||
class TestFileObject(TempDirMixin, unittest.TestCase):
|
||||
def _test_fileobj(self, ext, subtype, bits_per_sample):
|
||||
"""Query audio via file-like object works"""
|
||||
duration = 2
|
||||
sample_rate = 16000
|
||||
num_channels = 2
|
||||
num_frames = sample_rate * duration
|
||||
path = self.get_temp_path(f"test.{ext}")
|
||||
|
||||
#data = torch.randn(num_frames, num_channels).numpy()
|
||||
data = paddle.randn(shape=[num_frames, num_channels]).numpy()
|
||||
soundfile.write(path, data, sample_rate, subtype=subtype)
|
||||
|
||||
with open(path, "rb") as fileobj:
|
||||
info = soundfile_backend.info(fileobj)
|
||||
assert info.sample_rate == sample_rate
|
||||
assert info.num_frames == num_frames
|
||||
assert info.num_channels == num_channels
|
||||
assert info.bits_per_sample == bits_per_sample
|
||||
assert info.encoding == "FLAC" if ext == "flac" else "PCM_S"
|
||||
|
||||
def test_fileobj_wav(self):
|
||||
"""Loading audio via file-like object works"""
|
||||
self._test_fileobj("wav", "PCM_16", 16)
|
||||
|
||||
@skipIfFormatNotSupported("FLAC")
|
||||
def test_fileobj_flac(self):
|
||||
"""Loading audio via file-like object works"""
|
||||
self._test_fileobj("flac", "PCM_16", 16)
|
||||
|
||||
def _test_tarobj(self, ext, subtype, bits_per_sample):
|
||||
"""Query compressed audio via file-like object works"""
|
||||
duration = 2
|
||||
sample_rate = 16000
|
||||
num_channels = 2
|
||||
num_frames = sample_rate * duration
|
||||
audio_file = f"test.{ext}"
|
||||
audio_path = self.get_temp_path(audio_file)
|
||||
archive_path = self.get_temp_path("archive.tar.gz")
|
||||
|
||||
#data = torch.randn(num_frames, num_channels).numpy()
|
||||
data = paddle.randn(shape=[num_frames, num_channels]).numpy()
|
||||
soundfile.write(audio_path, data, sample_rate, subtype=subtype)
|
||||
|
||||
with tarfile.TarFile(archive_path, "w") as tarobj:
|
||||
tarobj.add(audio_path, arcname=audio_file)
|
||||
with tarfile.TarFile(archive_path, "r") as tarobj:
|
||||
fileobj = tarobj.extractfile(audio_file)
|
||||
info = soundfile_backend.info(fileobj)
|
||||
assert info.sample_rate == sample_rate
|
||||
assert info.num_frames == num_frames
|
||||
assert info.num_channels == num_channels
|
||||
assert info.bits_per_sample == bits_per_sample
|
||||
assert info.encoding == "FLAC" if ext == "flac" else "PCM_S"
|
||||
|
||||
def test_tarobj_wav(self):
|
||||
"""Query compressed audio via file-like object works"""
|
||||
self._test_tarobj("wav", "PCM_16", 16)
|
||||
|
||||
@skipIfFormatNotSupported("FLAC")
|
||||
def test_tarobj_flac(self):
|
||||
"""Query compressed audio via file-like object works"""
|
||||
self._test_tarobj("flac", "PCM_16", 16)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,369 +0,0 @@
|
||||
#this code is from: https://github.com/pytorch/audio/blob/main/test/torchaudio_unittest/backend/soundfile/load_test.py
|
||||
|
||||
import os
|
||||
import tarfile
|
||||
import unittest
|
||||
from unittest.mock import patch
|
||||
import numpy as np
|
||||
|
||||
from parameterized import parameterized
|
||||
import paddle
|
||||
from paddlespeech.audio._internal import module_utils as _mod_utils
|
||||
from paddlespeech.audio.backends import soundfile_backend
|
||||
from tests.unit.audio.backends.common import get_bits_per_sample, get_encoding
|
||||
from tests.unit.common_utils import (
|
||||
get_wav_data,
|
||||
load_wav,
|
||||
nested_params,
|
||||
normalize_wav,
|
||||
save_wav,
|
||||
TempDirMixin,
|
||||
)
|
||||
|
||||
from common import dtype2subtype, parameterize, skipIfFormatNotSupported
|
||||
|
||||
import soundfile
|
||||
|
||||
|
||||
def _get_mock_path(
|
||||
ext: str,
|
||||
dtype: str,
|
||||
sample_rate: int,
|
||||
num_channels: int,
|
||||
num_frames: int,
|
||||
):
|
||||
return f"{dtype}_{sample_rate}_{num_channels}_{num_frames}.{ext}"
|
||||
|
||||
|
||||
def _get_mock_params(path: str):
|
||||
filename, ext = path.split(".")
|
||||
parts = filename.split("_")
|
||||
return {
|
||||
"ext": ext,
|
||||
"dtype": parts[0],
|
||||
"sample_rate": int(parts[1]),
|
||||
"num_channels": int(parts[2]),
|
||||
"num_frames": int(parts[3]),
|
||||
}
|
||||
|
||||
|
||||
class SoundFileMock:
|
||||
def __init__(self, path, mode):
|
||||
assert mode == "r"
|
||||
self.path = path
|
||||
self._params = _get_mock_params(path)
|
||||
self._start = None
|
||||
|
||||
@property
|
||||
def samplerate(self):
|
||||
return self._params["sample_rate"]
|
||||
|
||||
@property
|
||||
def format(self):
|
||||
if self._params["ext"] == "wav":
|
||||
return "WAV"
|
||||
if self._params["ext"] == "flac":
|
||||
return "FLAC"
|
||||
if self._params["ext"] == "ogg":
|
||||
return "OGG"
|
||||
if self._params["ext"] in ["sph", "nis", "nist"]:
|
||||
return "NIST"
|
||||
|
||||
@property
|
||||
def subtype(self):
|
||||
if self._params["ext"] == "ogg":
|
||||
return "VORBIS"
|
||||
return dtype2subtype(self._params["dtype"])
|
||||
|
||||
def _prepare_read(self, start, stop, frames):
|
||||
assert stop is None
|
||||
self._start = start
|
||||
return frames
|
||||
|
||||
def read(self, frames, dtype, always_2d):
|
||||
assert always_2d
|
||||
data = get_wav_data(
|
||||
dtype,
|
||||
self._params["num_channels"],
|
||||
normalize=False,
|
||||
num_frames=self._params["num_frames"],
|
||||
channels_first=False,
|
||||
).numpy()
|
||||
return data[self._start : self._start + frames]
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, *args, **kwargs):
|
||||
pass
|
||||
|
||||
|
||||
class MockedLoadTest(unittest.TestCase):
|
||||
def assert_dtype(self, ext, dtype, sample_rate, num_channels, normalize, channels_first):
|
||||
"""When format is WAV or NIST, normalize=False will return the native dtype Tensor, otherwise float32"""
|
||||
num_frames = 3 * sample_rate
|
||||
path = _get_mock_path(ext, dtype, sample_rate, num_channels, num_frames)
|
||||
expected_dtype = paddle.float32 if normalize or ext not in ["wav", "nist"] else getattr(paddle, dtype)
|
||||
with patch("soundfile.SoundFile", SoundFileMock):
|
||||
found, sr = soundfile_backend.load(path, normalize=normalize, channels_first=channels_first)
|
||||
assert found.dtype == expected_dtype
|
||||
assert sample_rate == sr
|
||||
|
||||
@parameterize(
|
||||
["int32", "float32", "float64"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
[True, False],
|
||||
[True, False],
|
||||
)
|
||||
def test_wav(self, dtype, sample_rate, num_channels, normalize, channels_first):
|
||||
"""Returns native dtype when normalize=False else float32"""
|
||||
self.assert_dtype("wav", dtype, sample_rate, num_channels, normalize, channels_first)
|
||||
|
||||
@parameterize(
|
||||
["int32"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
[True, False],
|
||||
[True, False],
|
||||
)
|
||||
def test_sphere(self, dtype, sample_rate, num_channels, normalize, channels_first):
|
||||
"""Returns float32 always"""
|
||||
self.assert_dtype("sph", dtype, sample_rate, num_channels, normalize, channels_first)
|
||||
|
||||
@parameterize([8000, 16000], [1, 2], [True, False], [True, False])
|
||||
def test_ogg(self, sample_rate, num_channels, normalize, channels_first):
|
||||
"""Returns float32 always"""
|
||||
self.assert_dtype("ogg", "int16", sample_rate, num_channels, normalize, channels_first)
|
||||
|
||||
@parameterize([8000, 16000], [1, 2], [True, False], [True, False])
|
||||
def test_flac(self, sample_rate, num_channels, normalize, channels_first):
|
||||
"""`soundfile_backend.load` can load ogg format."""
|
||||
self.assert_dtype("flac", "int16", sample_rate, num_channels, normalize, channels_first)
|
||||
|
||||
|
||||
class LoadTestBase(TempDirMixin, unittest.TestCase):
|
||||
def assert_wav(
|
||||
self,
|
||||
dtype,
|
||||
sample_rate,
|
||||
num_channels,
|
||||
normalize,
|
||||
channels_first=True,
|
||||
duration=1,
|
||||
):
|
||||
"""`soundfile_backend.load` can load wav format correctly.
|
||||
|
||||
Wav data loaded with soundfile backend should match those with scipy
|
||||
"""
|
||||
path = self.get_temp_path("reference.wav")
|
||||
num_frames = duration * sample_rate
|
||||
data = get_wav_data(
|
||||
dtype,
|
||||
num_channels,
|
||||
normalize=normalize,
|
||||
num_frames=num_frames,
|
||||
channels_first=channels_first,
|
||||
)
|
||||
save_wav(path, data, sample_rate, channels_first=channels_first)
|
||||
expected = load_wav(path, normalize=normalize, channels_first=channels_first)[0]
|
||||
data, sr = soundfile_backend.load(path, normalize=normalize, channels_first=channels_first)
|
||||
assert sr == sample_rate
|
||||
np.testing.assert_array_almost_equal(data.numpy(), expected.numpy())
|
||||
|
||||
def assert_sphere(
|
||||
self,
|
||||
dtype,
|
||||
sample_rate,
|
||||
num_channels,
|
||||
channels_first=True,
|
||||
duration=1,
|
||||
):
|
||||
"""`soundfile_backend.load` can load SPHERE format correctly."""
|
||||
path = self.get_temp_path("reference.sph")
|
||||
num_frames = duration * sample_rate
|
||||
raw = get_wav_data(
|
||||
dtype,
|
||||
num_channels,
|
||||
num_frames=num_frames,
|
||||
normalize=False,
|
||||
channels_first=False,
|
||||
)
|
||||
soundfile.write(path, raw, sample_rate, subtype=dtype2subtype(dtype), format="NIST")
|
||||
expected = normalize_wav(raw.t() if channels_first else raw)
|
||||
data, sr = soundfile_backend.load(path, channels_first=channels_first)
|
||||
assert sr == sample_rate
|
||||
#self.assertEqual(data, expected, atol=1e-4, rtol=1e-8)
|
||||
np.testing.assert_array_almost_equal(data.numpy(), expected.numpy())
|
||||
|
||||
def assert_flac(
|
||||
self,
|
||||
dtype,
|
||||
sample_rate,
|
||||
num_channels,
|
||||
channels_first=True,
|
||||
duration=1,
|
||||
):
|
||||
"""`soundfile_backend.load` can load FLAC format correctly."""
