|
|
@ -92,7 +92,7 @@ def infer():
|
|
|
|
|
|
|
|
|
|
|
|
if args.decoding_method == "ctc_greedy":
|
|
|
|
if args.decoding_method == "ctc_greedy":
|
|
|
|
ds2_model.logger.info("start inference ...")
|
|
|
|
ds2_model.logger.info("start inference ...")
|
|
|
|
probs_split = ds2_model.infer_probs_batch(infer_data=infer_data,
|
|
|
|
probs_split = ds2_model.infer_batch_probs(infer_data=infer_data,
|
|
|
|
feeding_dict=data_generator.feeding)
|
|
|
|
feeding_dict=data_generator.feeding)
|
|
|
|
result_transcripts = ds2_model.decode_batch_greedy(
|
|
|
|
result_transcripts = ds2_model.decode_batch_greedy(
|
|
|
|
probs_split=probs_split,
|
|
|
|
probs_split=probs_split,
|
|
|
@ -101,7 +101,7 @@ def infer():
|
|
|
|
ds2_model.init_ext_scorer(args.alpha, args.beta, args.lang_model_path,
|
|
|
|
ds2_model.init_ext_scorer(args.alpha, args.beta, args.lang_model_path,
|
|
|
|
vocab_list)
|
|
|
|
vocab_list)
|
|
|
|
ds2_model.logger.info("start inference ...")
|
|
|
|
ds2_model.logger.info("start inference ...")
|
|
|
|
probs_split = ds2_model.infer_probs_batch(infer_data=infer_data,
|
|
|
|
probs_split = ds2_model.infer_batch_probs(infer_data=infer_data,
|
|
|
|
feeding_dict=data_generator.feeding)
|
|
|
|
feeding_dict=data_generator.feeding)
|
|
|
|
result_transcripts = ds2_model.decode_batch_beam_search(
|
|
|
|
result_transcripts = ds2_model.decode_batch_beam_search(
|
|
|
|
probs_split=probs_split,
|
|
|
|
probs_split=probs_split,
|
|
|
|