|
||||
path = self.get_temp_path("reference.flac")
|
||||
num_frames = duration * sample_rate
|
||||
raw = get_wav_data(
|
||||
dtype,
|
||||
num_channels,
|
||||
num_frames=num_frames,
|
||||
normalize=False,
|
||||
channels_first=False,
|
||||
)
|
||||
soundfile.write(path, raw, sample_rate)
|
||||
expected = normalize_wav(raw.t() if channels_first else raw)
|
||||
data, sr = soundfile_backend.load(path, channels_first=channels_first)
|
||||
assert sr == sample_rate
|
||||
#self.assertEqual(data, expected, atol=1e-4, rtol=1e-8)
|
||||
np.testing.assert_array_almost_equal(data.numpy(), expected.numpy())
|
||||
|
||||
|
||||
|
||||
class TestLoad(LoadTestBase):
|
||||
"""Test the correctness of `soundfile_backend.load` for various formats"""
|
||||
|
||||
@parameterize(
|
||||
["float32", "int32"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
[False, True],
|
||||
[False, True],
|
||||
)
|
||||
def test_wav(self, dtype, sample_rate, num_channels, normalize, channels_first):
|
||||
"""`soundfile_backend.load` can load wav format correctly."""
|
||||
self.assert_wav(dtype, sample_rate, num_channels, normalize, channels_first)
|
||||
|
||||
@parameterize(
|
||||
["int32"],
|
||||
[16000],
|
||||
[2],
|
||||
[False],
|
||||
)
|
||||
def test_wav_large(self, dtype, sample_rate, num_channels, normalize):
|
||||
"""`soundfile_backend.load` can load large wav file correctly."""
|
||||
two_hours = 2 * 60 * 60
|
||||
self.assert_wav(dtype, sample_rate, num_channels, normalize, duration=two_hours)
|
||||
|
||||
@parameterize(["float32", "int32"], [4, 8, 16, 32], [False, True])
|
||||
def test_multiple_channels(self, dtype, num_channels, channels_first):
|
||||
"""`soundfile_backend.load` can load wav file with more than 2 channels."""
|
||||
sample_rate = 8000
|
||||
normalize = False
|
||||
self.assert_wav(dtype, sample_rate, num_channels, normalize, channels_first)
|
||||
|
||||
#@parameterize(["int32"], [8000, 16000], [1, 2], [False, True])
|
||||
#@skipIfFormatNotSupported("NIST")
|
||||
#def test_sphere(self, dtype, sample_rate, num_channels, channels_first):
|
||||
#"""`soundfile_backend.load` can load sphere format correctly."""
|
||||
#self.assert_sphere(dtype, sample_rate, num_channels, channels_first)
|
||||
|
||||
#@parameterize(["int32"], [8000, 16000], [1, 2], [False, True])
|
||||
#@skipIfFormatNotSupported("FLAC")
|
||||
#def test_flac(self, dtype, sample_rate, num_channels, channels_first):
|
||||
#"""`soundfile_backend.load` can load flac format correctly."""
|
||||
#self.assert_flac(dtype, sample_rate, num_channels, channels_first)
|
||||
|
||||
|
||||
class TestLoadFormat(TempDirMixin, unittest.TestCase):
|
||||
"""Given `format` parameter, `so.load` can load files without extension"""
|
||||
|
||||
original = None
|
||||
path = None
|
||||
|
||||
def _make_file(self, format_):
|
||||
sample_rate = 8000
|
||||
path_with_ext = self.get_temp_path(f"test.{format_}")
|
||||
data = get_wav_data("float32", num_channels=2).numpy().T
|
||||
soundfile.write(path_with_ext, data, sample_rate)
|
||||
expected = soundfile.read(path_with_ext, dtype="float32")[0].T
|
||||
path = os.path.splitext(path_with_ext)[0]
|
||||
os.rename(path_with_ext, path)
|
||||
return path, expected
|
||||
|
||||
def _test_format(self, format_):
|
||||
"""Providing format allows to read file without extension"""
|
||||
path, expected = self._make_file(format_)
|
||||
found, _ = soundfile_backend.load(path)
|
||||
#self.assertEqual(found, expected)
|
||||
np.testing.assert_array_almost_equal(found, expected)
|
||||
|
||||
@parameterized.expand(
|
||||
[
|
||||
("WAV",),
|
||||
("wav",),
|
||||
]
|
||||
)
|
||||
def test_wav(self, format_):
|
||||
self._test_format(format_)
|
||||
|
||||
@parameterized.expand(
|
||||
[
|
||||
("FLAC",),
|
||||
("flac",),
|
||||
]
|
||||
)
|
||||
@skipIfFormatNotSupported("FLAC")
|
||||
def test_flac(self, format_):
|
||||
self._test_format(format_)
|
||||
|
||||
|
||||
class TestFileObject(TempDirMixin, unittest.TestCase):
|
||||
def _test_fileobj(self, ext):
|
||||
"""Loading audio via file-like object works"""
|
||||
sample_rate = 16000
|
||||
path = self.get_temp_path(f"test.{ext}")
|
||||
|
||||
data = get_wav_data("float32", num_channels=2).numpy().T
|
||||
soundfile.write(path, data, sample_rate)
|
||||
expected = soundfile.read(path, dtype="float32")[0].T
|
||||
|
||||
with open(path, "rb") as fileobj:
|
||||
found, sr = soundfile_backend.load(fileobj)
|
||||
assert sr == sample_rate
|
||||
#self.assertEqual(expected, found)
|
||||
np.testing.assert_array_almost_equal(found, expected)
|
||||
|
||||
def test_fileobj_wav(self):
|
||||
"""Loading audio via file-like object works"""
|
||||
self._test_fileobj("wav")
|
||||
|
||||
def test_fileobj_flac(self):
|
||||
"""Loading audio via file-like object works"""
|
||||
self._test_fileobj("flac")
|
||||
|
||||
def _test_tarfile(self, ext):
|
||||
"""Loading audio via file-like object works"""
|
||||
sample_rate = 16000
|
||||
audio_file = f"test.{ext}"
|
||||
audio_path = self.get_temp_path(audio_file)
|
||||
archive_path = self.get_temp_path("archive.tar.gz")
|
||||
|
||||
data = get_wav_data("float32", num_channels=2).numpy().T
|
||||
soundfile.write(audio_path, data, sample_rate)
|
||||
expected = soundfile.read(audio_path, dtype="float32")[0].T
|
||||
|
||||
with tarfile.TarFile(archive_path, "w") as tarobj:
|
||||
tarobj.add(audio_path, arcname=audio_file)
|
||||
with tarfile.TarFile(archive_path, "r") as tarobj:
|
||||
fileobj = tarobj.extractfile(audio_file)
|
||||
found, sr = soundfile_backend.load(fileobj)
|
||||
|
||||
assert sr == sample_rate
|
||||
#self.assertEqual(expected, found)
|
||||
np.testing.assert_array_almost_equal(found.numpy(), expected)
|
||||
|
||||
|
||||
def test_tarfile_wav(self):
|
||||
"""Loading audio via file-like object works"""
|
||||
self._test_tarfile("wav")
|
||||
|
||||
def test_tarfile_flac(self):
|
||||
"""Loading audio via file-like object works"""
|
||||
self._test_tarfile("flac")
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,322 +0,0 @@
|
||||
import io
|
||||
import unittest
|
||||
from unittest.mock import patch
|
||||
|
||||
from paddlespeech.audio._internal import module_utils as _mod_utils
|
||||
from paddlespeech.audio.backends import soundfile_backend
|
||||
from tests.unit.common_utils import (
|
||||
get_wav_data,
|
||||
load_wav,
|
||||
nested_params,
|
||||
normalize_wav,
|
||||
save_wav,
|
||||
TempDirMixin,
|
||||
)
|
||||
|
||||
from common import fetch_wav_subtype, parameterize, skipIfFormatNotSupported
|
||||
|
||||
import paddle
|
||||
import numpy as np
|
||||
|
||||
import soundfile
|
||||
|
||||
|
||||
class MockedSaveTest(unittest.TestCase):
|
||||
@nested_params(
|
||||
["float32", "int32"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
[False, True],
|
||||
[
|
||||
(None, None),
|
||||
("PCM_U", None),
|
||||
("PCM_U", 8),
|
||||
("PCM_S", None),
|
||||
("PCM_S", 16),
|
||||
("PCM_S", 32),
|
||||
("PCM_F", None),
|
||||
("PCM_F", 32),
|
||||
("PCM_F", 64),
|
||||
("ULAW", None),
|
||||
("ULAW", 8),
|
||||
("ALAW", None),
|
||||
("ALAW", 8),
|
||||
],
|
||||
)
|
||||
@patch("soundfile.write")
|
||||
def test_wav(self, dtype, sample_rate, num_channels, channels_first, enc_params, mocked_write):
|
||||
"""soundfile_backend.save passes correct subtype to soundfile.write when WAV"""
|
||||
filepath = "foo.wav"
|
||||
input_tensor = get_wav_data(
|
||||
dtype,
|
||||
num_channels,
|
||||
num_frames=3 * sample_rate,
|
||||
normalize=dtype == "float32",
|
||||
channels_first=channels_first,
|
||||
)
|
||||
input_tensor = paddle.transpose(input_tensor, [1, 0])
|
||||
|
||||
encoding, bits_per_sample = enc_params
|
||||
soundfile_backend.save(
|
||||
filepath,
|
||||
input_tensor,
|
||||
sample_rate,
|
||||
channels_first=channels_first,
|
||||
encoding=encoding,
|
||||
bits_per_sample=bits_per_sample,
|
||||
)
|
||||
|
||||
# on +Py3.8 call_args.kwargs is more descreptive
|
||||
args = mocked_write.call_args[1]
|
||||
assert args["file"] == filepath
|
||||
assert args["samplerate"] == sample_rate
|
||||
assert args["subtype"] == fetch_wav_subtype(dtype, encoding, bits_per_sample)
|
||||
assert args["format"] is None
|
||||
tensor_result = paddle.transpose(input_tensor, [1, 0]) if channels_first else input_tensor
|
||||
#self.assertEqual(args["data"], tensor_result.numpy())
|
||||
np.testing.assert_array_almost_equal(args["data"].numpy(), tensor_result.numpy())
|
||||
|
||||
|
||||
|
||||
@patch("soundfile.write")
|
||||
def assert_non_wav(
|
||||
self,
|
||||
fmt,
|
||||
dtype,
|
||||
sample_rate,
|
||||
num_channels,
|
||||
channels_first,
|
||||
mocked_write,
|
||||
encoding=None,
|
||||
bits_per_sample=None,
|
||||
):
|
||||
"""soundfile_backend.save passes correct subtype and format to soundfile.write when SPHERE"""
|
||||
filepath = f"foo.{fmt}"
|
||||
input_tensor = get_wav_data(
|
||||
dtype,
|
||||
num_channels,
|
||||
num_frames=3 * sample_rate,
|
||||
normalize=False,
|
||||
channels_first=channels_first,
|
||||
)
|
||||
input_tensor = paddle.transpose(input_tensor, [1, 0])
|
||||
|
||||
expected_data = paddle.transpose(input_tensor, [1, 0]) if channels_first else input_tensor
|
||||
|
||||
soundfile_backend.save(
|
||||
filepath,
|
||||
input_tensor,
|
||||
sample_rate,
|
||||
channels_first,
|
||||
encoding=encoding,
|
||||
bits_per_sample=bits_per_sample,
|
||||
)
|
||||
|
||||
# on +Py3.8 call_args.kwargs is more descreptive
|
||||
args = mocked_write.call_args[1]
|
||||
assert args["file"] == filepath
|
||||
assert args["samplerate"] == sample_rate
|
||||
if fmt in ["sph", "nist", "nis"]:
|
||||
assert args["format"] == "NIST"
|
||||
else:
|
||||
assert args["format"] is None
|
||||
np.testing.assert_array_almost_equal(args["data"].numpy(), expected_data.numpy())
|
||||
#self.assertEqual(args["data"], expected_data)
|
||||
|
||||
@nested_params(
|
||||
["sph", "nist", "nis"],
|
||||
["int32"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
[False, True],
|
||||
[
|
||||
("PCM_S", 8),
|
||||
("PCM_S", 16),
|
||||
("PCM_S", 24),
|
||||
("PCM_S", 32),
|
||||
("ULAW", 8),
|
||||
("ALAW", 8),
|
||||
("ALAW", 16),
|
||||
("ALAW", 24),
|
||||
("ALAW", 32),
|
||||
],
|
||||
)
|
||||
def test_sph(self, fmt, dtype, sample_rate, num_channels, channels_first, enc_params):
|
||||
"""soundfile_backend.save passes default format and subtype (None-s) to
|
||||
soundfile.write when not WAV"""
|
||||
encoding, bits_per_sample = enc_params
|
||||
self.assert_non_wav(
|
||||
fmt, dtype, sample_rate, num_channels, channels_first, encoding=encoding, bits_per_sample=bits_per_sample
|
||||
)
|
||||
|
||||
@parameterize(
|
||||
["int32"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
[False, True],
|
||||
[8, 16, 24],
|
||||
)
|
||||
def test_flac(self, dtype, sample_rate, num_channels, channels_first, bits_per_sample):
|
||||
"""soundfile_backend.save passes default format and subtype (None-s) to
|
||||
soundfile.write when not WAV"""
|
||||
self.assert_non_wav("flac", dtype, sample_rate, num_channels, channels_first, bits_per_sample=bits_per_sample)
|
||||
|
||||
@parameterize(
|
||||
["int32"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
[False, True],
|
||||
)
|
||||
def test_ogg(self, dtype, sample_rate, num_channels, channels_first):
|
||||
"""soundfile_backend.save passes default format and subtype (None-s) to
|
||||
soundfile.write when not WAV"""
|
||||
self.assert_non_wav("ogg", dtype, sample_rate, num_channels, channels_first)
|
||||
|
||||
|
||||
class SaveTestBase(TempDirMixin, unittest.TestCase):
|
||||
def assert_wav(self, dtype, sample_rate, num_channels, num_frames):
|
||||
"""`soundfile_backend.save` can save wav format."""
|
||||
path = self.get_temp_path("data.wav")
|
||||
expected = get_wav_data(dtype, num_channels, num_frames=num_frames, normalize=False)
|
||||
soundfile_backend.save(path, expected, sample_rate)
|
||||
found, sr = load_wav(path, normalize=False)
|
||||
assert sample_rate == sr
|
||||
#self.assertEqual(found, expected)
|
||||
np.testing.assert_array_almost_equal(found.numpy(), expected.numpy())
|
||||
|
||||
def _assert_non_wav(self, fmt, dtype, sample_rate, num_channels):
|
||||
"""`soundfile_backend.save` can save non-wav format.
|
||||
|
||||
Due to precision missmatch, and the lack of alternative way to decode the
|
||||
resulting files without using soundfile, only meta data are validated.
|
||||
"""
|
||||
num_frames = sample_rate * 3
|
||||
path = self.get_temp_path(f"data.{fmt}")
|
||||
expected = get_wav_data(dtype, num_channels, num_frames=num_frames, normalize=False)
|
||||
soundfile_backend.save(path, expected, sample_rate)
|
||||
sinfo = soundfile.info(path)
|
||||
assert sinfo.format == fmt.upper()
|
||||
#assert sinfo.frames == num_frames this go wrong
|
||||
assert sinfo.channels == num_channels
|
||||
assert sinfo.samplerate == sample_rate
|
||||
|
||||
def assert_flac(self, dtype, sample_rate, num_channels):
|
||||
"""`soundfile_backend.save` can save flac format."""
|
||||
self._assert_non_wav("flac", dtype, sample_rate, num_channels)
|
||||
|
||||
def assert_sphere(self, dtype, sample_rate, num_channels):
|
||||
"""`soundfile_backend.save` can save sph format."""
|
||||
self._assert_non_wav("nist", dtype, sample_rate, num_channels)
|
||||
|
||||
def assert_ogg(self, dtype, sample_rate, num_channels):
|
||||
"""`soundfile_backend.save` can save ogg format.
|
||||
|
||||
As we cannot inspect the OGG format (it's lossy), we only check the metadata.
|
||||
"""
|
||||
self._assert_non_wav("ogg", dtype, sample_rate, num_channels)
|
||||
|
||||
|
||||
class TestSave(SaveTestBase):
|
||||
@parameterize(
|
||||
["float32", "int32"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
)
|
||||
def test_wav(self, dtype, sample_rate, num_channels):
|
||||
"""`soundfile_backend.save` can save wav format."""
|
||||
self.assert_wav(dtype, sample_rate, num_channels, num_frames=None)
|
||||
|
||||
@parameterize(
|
||||
["float32", "int32"],
|
||||
[4, 8, 16, 32],
|
||||
)
|
||||
def test_multiple_channels(self, dtype, num_channels):
|
||||
"""`soundfile_backend.save` can save wav with more than 2 channels."""
|
||||
sample_rate = 8000
|
||||
self.assert_wav(dtype, sample_rate, num_channels, num_frames=None)
|
||||
|
||||
@parameterize(
|
||||
["int32"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
)
|
||||
@skipIfFormatNotSupported("NIST")
|
||||
def test_sphere(self, dtype, sample_rate, num_channels):
|
||||
"""`soundfile_backend.save` can save sph format."""
|
||||
self.assert_sphere(dtype, sample_rate, num_channels)
|
||||
|
||||
@parameterize(
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
)
|
||||
@skipIfFormatNotSupported("FLAC")
|
||||
def test_flac(self, sample_rate, num_channels):
|
||||
"""`soundfile_backend.save` can save flac format."""
|
||||
self.assert_flac("float32", sample_rate, num_channels)
|
||||
|
||||
@parameterize(
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
)
|
||||
@skipIfFormatNotSupported("OGG")
|
||||
def test_ogg(self, sample_rate, num_channels):
|
||||
"""`soundfile_backend.save` can save ogg/vorbis format."""
|
||||
self.assert_ogg("float32", sample_rate, num_channels)
|
||||
|
||||
|
||||
class TestSaveParams(TempDirMixin, unittest.TestCase):
|
||||
"""Test the correctness of optional parameters of `soundfile_backend.save`"""
|
||||
|
||||
@parameterize([True, False])
|
||||
def test_channels_first(self, channels_first):
|
||||
"""channels_first swaps axes"""
|
||||
path = self.get_temp_path("data.wav")
|
||||
data = get_wav_data("int32", 2, channels_first=channels_first)
|
||||
soundfile_backend.save(path, data, 8000, channels_first=channels_first)
|
||||
found = load_wav(path)[0]
|
||||
expected = data if channels_first else data.transpose([1, 0])
|
||||
#self.assertEqual(found, expected, atol=1e-4, rtol=1e-8)
|
||||
np.testing.assert_array_almost_equal(found.numpy(), expected.numpy())
|
||||
|
||||
|
||||
class TestFileObject(TempDirMixin, unittest.TestCase):
|
||||
def _test_fileobj(self, ext):
|
||||
"""Saving audio to file-like object works"""
|
||||
sample_rate = 16000
|
||||
path = self.get_temp_path(f"test.{ext}")
|
||||
|
||||
subtype = "FLOAT" if ext == "wav" else None
|
||||
data = get_wav_data("float32", num_channels=2)
|
||||
soundfile.write(path, data.numpy().T, sample_rate, subtype=subtype)
|
||||
expected = soundfile.read(path, dtype="float32")[0]
|
||||
|
||||
fileobj = io.BytesIO()
|
||||
soundfile_backend.save(fileobj, data, sample_rate, format=ext)
|
||||
fileobj.seek(0)
|
||||
found, sr = soundfile.read(fileobj, dtype="float32")
|
||||
|
||||
assert sr == sample_rate
|
||||
#self.assertEqual(expected, found, atol=1e-4, rtol=1e-8)
|
||||
np.testing.assert_array_almost_equal(found, expected)
|
||||
|
||||
def test_fileobj_wav(self):
|
||||
"""Saving audio via file-like object works"""
|
||||
self._test_fileobj("wav")
|
||||
|
||||
@skipIfFormatNotSupported("FLAC")
|
||||
def test_fileobj_flac(self):
|
||||
"""Saving audio via file-like object works"""
|
||||
self._test_fileobj("flac")
|
||||
|
||||
@skipIfFormatNotSupported("NIST")
|
||||
def test_fileobj_nist(self):
|
||||
"""Saving audio via file-like object works"""
|
||||
self._test_fileobj("NIST")
|
||||
|
||||
@skipIfFormatNotSupported("OGG")
|
||||
def test_fileobj_ogg(self):
|
||||
"""Saving audio via file-like object works"""
|
||||
self._test_fileobj("OGG")
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,73 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import filecmp
|
||||
import os
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import soundfile as sf
|
||||
|
||||
import paddlespeech.audio
|
||||
from ..base import BackendTest
|
||||
|
||||
|
||||
class TestIO(BackendTest):
|
||||
def test_load_mono_channel(self):
|
||||
sf_data, sf_sr = sf.read(self.files[0])
|
||||
pa_data, pa_sr = paddlespeech.audio.load(
|
||||
self.files[0], normal=False, dtype='float64')
|
||||
|
||||
self.assertEqual(sf_data.dtype, pa_data.dtype)
|
||||
self.assertEqual(sf_sr, pa_sr)
|
||||
np.testing.assert_array_almost_equal(sf_data, pa_data)
|
||||
|
||||
def test_load_multi_channels(self):
|
||||
sf_data, sf_sr = sf.read(self.files[1])
|
||||
sf_data = sf_data.T # Channel dim first
|
||||
pa_data, pa_sr = paddlespeech.audio.load(
|
||||
self.files[1], mono=False, normal=False, dtype='float64')
|
||||
|
||||
self.assertEqual(sf_data.dtype, pa_data.dtype)
|
||||
self.assertEqual(sf_sr, pa_sr)
|
||||
np.testing.assert_array_almost_equal(sf_data, pa_data)
|
||||
|
||||
def test_save_mono_channel(self):
|
||||
waveform, sr = np.random.randint(
|
||||
low=-32768, high=32768, size=(48000), dtype=np.int16), 16000
|
||||
sf_tmp_file = 'sf_tmp.wav'
|
||||
pa_tmp_file = 'pa_tmp.wav'
|
||||
|
||||
sf.write(sf_tmp_file, waveform, sr)
|
||||
paddlespeech.audio.save(waveform, sr, pa_tmp_file)
|
||||
|
||||
self.assertTrue(filecmp.cmp(sf_tmp_file, pa_tmp_file))
|
||||
for file in [sf_tmp_file, pa_tmp_file]:
|
||||
os.remove(file)
|
||||
|
||||
def test_save_multi_channels(self):
|
||||
waveform, sr = np.random.randint(
|
||||
low=-32768, high=32768, size=(2, 48000), dtype=np.int16), 16000
|
||||
sf_tmp_file = 'sf_tmp.wav'
|
||||
pa_tmp_file = 'pa_tmp.wav'
|
||||
|
||||
sf.write(sf_tmp_file, waveform.T, sr)
|
||||
paddlespeech.audio.save(waveform.T, sr, pa_tmp_file)
|
||||
|
||||
self.assertTrue(filecmp.cmp(sf_tmp_file, pa_tmp_file))
|
||||
for file in [sf_tmp_file, pa_tmp_file]:
|
||||
os.remove(file)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,289 +0,0 @@
|
||||
import unittest
|
||||
import itertools
|
||||
import tarfile
|
||||
from contextlib import contextmanager
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import os
|
||||
import io
|
||||
|
||||
from parameterized import parameterized
|
||||
from tests.unit.audio.backends.common import get_bits_per_sample, get_encoding
|
||||
from paddlespeech.audio.backends import sox_io_backend
|
||||
|
||||
from tests.unit.common_utils import (
|
||||
get_wav_data,
|
||||
load_wav,
|
||||
save_wav,
|
||||
TempDirMixin,
|
||||
sox_utils,
|
||||
data_utils
|
||||
)
|
||||
|
||||
#code is from:https://github.com/pytorch/audio/blob/main/torchaudio/test/torchaudio_unittest/backend/sox_io/info_test.py
|
||||
|
||||
class TestInfo(TempDirMixin, unittest.TestCase):
|
||||
@parameterized.expand(
|
||||
list(
|
||||
itertools.product(
|
||||
["float32", "int32",],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
)
|
||||
),
|
||||
)
|
||||
def test_wav(self, dtype, sample_rate, num_channels):
|
||||
"""`sox_io_backend.info` can check wav file correctly"""
|
||||
duration = 1
|
||||
path = self.get_temp_path("data.wav")
|
||||
data = get_wav_data(dtype, num_channels, normalize=False, num_frames=duration * sample_rate)
|
||||
save_wav(path, data, sample_rate)
|
||||
info = sox_io_backend.info(path)
|
||||
assert info.sample_rate == sample_rate
|
||||
assert info.num_frames == sample_rate * duration
|
||||
assert info.num_channels == num_channels
|
||||
assert info.bits_per_sample == sox_utils.get_bit_depth(dtype)
|
||||
assert info.encoding == get_encoding("wav", dtype)
|
||||
|
||||
@parameterized.expand(
|
||||
list(
|
||||
itertools.product(
|
||||
["float32", "int32"],
|
||||
[8000, 16000],
|
||||
[4, 8, 16, 32],
|
||||
)
|
||||
),
|
||||
)
|
||||
def test_wav_multiple_channels(self, dtype, sample_rate, num_channels):
|
||||
"""`sox_io_backend.info` can check wav file with channels more than 2 correctly"""
|
||||
duration = 1
|
||||
path = self.get_temp_path("data.wav")
|
||||
data = get_wav_data(dtype, num_channels, normalize=False, num_frames=duration * sample_rate)
|
||||
save_wav(path, data, sample_rate)
|
||||
info = sox_io_backend.info(path)
|
||||
assert info.sample_rate == sample_rate
|
||||
assert info.num_frames == sample_rate * duration
|
||||
assert info.num_channels == num_channels
|
||||
assert info.bits_per_sample == sox_utils.get_bit_depth(dtype)
|
||||
|
||||
def test_ulaw(self):
|
||||
"""`sox_io_backend.info` can check ulaw file correctly"""
|
||||
duration = 1
|
||||
num_channels = 1
|
||||
sample_rate = 8000
|
||||
path = self.get_temp_path("data.wav")
|
||||
sox_utils.gen_audio_file(
|
||||
path, sample_rate=sample_rate, num_channels=num_channels, bit_depth=8, encoding="u-law", duration=duration
|
||||
)
|
||||
info = sox_io_backend.info(path)
|
||||
assert info.sample_rate == sample_rate
|
||||
assert info.num_frames == sample_rate * duration
|
||||
assert info.num_channels == num_channels
|
||||
assert info.bits_per_sample == 8
|
||||
assert info.encoding == "ULAW"
|
||||
|
||||
def test_alaw(self):
|
||||
"""`sox_io_backend.info` can check alaw file correctly"""
|
||||
duration = 1
|
||||
num_channels = 1
|
||||
sample_rate = 8000
|
||||
path = self.get_temp_path("data.wav")
|
||||
sox_utils.gen_audio_file(
|
||||
path, sample_rate=sample_rate, num_channels=num_channels, bit_depth=8, encoding="a-law", duration=duration
|
||||
)
|
||||
info = sox_io_backend.info(path)
|
||||
assert info.sample_rate == sample_rate
|
||||
assert info.num_frames == sample_rate * duration
|
||||
assert info.num_channels == num_channels
|
||||
assert info.bits_per_sample == 8
|
||||
assert info.encoding == "ALAW"
|
||||
|
||||
#class TestInfoOpus(unittest.TestCase):
|
||||
#@parameterized.expand(
|
||||
#list(
|
||||
#itertools.product(
|
||||
#["96k"],
|
||||
#[1, 2],
|
||||
#[0, 5, 10],
|
||||
#)
|
||||
#),
|
||||
#)
|
||||
#def test_opus(self, bitrate, num_channels, compression_level):
|
||||
#"""`sox_io_backend.info` can check opus file correcty"""
|
||||
#path = data_utils.get_asset_path("io", f"{bitrate}_{compression_level}_{num_channels}ch.opus")
|
||||
#info = sox_io_backend.info(path)
|
||||
#assert info.sample_rate == 48000
|
||||
#assert info.num_frames == 32768
|
||||
#assert info.num_channels == num_channels
|
||||
#assert info.bits_per_sample == 0 # bit_per_sample is irrelevant for compressed formats
|
||||
#assert info.encoding == "OPUS"
|
||||
|
||||
class FileObjTestBase(TempDirMixin):
|
||||
def _gen_file(self, ext, dtype, sample_rate, num_channels, num_frames, *, comments=None):
|
||||
path = self.get_temp_path(f"test.{ext}")
|
||||
bit_depth = sox_utils.get_bit_depth(dtype)
|
||||
duration = num_frames / sample_rate
|
||||
comment_file = self._gen_comment_file(comments) if comments else None
|
||||
|
||||
sox_utils.gen_audio_file(
|
||||
path,
|
||||
sample_rate,
|
||||
num_channels=num_channels,
|
||||
encoding=sox_utils.get_encoding(dtype),
|
||||
bit_depth=bit_depth,
|
||||
duration=duration,
|
||||
comment_file=comment_file,
|
||||
)
|
||||
return path
|
||||
|
||||
def _gen_comment_file(self, comments):
|
||||
comment_path = self.get_temp_path("comment.txt")
|
||||
with open(comment_path, "w") as file_:
|
||||
file_.writelines(comments)
|
||||
return comment_path
|
||||
|
||||
class Unseekable:
|
||||
def __init__(self, fileobj):
|
||||
self.fileobj = fileobj
|
||||
|
||||
def read(self, n):
|
||||
return self.fileobj.read(n)
|
||||
|
||||
class TestFileObject(FileObjTestBase, unittest.TestCase):
|
||||
def _query_fileobj(self, ext, dtype, sample_rate, num_channels, num_frames, *, comments=None):
|
||||
path = self._gen_file(ext, dtype, sample_rate, num_channels, num_frames, comments=comments)
|
||||
format_ = ext if ext in ["mp3"] else None
|
||||
with open(path, "rb") as fileobj:
|
||||
return sox_io_backend.info(fileobj, format_)
|
||||
|
||||
def _query_bytesio(self, ext, dtype, sample_rate, num_channels, num_frames):
|
||||
path = self._gen_file(ext, dtype, sample_rate, num_channels, num_frames)
|
||||
format_ = ext if ext in ["mp3"] else None
|
||||
with open(path, "rb") as file_:
|
||||
fileobj = io.BytesIO(file_.read())
|
||||
return sox_io_backend.info(fileobj, format_)
|
||||
|
||||
def _query_tarfile(self, ext, dtype, sample_rate, num_channels, num_frames):
|
||||
audio_path = self._gen_file(ext, dtype, sample_rate, num_channels, num_frames)
|
||||
audio_file = os.path.basename(audio_path)
|
||||
archive_path = self.get_temp_path("archive.tar.gz")
|
||||
with tarfile.TarFile(archive_path, "w") as tarobj:
|
||||
tarobj.add(audio_path, arcname=audio_file)
|
||||
format_ = ext if ext in ["mp3"] else None
|
||||
with tarfile.TarFile(archive_path, "r") as tarobj:
|
||||
fileobj = tarobj.extractfile(audio_file)
|
||||
return sox_io_backend.info(fileobj, format_)
|
||||
|
||||
@contextmanager
|
||||
def _set_buffer_size(self, buffer_size):
|
||||
try:
|
||||
original_buffer_size = get_buffer_size()
|
||||
set_buffer_size(buffer_size)
|
||||
yield
|
||||
finally:
|
||||
set_buffer_size(original_buffer_size)
|
||||
|
||||
@parameterized.expand(
|
||||
[
|
||||
("wav", "float32"),
|
||||
("wav", "int32"),
|
||||
("wav", "int16"),
|
||||
("wav", "uint8"),
|
||||
]
|
||||
)
|
||||
def test_fileobj(self, ext, dtype):
|
||||
"""Querying audio via file object works"""
|
||||
sample_rate = 16000
|
||||
num_frames = 3 * sample_rate
|
||||
num_channels = 2
|
||||
sinfo = self._query_fileobj(ext, dtype, sample_rate, num_channels, num_frames)
|
||||
|
||||
bits_per_sample = get_bits_per_sample(ext, dtype)
|
||||
num_frames = 0 if ext in ["mp3", "vorbis"] else num_frames
|
||||
|
||||
assert sinfo.sample_rate == sample_rate
|
||||
assert sinfo.num_channels == num_channels
|
||||
assert sinfo.num_frames == num_frames
|
||||
assert sinfo.bits_per_sample == bits_per_sample
|
||||
assert sinfo.encoding == get_encoding(ext, dtype)
|
||||
|
||||
@parameterized.expand(
|
||||
[
|
||||
("wav", "float32"),
|
||||
("wav", "int32"),
|
||||
("wav", "int16"),
|
||||
("wav", "uint8"),
|
||||
]
|
||||
)
|
||||
def test_bytesio(self, ext, dtype):
|
||||
"""Querying audio via ByteIO object works for small data"""
|
||||
sample_rate = 16000
|
||||
num_frames = 3 * sample_rate
|
||||
num_channels = 2
|
||||
sinfo = self._query_bytesio(ext, dtype, sample_rate, num_channels, num_frames)
|
||||
|
||||
bits_per_sample = get_bits_per_sample(ext, dtype)
|
||||
num_frames = 0 if ext in ["mp3", "vorbis"] else num_frames
|
||||
|
||||
assert sinfo.sample_rate == sample_rate
|
||||
assert sinfo.num_channels == num_channels
|
||||
assert sinfo.num_frames == num_frames
|
||||
assert sinfo.bits_per_sample == bits_per_sample
|
||||
assert sinfo.encoding == get_encoding(ext, dtype)
|
||||
|
||||
@parameterized.expand(
|
||||
[
|
||||
("wav", "float32"),
|
||||
("wav", "int32"),
|
||||
("wav", "int16"),
|
||||
("wav", "uint8"),
|
||||
]
|
||||
)
|
||||
def test_bytesio_tiny(self, ext, dtype):
|
||||
"""Querying audio via ByteIO object works for small data"""
|
||||
sample_rate = 8000
|
||||
num_frames = 4
|
||||
num_channels = 2
|
||||
sinfo = self._query_bytesio(ext, dtype, sample_rate, num_channels, num_frames)
|
||||
|
||||
bits_per_sample = get_bits_per_sample(ext, dtype)
|
||||
num_frames = 0 if ext in ["mp3", "vorbis"] else num_frames
|
||||
|
||||
assert sinfo.sample_rate == sample_rate
|
||||
assert sinfo.num_channels == num_channels
|
||||
assert sinfo.num_frames == num_frames
|
||||
assert sinfo.bits_per_sample == bits_per_sample
|
||||
assert sinfo.encoding == get_encoding(ext, dtype)
|
||||
|
||||
@parameterized.expand(
|
||||
[
|
||||
("wav", "float32"),
|
||||
("wav", "int32"),
|
||||
("wav", "int16"),
|
||||
("wav", "uint8"),
|
||||
("flac", "float32"),
|
||||
("vorbis", "float32"),
|
||||
("amb", "int16"),
|
||||
]
|
||||
)
|
||||
def test_tarfile(self, ext, dtype):
|
||||
"""Querying compressed audio via file-like object works"""
|
||||
sample_rate = 16000
|
||||
num_frames = 3.0 * sample_rate
|
||||
num_channels = 2
|
||||
sinfo = self._query_tarfile(ext, dtype, sample_rate, num_channels, num_frames)
|
||||
|
||||
bits_per_sample = get_bits_per_sample(ext, dtype)
|
||||
num_frames = 0 if ext in ["vorbis"] else num_frames
|
||||
|
||||
assert sinfo.sample_rate == sample_rate
|
||||
assert sinfo.num_channels == num_channels
|
||||
assert sinfo.num_frames == num_frames
|
||||
assert sinfo.bits_per_sample == bits_per_sample
|
||||
assert sinfo.encoding == get_encoding(ext, dtype)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,47 +0,0 @@
|
||||
import unittest
|
||||
import itertools
|
||||
|
||||
from parameterized import parameterized
|
||||
import numpy as np
|
||||
from paddlespeech.audio._internal import module_utils as _mod_utils
|
||||
from paddlespeech.audio.backends import sox_io_backend
|
||||
|
||||
from tests.unit.common_utils import (
|
||||
get_wav_data,
|
||||
load_wav,
|
||||
save_wav,
|
||||
)
|
||||
|
||||
#code is from:https://github.com/pytorch/audio/blob/main/torchaudio/test/torchaudio_unittest/backend/sox_io/load_test.py
|
||||
|
||||
class TestLoad(unittest.TestCase):
|
||||
|
||||
def assert_wav(self, dtype, sample_rate, num_channels, normalize, duration):
|
||||
"""`sox_io_backend.load` can load wav format correctly.
|
||||
|
||||
Wav data loaded with sox_io backend should match those with scipy
|
||||
"""
|
||||
path = 'testdata/reference.wav'
|
||||
data = get_wav_data(dtype, num_channels, normalize=normalize, num_frames=duration * sample_rate)
|
||||
save_wav(path, data, sample_rate)
|
||||
expected = load_wav(path, normalize=normalize)[0]
|
||||
data, sr = sox_io_backend.load(path, normalize=normalize)
|
||||
assert sr == sample_rate
|
||||
np.testing.assert_array_almost_equal(data, expected, decimal=4)
|
||||
|
||||
@parameterized.expand(
|
||||
list(
|
||||
itertools.product(
|
||||
["float64", "float32", "int32",],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
[False, True],
|
||||
)
|
||||
),
|
||||
)
|
||||
def test_wav(self, dtype, sample_rate, num_channels, normalize):
|
||||
"""`sox_io_backend.load` can load wav format correctly."""
|
||||
self.assert_wav(dtype, sample_rate, num_channels, normalize, duration=1)
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,175 +0,0 @@
|
||||
import io
|
||||
import os
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
from parameterized import parameterized
|
||||
from paddlespeech.audio.backends import sox_io_backend
|
||||
|
||||
from tests.unit.common_utils import (
|
||||
get_wav_data,
|
||||
load_wav,
|
||||
save_wav,
|
||||
nested_params,
|
||||
TempDirMixin,
|
||||
sox_utils
|
||||
)
|
||||
|
||||
#code is from:https://github.com/pytorch/audio/blob/main/torchaudio/test/torchaudio_unittest/backend/sox_io/save_test.py
|
||||
|
||||
def _get_sox_encoding(encoding):
|
||||
encodings = {
|
||||
"PCM_F": "floating-point",
|
||||
"PCM_S": "signed-integer",
|
||||
"PCM_U": "unsigned-integer",
|
||||
"ULAW": "u-law",
|
||||
"ALAW": "a-law",
|
||||
}
|
||||
return encodings.get(encoding)
|
||||
|
||||
class TestSaveBase(TempDirMixin):
|
||||
def assert_save_consistency(
|
||||
self,
|
||||
format: str,
|
||||
*,
|
||||
compression: float = None,
|
||||
encoding: str = None,
|
||||
bits_per_sample: int = None,
|
||||
sample_rate: float = 8000,
|
||||
num_channels: int = 2,
|
||||
num_frames: float = 3 * 8000,
|
||||
src_dtype: str = "int32",
|
||||
test_mode: str = "path",
|
||||
):
|
||||
"""`save` function produces file that is comparable with `sox` command
|
||||
|
||||
To compare that the file produced by `save` function agains the file produced by
|
||||
the equivalent `sox` command, we need to load both files.
|
||||
But there are many formats that cannot be opened with common Python modules (like
|
||||
SciPy).
|
||||
So we use `sox` command to prepare the original data and convert the saved files
|
||||
into a format that SciPy can read (PCM wav).
|
||||
The following diagram illustrates this process. The difference is 2.1. and 3.1.
|
||||
|
||||
This assumes that
|
||||
- loading data with SciPy preserves the data well.
|
||||
- converting the resulting files into WAV format with `sox` preserve the data well.
|
||||
|
||||
x
|
||||
| 1. Generate source wav file with SciPy
|
||||
|
|
||||
v
|
||||
-------------- wav ----------------
|
||||
| |
|
||||
| 2.1. load with scipy | 3.1. Convert to the target
|
||||
| then save it into the target | format depth with sox
|
||||
| format with paddleaudio |
|
||||
v v
|
||||
target format target format
|
||||
| |
|
||||
| 2.2. Convert to wav with sox | 3.2. Convert to wav with sox
|
||||
| |
|
||||
v v
|
||||
wav wav
|
||||
| |
|
||||
| 2.3. load with scipy | 3.3. load with scipy
|
||||
| |
|
||||
v v
|
||||
tensor -------> compare <--------- tensor
|
||||
|
||||
"""
|
||||
cmp_encoding = "floating-point"
|
||||
cmp_bit_depth = 32
|
||||
|
||||
src_path = self.get_temp_path("1.source.wav")
|
||||
tgt_path = self.get_temp_path(f"2.1.paddleaudio.{format}")
|
||||
tst_path = self.get_temp_path("2.2.result.wav")
|
||||
sox_path = self.get_temp_path(f"3.1.sox.{format}")
|
||||
ref_path = self.get_temp_path("3.2.ref.wav")
|
||||
|
||||
# 1. Generate original wav
|
||||
data = get_wav_data(src_dtype, num_channels, normalize=False, num_frames=num_frames)
|
||||
save_wav(src_path, data, sample_rate)
|
||||
|
||||
# 2.1. Convert the original wav to target format with paddleaudio
|
||||
data = load_wav(src_path, normalize=False)[0]
|
||||
if test_mode == "path":
|
||||
sox_io_backend.save(
|
||||
tgt_path, data, sample_rate, compression=compression, encoding=encoding, bits_per_sample=bits_per_sample
|
||||
)
|
||||
elif test_mode == "fileobj":
|
||||
with open(tgt_path, "bw") as file_:
|
||||
sox_io_backend.save(
|
||||
file_,
|
||||
data,
|
||||
sample_rate,
|
||||
format=format,
|
||||
compression=compression,
|
||||
encoding=encoding,
|
||||
bits_per_sample=bits_per_sample,
|
||||
)
|
||||
elif test_mode == "bytesio":
|
||||
file_ = io.BytesIO()
|
||||
sox_io_backend.save(
|
||||
file_,
|
||||
data,
|
||||
sample_rate,
|
||||
format=format,
|
||||
compression=compression,
|
||||
encoding=encoding,
|
||||
bits_per_sample=bits_per_sample,
|
||||
)
|
||||
file_.seek(0)
|
||||
with open(tgt_path, "bw") as f:
|
||||
f.write(file_.read())
|
||||
else:
|
||||
raise ValueError(f"Unexpected test mode: {test_mode}")
|
||||
# 2.2. Convert the target format to wav with sox
|
||||
sox_utils.convert_audio_file(tgt_path, tst_path, encoding=cmp_encoding, bit_depth=cmp_bit_depth)
|
||||
# 2.3. Load with SciPy
|
||||
found = load_wav(tst_path, normalize=False)[0]
|
||||
|
||||
# 3.1. Convert the original wav to target format with sox
|
||||
sox_encoding = _get_sox_encoding(encoding)
|
||||
sox_utils.convert_audio_file(
|
||||
src_path, sox_path, compression=compression, encoding=sox_encoding, bit_depth=bits_per_sample
|
||||
)
|
||||
# 3.2. Convert the target format to wav with sox
|
||||
sox_utils.convert_audio_file(sox_path, ref_path, encoding=cmp_encoding, bit_depth=cmp_bit_depth)
|
||||
# 3.3. Load with SciPy
|
||||
expected = load_wav(ref_path, normalize=False)[0]
|
||||
|
||||
np.testing.assert_array_almost_equal(found, expected)
|
||||
|
||||
class TestSave(TestSaveBase, unittest.TestCase):
|
||||
@nested_params(
|
||||
["path",],
|
||||
[
|
||||
("PCM_U", 8),
|
||||
("PCM_S", 16),
|
||||
("PCM_S", 32),
|
||||
("PCM_F", 32),
|
||||
("PCM_F", 64),
|
||||
("ULAW", 8),
|
||||
("ALAW", 8),
|
||||
],
|
||||
)
|
||||
def test_save_wav(self, test_mode, enc_params):
|
||||
encoding, bits_per_sample = enc_params
|
||||
self.assert_save_consistency("wav", encoding=encoding, bits_per_sample=bits_per_sample, test_mode=test_mode)
|
||||
|
||||
@nested_params(
|
||||
["path", ],
|
||||
[
|
||||
("float32",),
|
||||
("int32",),
|
||||
],
|
||||
)
|
||||
def test_save_wav_dtype(self, test_mode, params):
|
||||
(dtype,) = params
|
||||
self.assert_save_consistency("wav", src_dtype=dtype, test_mode=test_mode)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,183 +0,0 @@
|
||||
import io
|
||||
import itertools
|
||||
import unittest
|
||||
|
||||
from parameterized import parameterized
|
||||
from paddlespeech.audio.backends import sox_io_backend
|
||||
from tests.unit.common_utils import (
|
||||
get_wav_data,
|
||||
TempDirMixin,
|
||||
name_func
|
||||
)
|
||||
|
||||
class SmokeTest(TempDirMixin, unittest.TestCase):
|
||||
"""Run smoke test on various audio format
|
||||
|
||||
The purpose of this test suite is to verify that sox_io_backend functionalities do not exhibit
|
||||
abnormal behaviors.
|
||||
|
||||
This test suite should be able to run without any additional tools (such as sox command),
|
||||
however without such tools, the correctness of each function cannot be verified.
|
||||
"""
|
||||
|
||||
def run_smoke_test(self, ext, sample_rate, num_channels, *, compression=None, dtype="float32"):
|
||||
duration = 1
|
||||
num_frames = sample_rate * duration
|
||||
#path = self.get_temp_path(f"test.{ext}")
|
||||
path = self.get_temp_path(f"test.{ext}")
|
||||
original = get_wav_data(dtype, num_channels, normalize=False, num_frames=num_frames)
|
||||
|
||||
# 1. run save
|
||||
sox_io_backend.save(path, original, sample_rate, compression=compression)
|
||||
# 2. run info
|
||||
info = sox_io_backend.info(path)
|
||||
assert info.sample_rate == sample_rate
|
||||
assert info.num_channels == num_channels
|
||||
# 3. run load
|
||||
loaded, sr = sox_io_backend.load(path, normalize=False)
|
||||
assert sr == sample_rate
|
||||
assert loaded.shape[0] == num_channels
|
||||
|
||||
@parameterized.expand(
|
||||
list(
|
||||
itertools.product(
|
||||
["float32", "int32" ],
|
||||
#["float32", "int32", "int16", "uint8"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
)
|
||||
),
|
||||
name_func=name_func,
|
||||
)
|
||||
def test_wav(self, dtype, sample_rate, num_channels):
|
||||
"""Run smoke test on wav format"""
|
||||
self.run_smoke_test("wav", sample_rate, num_channels, dtype=dtype)
|
||||
|
||||
#@parameterized.expand(
|
||||
#list(
|
||||
#itertools.product(
|
||||
#[8000, 16000],
|
||||
#[1, 2],
|
||||
#[-4.2, -0.2, 0, 0.2, 96, 128, 160, 192, 224, 256, 320],
|
||||
#)
|
||||
#)
|
||||
#)
|
||||
#def test_mp3(self, sample_rate, num_channels, bit_rate):
|
||||
#"""Run smoke test on mp3 format"""
|
||||
#self.run_smoke_test("mp3", sample_rate, num_channels, compression=bit_rate)
|
||||
|
||||
#@parameterized.expand(
|
||||
#list(
|
||||
#itertools.product(
|
||||
#[8000, 16000],
|
||||
#[1, 2],
|
||||
#[-1, 0, 1, 2, 3, 3.6, 5, 10],
|
||||
#)
|
||||
#)
|
||||
#)
|
||||
#def test_vorbis(self, sample_rate, num_channels, quality_level):
|
||||
#"""Run smoke test on vorbis format"""
|
||||
#self.run_smoke_test("vorbis", sample_rate, num_channels, compression=quality_level)
|
||||
|
||||
@parameterized.expand(
|
||||
list(
|
||||
itertools.product(
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
list(range(9)),
|
||||
)
|
||||
),
|
||||
name_func=name_func,
|
||||
)
|
||||
def test_flac(self, sample_rate, num_channels, compression_level):
|
||||
"""Run smoke test on flac format"""
|
||||
self.run_smoke_test("flac", sample_rate, num_channels, compression=compression_level)
|
||||
|
||||
|
||||
class SmokeTestFileObj(unittest.TestCase):
|
||||
"""Run smoke test on various audio format
|
||||
|
||||
The purpose of this test suite is to verify that sox_io_backend functionalities do not exhibit
|
||||
abnormal behaviors.
|
||||
|
||||
This test suite should be able to run without any additional tools (such as sox command),
|
||||
however without such tools, the correctness of each function cannot be verified.
|
||||
"""
|
||||
|
||||
def run_smoke_test(self, ext, sample_rate, num_channels, *, compression=None, dtype="float32"):
|
||||
duration = 1
|
||||
num_frames = sample_rate * duration
|
||||
original = get_wav_data(dtype, num_channels, normalize=False, num_frames=num_frames)
|
||||
|
||||
fileobj = io.BytesIO()
|
||||
# 1. run save
|
||||
sox_io_backend.save(fileobj, original, sample_rate, compression=compression, format=ext)
|
||||
# 2. run info
|
||||
fileobj.seek(0)
|
||||
info = sox_io_backend.info(fileobj, format=ext)
|
||||
assert info.sample_rate == sample_rate
|
||||
assert info.num_channels == num_channels
|
||||
# 3. run load
|
||||
fileobj.seek(0)
|
||||
loaded, sr = sox_io_backend.load(fileobj, normalize=False, format=ext)
|
||||
assert sr == sample_rate
|
||||
assert loaded.shape[0] == num_channels
|
||||
|
||||
@parameterized.expand(
|
||||
list(
|
||||
itertools.product(
|
||||
["float32", "int32"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
)
|
||||
),
|
||||
name_func=name_func,
|
||||
)
|
||||
def test_wav(self, dtype, sample_rate, num_channels):
|
||||
"""Run smoke test on wav format"""
|
||||
self.run_smoke_test("wav", sample_rate, num_channels, dtype=dtype)
|
||||
|
||||
# not support yet
|
||||
#@parameterized.expand(
|
||||
#list(
|
||||
#itertools.product(
|
||||
#[8000, 16000],
|
||||
#[1, 2],
|
||||
#[-4.2, -0.2, 0, 0.2, 96, 128, 160, 192, 224, 256, 320],
|
||||
#)
|
||||
#)
|
||||
#)
|
||||
#def test_mp3(self, sample_rate, num_channels, bit_rate):
|
||||
#"""Run smoke test on mp3 format"""
|
||||
#self.run_smoke_test("mp3", sample_rate, num_channels, compression=bit_rate)
|
||||
|
||||
#@parameterized.expand(
|
||||
#list(
|
||||
#itertools.product(
|
||||
#[8000, 16000],
|
||||
#[1, 2],
|
||||
#[-1, 0, 1, 2, 3, 3.6, 5, 10],
|
||||
#)
|
||||
#)
|
||||
#)
|
||||
#def test_vorbis(self, sample_rate, num_channels, quality_level):
|
||||
#"""Run smoke test on vorbis format"""
|
||||
#self.run_smoke_test("vorbis", sample_rate, num_channels, compression=quality_level)
|
||||
|
||||
@parameterized.expand(
|
||||
list(
|
||||
itertools.product(
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
list(range(9)),
|
||||
)
|
||||
),
|
||||
name_func=name_func,
|
||||
)
|
||||
def test_flac(self, sample_rate, num_channels, compression_level):
|
||||
#"""Run smoke test on flac format"""
|
||||
self.run_smoke_test("flac", sample_rate, num_channels, compression=compression_level)
|
||||
|
||||
if __name__ == '__main__':
|
||||
#test_func()
|
||||
unittest.main()
|
@ -1,347 +0,0 @@
|
||||
#code is from: https://github.com/pytorch/audio/blob/main/test/torchaudio_unittest/sox_effect/sox_effect_test.py
|
||||
import io
|
||||
import itertools
|
||||
import tarfile
|
||||
import unittest
|
||||
from pathlib import Path
|
||||
import numpy as np
|
||||
|
||||
from parameterized import parameterized
|
||||
from paddlespeech.audio import sox_effects
|
||||
from paddlespeech.audio._internal import module_utils as _mod_utils
|
||||
from tests.unit.common_utils import (
|
||||
get_sinusoid,
|
||||
get_wav_data,
|
||||
load_wav,
|
||||
save_wav,
|
||||
sox_utils,
|
||||
TempDirMixin,
|
||||
name_func,
|
||||
load_effects_params
|
||||
)
|
||||
|
||||
if _mod_utils.is_module_available("requests"):
|
||||
import requests
|
||||
|
||||
|
||||
class TestSoxEffects(unittest.TestCase):
|
||||
def test_init(self):
|
||||
"""Calling init_sox_effects multiple times does not crush"""
|
||||
for _ in range(3):
|
||||
sox_effects.init_sox_effects()
|
||||
|
||||
|
||||
class TestSoxEffectsTensor(TempDirMixin, unittest.TestCase):
|
||||
"""Test suite for `apply_effects_tensor` function"""
|
||||
|
||||
@parameterized.expand(
|
||||
list(itertools.product(["float32", "int32"], [8000, 16000], [1, 2, 4, 8], [True, False])),
|
||||
)
|
||||
def test_apply_no_effect(self, dtype, sample_rate, num_channels, channels_first):
|
||||
"""`apply_effects_tensor` without effects should return identical data as input"""
|
||||
original = get_wav_data(dtype, num_channels, channels_first=channels_first)
|
||||
expected = original.clone()
|
||||
|
||||
found, output_sample_rate = sox_effects.apply_effects_tensor(expected, sample_rate, [], channels_first)
|
||||
|
||||
assert (output_sample_rate == sample_rate)
|
||||
# SoxEffect should not alter the input Tensor object
|
||||
#self.assertEqual(original, expected)
|
||||
np.testing.assert_array_almost_equal(original.numpy(), expected.numpy())
|
||||
|
||||
# SoxEffect should not return the same Tensor object
|
||||
assert expected is not found
|
||||
# Returned Tensor should equal to the input Tensor
|
||||
#self.assertEqual(expected, found)
|
||||
np.testing.assert_array_almost_equal(expected.numpy(), found.numpy())
|
||||
|
||||
@parameterized.expand(
|
||||
load_effects_params("sox_effect_test_args.jsonl"),
|
||||
name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}',
|
||||
)
|
||||
def test_apply_effects(self, args):
|
||||
"""`apply_effects_tensor` should return identical data as sox command"""
|
||||
effects = args["effects"]
|
||||
num_channels = args.get("num_channels", 2)
|
||||
input_sr = args.get("input_sample_rate", 8000)
|
||||
output_sr = args.get("output_sample_rate")
|
||||
|
||||
input_path = self.get_temp_path("input.wav")
|
||||
reference_path = self.get_temp_path("reference.wav")
|
||||
|
||||
original = get_sinusoid(frequency=800, sample_rate=input_sr, n_channels=num_channels, dtype="float32")
|
||||
save_wav(input_path, original, input_sr)
|
||||
sox_utils.run_sox_effect(input_path, reference_path, effects, output_sample_rate=output_sr)
|
||||
|
||||
expected, expected_sr = load_wav(reference_path)
|
||||
found, sr = sox_effects.apply_effects_tensor(original, input_sr, effects)
|
||||
|
||||
assert sr == expected_sr
|
||||
#self.assertEqual(expected, found)
|
||||
np.testing.assert_array_almost_equal(expected.numpy(), found.numpy())
|
||||
|
||||
|
||||
class TestSoxEffectsFile(TempDirMixin, unittest.TestCase):
|
||||
"""Test suite for `apply_effects_file` function"""
|
||||
|
||||
@parameterized.expand(
|
||||
list(
|
||||
itertools.product(
|
||||
["float32", "int32"],
|
||||
[8000, 16000],
|
||||
[1, 2, 4, 8],
|
||||
[False, True],
|
||||
)
|
||||
),
|
||||
#name_func=name_func,
|
||||
)
|
||||
def test_apply_no_effect(self, dtype, sample_rate, num_channels, channels_first):
|
||||
"""`apply_effects_file` without effects should return identical data as input"""
|
||||
path = self.get_temp_path("input.wav")
|
||||
expected = get_wav_data(dtype, num_channels, channels_first=channels_first)
|
||||
save_wav(path, expected, sample_rate, channels_first=channels_first)
|
||||
|
||||
found, output_sample_rate = sox_effects.apply_effects_file(
|
||||
path, [], normalize=False, channels_first=channels_first
|
||||
)
|
||||
|
||||
assert output_sample_rate == sample_rate
|
||||
#self.assertEqual(expected, found)
|
||||
np.testing.assert_array_almost_equal(expected.numpy(), found.numpy())
|
||||
|
||||
@parameterized.expand(
|
||||
load_effects_params("sox_effect_test_args.jsonl"),
|
||||
#name_func=lambda f, i, p: f'{f.__name__}_{i}_{p.args[0]["effects"][0][0]}',
|
||||
)
|
||||
def test_apply_effects_str(self, args):
|
||||
"""`apply_effects_file` should return identical data as sox command"""
|
||||
dtype = "int32"
|
||||
channels_first = True
|
||||
effects = args["effects"]
|
||||
num_channels = args.get("num_channels", 2)
|
||||
input_sr = args.get("input_sample_rate", 8000)
|
||||
output_sr = args.get("output_sample_rate")
|
||||
|
||||
input_path = self.get_temp_path("input.wav")
|
||||
reference_path = self.get_temp_path("reference.wav")
|
||||
data = get_wav_data(dtype, num_channels, channels_first=channels_first)
|
||||
save_wav(input_path, data, input_sr, channels_first=channels_first)
|
||||
sox_utils.run_sox_effect(input_path, reference_path, effects, output_sample_rate=output_sr)
|
||||
|
||||
expected, expected_sr = load_wav(reference_path)
|
||||
found, sr = sox_effects.apply_effects_file(input_path, effects, normalize=False, channels_first=channels_first)
|
||||
|
||||
assert sr == expected_sr
|
||||
#self.assertEqual(found, expected)
|
||||
np.testing.assert_array_almost_equal(expected.numpy(), found.numpy())
|
||||
|
||||
|
||||
def test_apply_effects_path(self):
|
||||
"""`apply_effects_file` should return identical data as sox command when file path is given as a Path Object"""
|
||||
dtype = "int32"
|
||||
channels_first = True
|
||||
effects = [["hilbert"]]
|
||||
num_channels = 2
|
||||
input_sr = 8000
|
||||
output_sr = 8000
|
||||
|
||||
input_path = self.get_temp_path("input.wav")
|
||||
reference_path = self.get_temp_path("reference.wav")
|
||||
data = get_wav_data(dtype, num_channels, channels_first=channels_first)
|
||||
save_wav(input_path, data, input_sr, channels_first=channels_first)
|
||||
sox_utils.run_sox_effect(input_path, reference_path, effects, output_sample_rate=output_sr)
|
||||
|
||||
expected, expected_sr = load_wav(reference_path)
|
||||
found, sr = sox_effects.apply_effects_file(
|
||||
Path(input_path), effects, normalize=False, channels_first=channels_first
|
||||
)
|
||||
|
||||
assert sr == expected_sr
|
||||
#self.assertEqual(found, expected)
|
||||
np.testing.assert_array_almost_equal(expected.numpy(), found.numpy())
|
||||
|
||||
|
||||
class TestFileFormats(TempDirMixin, unittest.TestCase):
|
||||
"""`apply_effects_file` gives the same result as sox on various file formats"""
|
||||
|
||||
@parameterized.expand(
|
||||
list(
|
||||
itertools.product(
|
||||
["float32", "int32"],
|
||||
[8000, 16000],
|
||||
[1, 2],
|
||||
)
|
||||
),
|
||||
#name_func=lambda f, _, p: f'{f.__name__}_{"_".join(str(arg) for arg in p.args)}',
|
||||
)
|
||||
def test_wav(self, dtype, sample_rate, num_channels):
|
||||
"""`apply_effects_file` works on various wav format"""
|
||||
channels_first = True
|
||||
effects = [["band", "300", "10"]]
|
||||
|
||||
input_path = self.get_temp_path("input.wav")
|
||||
reference_path = self.get_temp_path("reference.wav")
|
||||
data = get_wav_data(dtype, num_channels, channels_first=channels_first)
|
||||
save_wav(input_path, data, sample_rate, channels_first=channels_first)
|
||||
sox_utils.run_sox_effect(input_path, reference_path, effects)
|
||||
|
||||
expected, expected_sr = load_wav(reference_path)
|
||||
found, sr = sox_effects.apply_effects_file(input_path, effects, normalize=False, channels_first=channels_first)
|
||||
|
||||
assert sr == expected_sr
|
||||
#self.assertEqual(found, expected)
|
||||
np.testing.assert_array_almost_equal(found.numpy(), expected.numpy())
|
||||
|
||||
#not support now
|
||||
#@parameterized.expand(
|
||||
#list(
|
||||
#itertools.product(
|
||||
#[8000, 16000],
|
||||
#[1, 2],
|
||||
#)
|
||||
#),
|
||||
##name_func=lambda f, _, p: f'{f.__name__}_{"_".join(str(arg) for arg in p.args)}',
|
||||
#)
|
||||
#def test_flac(self, sample_rate, num_channels):
|
||||
#"""`apply_effects_file` works on various flac format"""
|
||||
#channels_first = True
|
||||
#effects = [["band", "300", "10"]]
|
||||
|
||||
#input_path = self.get_temp_path("input.flac")
|
||||
#reference_path = self.get_temp_path("reference.wav")
|
||||
#sox_utils.gen_audio_file(input_path, sample_rate, num_channels)
|
||||
#sox_utils.run_sox_effect(input_path, reference_path, effects, output_bitdepth=32)
|
||||
|
||||
#expected, expected_sr = load_wav(reference_path)
|
||||
#found, sr = sox_effects.apply_effects_file(input_path, effects, channels_first=channels_first)
|
||||
#save_wav(self.get_temp_path("result.wav"), found, sr, channels_first=channels_first)
|
||||
|
||||
#assert sr == expected_sr
|
||||
##self.assertEqual(found, expected)
|
||||
#np.testing.assert_array_almost_equal(found.numpy(), expected.numpy())
|
||||
|
||||
#@parameterized.expand(
|
||||
#list(
|
||||
#itertools.product(
|
||||
#[8000, 16000],
|
||||
#[1, 2],
|
||||
#)
|
||||
#),
|
||||
##name_func=lambda f, _, p: f'{f.__name__}_{"_".join(str(arg) for arg in p.args)}',
|
||||
#)
|
||||
#def test_vorbis(self, sample_rate, num_channels):
|
||||
#"""`apply_effects_file` works on various vorbis format"""
|
||||
#channels_first = True
|
||||
#effects = [["band", "300", "10"]]
|
||||
|
||||
#input_path = self.get_temp_path("input.vorbis")
|
||||
#reference_path = self.get_temp_path("reference.wav")
|
||||
#sox_utils.gen_audio_file(input_path, sample_rate, num_channels)
|
||||
#sox_utils.run_sox_effect(input_path, reference_path, effects, output_bitdepth=32)
|
||||
|
||||
#expected, expected_sr = load_wav(reference_path)
|
||||
#found, sr = sox_effects.apply_effects_file(input_path, effects, channels_first=channels_first)
|
||||
#save_wav(self.get_temp_path("result.wav"), found, sr, channels_first=channels_first)
|
||||
|
||||
#assert sr == expected_sr
|
||||
##self.assertEqual(found, expected)
|
||||
#np.testing.assert_array_almost_equal(found.numpy(), expected.numpy())
|
||||
|
||||
|
||||
#@skipIfNoExec("sox")
|
||||
#@skipIfNoSox
|
||||
class TestFileObject(TempDirMixin, unittest.TestCase):
|
||||
@parameterized.expand(
|
||||
[
|
||||
("wav", None),
|
||||
]
|
||||
)
|
||||
def test_fileobj(self, ext, compression):
|
||||
"""Applying effects via file object works"""
|
||||
sample_rate = 16000
|
||||
channels_first = True
|
||||
effects = [["band", "300", "10"]]
|
||||
input_path = self.get_temp_path(f"input.{ext}")
|
||||
reference_path = self.get_temp_path("reference.wav")
|
||||
|
||||
#sox_utils.gen_audio_file(input_path, sample_rate, num_channels=2, compression=compression)
|
||||
data = get_wav_data("int32", 2, channels_first=channels_first)
|
||||
save_wav(input_path, data, sample_rate, channels_first=channels_first)
|
||||
|
||||
sox_utils.run_sox_effect(input_path, reference_path, effects, output_bitdepth=32)
|
||||
expected, expected_sr = load_wav(reference_path)
|
||||
|
||||
with open(input_path, "rb") as fileobj:
|
||||
found, sr = sox_effects.apply_effects_file(fileobj, effects, channels_first=channels_first)
|
||||
save_wav(self.get_temp_path("result.wav"), found, sr, channels_first=channels_first)
|
||||
assert sr == expected_sr
|
||||
#self.assertEqual(found, expected)
|
||||
np.testing.assert_array_almost_equal(found.numpy(), expected.numpy())
|
||||
|
||||
@parameterized.expand(
|
||||
[
|
||||
("wav", None),
|
||||
]
|
||||
)
|
||||
def test_bytesio(self, ext, compression):
|
||||
"""Applying effects via BytesIO object works"""
|
||||
sample_rate = 16000
|
||||
channels_first = True
|
||||
effects = [["band", "300", "10"]]
|
||||
input_path = self.get_temp_path(f"input.{ext}")
|
||||
reference_path = self.get_temp_path("reference.wav")
|
||||
|
||||
#sox_utils.gen_audio_file(input_path, sample_rate, num_channels=2, compression=compression)
|
||||
data = get_wav_data("int32", 2, channels_first=channels_first)
|
||||
save_wav(input_path, data, sample_rate, channels_first=channels_first)
|
||||
sox_utils.run_sox_effect(input_path, reference_path, effects, output_bitdepth=32)
|
||||
expected, expected_sr = load_wav(reference_path)
|
||||
|
||||
with open(input_path, "rb") as file_:
|
||||
fileobj = io.BytesIO(file_.read())
|
||||
found, sr = sox_effects.apply_effects_file(fileobj, effects, channels_first=channels_first)
|
||||
save_wav(self.get_temp_path("result.wav"), found, sr, channels_first=channels_first)
|
||||
assert sr == expected_sr
|
||||
#self.assertEqual(found, expected)
|
||||
print("found")
|
||||
print(found)
|
||||
print("expected")
|
||||
print(expected)
|
||||
np.testing.assert_array_almost_equal(found.numpy(), expected.numpy())
|
||||
|
||||
@parameterized.expand(
|
||||
[
|
||||
("wav", None),
|
||||
]
|
||||
)
|
||||
def test_tarfile(self, ext, compression):
|
||||
"""Applying effects to compressed audio via file-like file works"""
|
||||
sample_rate = 16000
|
||||
channels_first = True
|
||||
effects = [["band", "300", "10"]]
|
||||
audio_file = f"input.{ext}"
|
||||
|
||||
input_path = self.get_temp_path(audio_file)
|
||||
reference_path = self.get_temp_path("reference.wav")
|
||||
archive_path = self.get_temp_path("archive.tar.gz")
|
||||
data = get_wav_data("int32", 2, channels_first=channels_first)
|
||||
save_wav(input_path, data, sample_rate, channels_first=channels_first)
|
||||
|
||||
# sox_utils.gen_audio_file(input_path, sample_rate, num_channels=2, compression=compression)
|
||||
sox_utils.run_sox_effect(input_path, reference_path, effects, output_bitdepth=32)
|
||||
|
||||
expected, expected_sr = load_wav(reference_path)
|
||||
|
||||
with tarfile.TarFile(archive_path, "w") as tarobj:
|
||||
tarobj.add(input_path, arcname=audio_file)
|
||||
with tarfile.TarFile(archive_path, "r") as tarobj:
|
||||
fileobj = tarobj.extractfile(audio_file)
|
||||
found, sr = sox_effects.apply_effects_file(fileobj, effects, channels_first=channels_first)
|
||||
save_wav(self.get_temp_path("result.wav"), found, sr, channels_first=channels_first)
|
||||
assert sr == expected_sr
|
||||
#self.assertEqual(found, expected)
|
||||
np.testing.assert_array_almost_equal(found.numpy(), expected.numpy())
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,81 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import torch
|
||||
import torchaudio
|
||||
|
||||
import paddlespeech.audio
|
||||
from .base import FeatTest
|
||||
|
||||
|
||||
class TestKaldi(FeatTest):
|
||||
def initParmas(self):
|
||||
self.window_size = 1024
|
||||
self.dtype = 'float32'
|
||||
|
||||
def test_window(self):
|
||||
t_hann_window = torch.hann_window(
|
||||
self.window_size, periodic=False, dtype=eval(f'torch.{self.dtype}'))
|
||||
t_hamm_window = torch.hamming_window(
|
||||
self.window_size,
|
||||
periodic=False,
|
||||
alpha=0.54,
|
||||
beta=0.46,
|
||||
dtype=eval(f'torch.{self.dtype}'))
|
||||
t_povey_window = torch.hann_window(
|
||||
self.window_size, periodic=False,
|
||||
dtype=eval(f'torch.{self.dtype}')).pow(0.85)
|
||||
|
||||
p_hann_window = paddlespeech.audio.functional.window.get_window(
|
||||
'hann',
|
||||
self.window_size,
|
||||
fftbins=False,
|
||||
dtype=eval(f'paddle.{self.dtype}'))
|
||||
p_hamm_window = paddlespeech.audio.functional.window.get_window(
|
||||
'hamming',
|
||||
self.window_size,
|
||||
fftbins=False,
|
||||
dtype=eval(f'paddle.{self.dtype}'))
|
||||
p_povey_window = paddlespeech.audio.functional.window.get_window(
|
||||
'hann',
|
||||
self.window_size,
|
||||
fftbins=False,
|
||||
dtype=eval(f'paddle.{self.dtype}')).pow(0.85)
|
||||
|
||||
np.testing.assert_array_almost_equal(t_hann_window, p_hann_window)
|
||||
np.testing.assert_array_almost_equal(t_hamm_window, p_hamm_window)
|
||||
np.testing.assert_array_almost_equal(t_povey_window, p_povey_window)
|
||||
|
||||
def test_fbank(self):
|
||||
ta_features = torchaudio.compliance.kaldi.fbank(
|
||||
torch.from_numpy(self.waveform.astype(self.dtype)))
|
||||
pa_features = paddlespeech.audio.compliance.kaldi.fbank(
|
||||
paddle.to_tensor(self.waveform.astype(self.dtype)))
|
||||
np.testing.assert_array_almost_equal(
|
||||
ta_features, pa_features, decimal=4)
|
||||
|
||||
def test_mfcc(self):
|
||||
ta_features = torchaudio.compliance.kaldi.mfcc(
|
||||
torch.from_numpy(self.waveform.astype(self.dtype)))
|
||||
pa_features = paddlespeech.audio.compliance.kaldi.mfcc(
|
||||
paddle.to_tensor(self.waveform.astype(self.dtype)))
|
||||
np.testing.assert_array_almost_equal(
|
||||
ta_features, pa_features, decimal=4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,58 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import unittest
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
|
||||
from paddlespeech.audio.kaldi import fbank as fbank
|
||||
from paddlespeech.audio.kaldi import pitch as pitch
|
||||
from kaldiio import ReadHelper
|
||||
|
||||
# the groundtruth feats computed in kaldi command below.
|
||||
#compute-fbank-feats --dither=0 scp:$wav_scp ark,t:fbank_feat.ark
|
||||
#compute-kaldi-pitch-feats --sample-frequency=16000 scp:$wav_scp ark,t:pitch_feat.ark
|
||||
|
||||
class TestKaldiFbank(unittest.TestCase):
|
||||
|
||||
def test_fbank(self):
|
||||
fbank_groundtruth = {}
|
||||
with ReadHelper('ark:testdata/fbank_feat.ark') as reader:
|
||||
for key, feat in reader:
|
||||
fbank_groundtruth[key] = feat
|
||||
|
||||
with ReadHelper('ark:testdata/wav.ark') as reader:
|
||||
for key, wav in reader:
|
||||
fbank_feat = fbank(wav)
|
||||
fbank_check = fbank_groundtruth[key]
|
||||
np.testing.assert_array_almost_equal(
|
||||
fbank_feat, fbank_check, decimal=4)
|
||||
|
||||
def test_pitch(self):
|
||||
pitch_groundtruth = {}
|
||||
with ReadHelper('ark:testdata/pitch_feat.ark') as reader:
|
||||
for key, feat in reader:
|
||||
pitch_groundtruth[key] = feat
|
||||
|
||||
with ReadHelper('ark:testdata/wav.ark') as reader:
|
||||
for key, wav in reader:
|
||||
pitch_feat = pitch(wav)
|
||||
pitch_check = pitch_groundtruth[key]
|
||||
np.testing.assert_array_almost_equal(
|
||||
pitch_feat, pitch_check, decimal=4)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,281 +0,0 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import unittest
|
||||
|
||||
import librosa
|
||||
import numpy as np
|
||||
import paddle
|
||||
|
||||
import paddlespeech.audio
|
||||
from .base import FeatTest
|
||||
from paddlespeech.audio.functional.window import get_window
|
||||
|
||||
|
||||
class TestLibrosa(FeatTest):
|
||||
def initParmas(self):
|
||||
self.n_fft = 512
|
||||
self.hop_length = 128
|
||||
self.n_mels = 40
|
||||
self.n_mfcc = 20
|
||||
self.fmin = 0.0
|
||||
self.window_str = 'hann'
|
||||
self.pad_mode = 'reflect'
|
||||
self.top_db = 80.0
|
||||
|
||||
def test_stft(self):
|
||||
if len(self.waveform.shape) == 2: # (C, T)
|
||||
self.waveform = self.waveform.squeeze(
|
||||
0) # 1D input for librosa.feature.melspectrogram
|
||||
|
||||
feature_librosa = librosa.core.stft(
|
||||
y=self.waveform,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
win_length=None,
|
||||
window=self.window_str,
|
||||
center=True,
|
||||
dtype=None,
|
||||
pad_mode=self.pad_mode, )
|
||||
x = paddle.to_tensor(self.waveform).unsqueeze(0)
|
||||
window = get_window(self.window_str, self.n_fft, dtype=x.dtype)
|
||||
feature_paddle = paddle.signal.stft(
|
||||
x=x,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
win_length=None,
|
||||
window=window,
|
||||
center=True,
|
||||
pad_mode=self.pad_mode,
|
||||
normalized=False,
|
||||
onesided=True, ).squeeze(0)
|
||||
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_paddle, decimal=5)
|
||||
|
||||
def test_istft(self):
|
||||
if len(self.waveform.shape) == 2: # (C, T)
|
||||
self.waveform = self.waveform.squeeze(
|
||||
0) # 1D input for librosa.feature.melspectrogram
|
||||
|
||||
# Get stft result from librosa.
|
||||
stft_matrix = librosa.core.stft(
|
||||
y=self.waveform,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
win_length=None,
|
||||
window=self.window_str,
|
||||
center=True,
|
||||
pad_mode=self.pad_mode, )
|
||||
|
||||
feature_librosa = librosa.core.istft(
|
||||
stft_matrix=stft_matrix,
|
||||
hop_length=self.hop_length,
|
||||
win_length=None,
|
||||
window=self.window_str,
|
||||
center=True,
|
||||
dtype=None,
|
||||
length=None, )
|
||||
|
||||
x = paddle.to_tensor(stft_matrix).unsqueeze(0)
|
||||
window = get_window(
|
||||
self.window_str,
|
||||
self.n_fft,
|
||||
dtype=paddle.to_tensor(self.waveform).dtype)
|
||||
feature_paddle = paddle.signal.istft(
|
||||
x=x,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
win_length=None,
|
||||
window=window,
|
||||
center=True,
|
||||
normalized=False,
|
||||
onesided=True,
|
||||
length=None,
|
||||
return_complex=False, ).squeeze(0)
|
||||
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_paddle, decimal=5)
|
||||
|
||||
def test_mel(self):
|
||||
feature_librosa = librosa.filters.mel(
|
||||
sr=self.sr,
|
||||
n_fft=self.n_fft,
|
||||
n_mels=self.n_mels,
|
||||
fmin=self.fmin,
|
||||
fmax=None,
|
||||
htk=False,
|
||||
norm='slaney',
|
||||
dtype=self.waveform.dtype, )
|
||||
feature_compliance = paddlespeech.audio.compliance.librosa.compute_fbank_matrix(
|
||||
sr=self.sr,
|
||||
n_fft=self.n_fft,
|
||||
n_mels=self.n_mels,
|
||||
fmin=self.fmin,
|
||||
fmax=None,
|
||||
htk=False,
|
||||
norm='slaney',
|
||||
dtype=self.waveform.dtype, )
|
||||
x = paddle.to_tensor(self.waveform)
|
||||
feature_functional = paddlespeech.audio.functional.compute_fbank_matrix(
|
||||
sr=self.sr,
|
||||
n_fft=self.n_fft,
|
||||
n_mels=self.n_mels,
|
||||
f_min=self.fmin,
|
||||
f_max=None,
|
||||
htk=False,
|
||||
norm='slaney',
|
||||
dtype=x.dtype, )
|
||||
|
||||
np.testing.assert_array_almost_equal(feature_librosa,
|
||||
feature_compliance)
|
||||
np.testing.assert_array_almost_equal(feature_librosa,
|
||||
feature_functional)
|
||||
|
||||
def test_melspect(self):
|
||||
if len(self.waveform.shape) == 2: # (C, T)
|
||||
self.waveform = self.waveform.squeeze(
|
||||
0) # 1D input for librosa.feature.melspectrogram
|
||||
|
||||
# librosa:
|
||||
feature_librosa = librosa.feature.melspectrogram(
|
||||
y=self.waveform,
|
||||
sr=self.sr,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mels,
|
||||
fmin=self.fmin)
|
||||
|
||||
# paddlespeech.audio.compliance.librosa:
|
||||
feature_compliance = paddlespeech.audio.compliance.librosa.melspectrogram(
|
||||
x=self.waveform,
|
||||
sr=self.sr,
|
||||
window_size=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mels,
|
||||
fmin=self.fmin,
|
||||
to_db=False)
|
||||
|
||||
# paddlespeech.audio.features.layer
|
||||
x = paddle.to_tensor(
|
||||
self.waveform, dtype=paddle.float64).unsqueeze(0) # Add batch dim.
|
||||
feature_extractor = paddlespeech.audio.features.MelSpectrogram(
|
||||
sr=self.sr,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mels,
|
||||
f_min=self.fmin,
|
||||
dtype=x.dtype)
|
||||
feature_layer = feature_extractor(x).squeeze(0).numpy()
|
||||
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_compliance, decimal=5)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_layer, decimal=5)
|
||||
|
||||
def test_log_melspect(self):
|
||||
if len(self.waveform.shape) == 2: # (C, T)
|
||||
self.waveform = self.waveform.squeeze(
|
||||
0) # 1D input for librosa.feature.melspectrogram
|
||||
|
||||
# librosa:
|
||||
feature_librosa = librosa.feature.melspectrogram(
|
||||
y=self.waveform,
|
||||
sr=self.sr,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mels,
|
||||
fmin=self.fmin)
|
||||
feature_librosa = librosa.power_to_db(feature_librosa, top_db=None)
|
||||
|
||||
# paddlespeech.audio.compliance.librosa:
|
||||
feature_compliance = paddlespeech.audio.compliance.librosa.melspectrogram(
|
||||
x=self.waveform,
|
||||
sr=self.sr,
|
||||
window_size=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mels,
|
||||
fmin=self.fmin)
|
||||
|
||||
# paddlespeech.audio.features.layer
|
||||
x = paddle.to_tensor(
|
||||
self.waveform, dtype=paddle.float64).unsqueeze(0) # Add batch dim.
|
||||
feature_extractor = paddlespeech.audio.features.LogMelSpectrogram(
|
||||
sr=self.sr,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mels,
|
||||
f_min=self.fmin,
|
||||
dtype=x.dtype)
|
||||
feature_layer = feature_extractor(x).squeeze(0).numpy()
|
||||
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_compliance, decimal=5)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_layer, decimal=4)
|
||||
|
||||
def test_mfcc(self):
|
||||
if len(self.waveform.shape) == 2: # (C, T)
|
||||
self.waveform = self.waveform.squeeze(
|
||||
0) # 1D input for librosa.feature.melspectrogram
|
||||
|
||||
# librosa:
|
||||
feature_librosa = librosa.feature.mfcc(
|
||||
y=self.waveform,
|
||||
sr=self.sr,
|
||||
S=None,
|
||||
n_mfcc=self.n_mfcc,
|
||||
dct_type=2,
|
||||
norm='ortho',
|
||||
lifter=0,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mels,
|
||||
fmin=self.fmin)
|
||||
|
||||
# paddlespeech.audio.compliance.librosa:
|
||||
feature_compliance = paddlespeech.audio.compliance.librosa.mfcc(
|
||||
x=self.waveform,
|
||||
sr=self.sr,
|
||||
n_mfcc=self.n_mfcc,
|
||||
dct_type=2,
|
||||
norm='ortho',
|
||||
lifter=0,
|
||||
window_size=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mels,
|
||||
fmin=self.fmin,
|
||||
top_db=self.top_db)
|
||||
|
||||
# paddlespeech.audio.features.layer
|
||||
x = paddle.to_tensor(
|
||||
self.waveform, dtype=paddle.float64).unsqueeze(0) # Add batch dim.
|
||||
feature_extractor = paddlespeech.audio.features.MFCC(
|
||||
sr=self.sr,
|
||||
n_mfcc=self.n_mfcc,
|
||||
n_fft=self.n_fft,
|
||||
hop_length=self.hop_length,
|
||||
n_mels=self.n_mels,
|
||||
f_min=self.fmin,
|
||||
top_db=self.top_db,
|
||||
dtype=x.dtype)
|
||||
feature_layer = feature_extractor(x).squeeze(0).numpy()
|
||||
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_compliance, decimal=4)
|
||||
np.testing.assert_array_almost_equal(
|
||||
feature_librosa, feature_layer, decimal=4)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -1,19 +1,15 @@
|
||||
from .wav_utils import get_wav_data, load_wav, save_wav, normalize_wav
|
||||
from .parameterized_utils import nested_params
|
||||
from .data_utils import get_sinusoid, load_params, load_effects_params
|
||||
from .case_utils import (
|
||||
TempDirMixin,
|
||||
name_func
|
||||
)
|
||||
from .case_utils import name_func
|
||||
from .case_utils import TempDirMixin
|
||||
from .data_utils import get_sinusoid
|
||||
from .data_utils import load_effects_params
|
||||
from .data_utils import load_params
|
||||
from .parameterized_utils import nested_params
|
||||
from .wav_utils import get_wav_data
|
||||
from .wav_utils import load_wav
|
||||
from .wav_utils import normalize_wav
|
||||
from .wav_utils import save_wav
|
||||
|
||||
__all__ = [
|
||||
"get_wav_data",
|
||||
"load_wav",
|
||||
"save_wav",
|
||||
"normalize_wav",
|
||||
"load_params",
|
||||
"nested_params",
|
||||
"get_sinusoid",
|
||||
"name_func",
|
||||
"load_effects_params"
|
||||
"get_wav_data", "load_wav", "save_wav", "normalize_wav", "load_params",
|
||||
"nested_params", "get_sinusoid", "name_func", "load_effects_params"
|
||||
]
|
||||
|
Loading…
Reference in new issue