parent
e00567bb84
commit
7b649af8d7
@ -0,0 +1,470 @@
|
|||||||
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import itertools
|
||||||
|
|
||||||
|
import logger
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
from deepspeech.utils.log import Log
|
||||||
|
|
||||||
|
__all__ = ["make_batchset"]
|
||||||
|
|
||||||
|
logger = Log(__name__).getlog()
|
||||||
|
|
||||||
|
|
||||||
|
def batchfy_by_seq(
|
||||||
|
sorted_data,
|
||||||
|
batch_size,
|
||||||
|
max_length_in,
|
||||||
|
max_length_out,
|
||||||
|
min_batch_size=1,
|
||||||
|
shortest_first=False,
|
||||||
|
ikey="input",
|
||||||
|
iaxis=0,
|
||||||
|
okey="output",
|
||||||
|
oaxis=0, ):
|
||||||
|
"""Make batch set from json dictionary
|
||||||
|
|
||||||
|
:param List[(str, Dict[str, Any])] sorted_data: dictionary loaded from data.json
|
||||||
|
:param int batch_size: batch size
|
||||||
|
:param int max_length_in: maximum length of input to decide adaptive batch size
|
||||||
|
:param int max_length_out: maximum length of output to decide adaptive batch size
|
||||||
|
:param int min_batch_size: mininum batch size (for multi-gpu)
|
||||||
|
:param bool shortest_first: Sort from batch with shortest samples
|
||||||
|
to longest if true, otherwise reverse
|
||||||
|
:param str ikey: key to access input
|
||||||
|
(for ASR ikey="input", for TTS, MT ikey="output".)
|
||||||
|
:param int iaxis: dimension to access input
|
||||||
|
(for ASR, TTS iaxis=0, for MT iaxis="1".)
|
||||||
|
:param str okey: key to access output
|
||||||
|
(for ASR, MT okey="output". for TTS okey="input".)
|
||||||
|
:param int oaxis: dimension to access output
|
||||||
|
(for ASR, TTS, MT oaxis=0, reserved for future research, -1 means all axis.)
|
||||||
|
:return: List[List[Tuple[str, dict]]] list of batches
|
||||||
|
"""
|
||||||
|
if batch_size <= 0:
|
||||||
|
raise ValueError(f"Invalid batch_size={batch_size}")
|
||||||
|
|
||||||
|
# check #utts is more than min_batch_size
|
||||||
|
if len(sorted_data) < min_batch_size:
|
||||||
|
raise ValueError(
|
||||||
|
f"#utts({len(sorted_data)}) is less than min_batch_size({min_batch_size})."
|
||||||
|
)
|
||||||
|
|
||||||
|
# make list of minibatches
|
||||||
|
minibatches = []
|
||||||
|
start = 0
|
||||||
|
while True:
|
||||||
|
_, info = sorted_data[start]
|
||||||
|
ilen = int(info[ikey][iaxis]["shape"][0])
|
||||||
|
olen = (int(info[okey][oaxis]["shape"][0]) if oaxis >= 0 else
|
||||||
|
max(map(lambda x: int(x["shape"][0]), info[okey])))
|
||||||
|
factor = max(int(ilen / max_length_in), int(olen / max_length_out))
|
||||||
|
# change batchsize depending on the input and output length
|
||||||
|
# if ilen = 1000 and max_length_in = 800
|
||||||
|
# then b = batchsize / 2
|
||||||
|
# and max(min_batches, .) avoids batchsize = 0
|
||||||
|
bs = max(min_batch_size, int(batch_size / (1 + factor)))
|
||||||
|
end = min(len(sorted_data), start + bs)
|
||||||
|
minibatch = sorted_data[start:end]
|
||||||
|
if shortest_first:
|
||||||
|
minibatch.reverse()
|
||||||
|
|
||||||
|
# check each batch is more than minimum batchsize
|
||||||
|
if len(minibatch) < min_batch_size:
|
||||||
|
mod = min_batch_size - len(minibatch) % min_batch_size
|
||||||
|
additional_minibatch = [
|
||||||
|
sorted_data[i] for i in np.random.randint(0, start, mod)
|
||||||
|
]
|
||||||
|
if shortest_first:
|
||||||
|
additional_minibatch.reverse()
|
||||||
|
minibatch.extend(additional_minibatch)
|
||||||
|
minibatches.append(minibatch)
|
||||||
|
|
||||||
|
if end == len(sorted_data):
|
||||||
|
break
|
||||||
|
start = end
|
||||||
|
|
||||||
|
# batch: List[List[Tuple[str, dict]]]
|
||||||
|
return minibatches
|
||||||
|
|
||||||
|
|
||||||
|
def batchfy_by_bin(
|
||||||
|
sorted_data,
|
||||||
|
batch_bins,
|
||||||
|
num_batches=0,
|
||||||
|
min_batch_size=1,
|
||||||
|
shortest_first=False,
|
||||||
|
ikey="input",
|
||||||
|
okey="output", ):
|
||||||
|
"""Make variably sized batch set, which maximizes
|
||||||
|
|
||||||
|
the number of bins up to `batch_bins`.
|
||||||
|
|
||||||
|
:param List[(str, Dict[str, Any])] sorted_data: dictionary loaded from data.json
|
||||||
|
:param int batch_bins: Maximum frames of a batch
|
||||||
|
:param int num_batches: # number of batches to use (for debug)
|
||||||
|
:param int min_batch_size: minimum batch size (for multi-gpu)
|
||||||
|
:param int test: Return only every `test` batches
|
||||||
|
:param bool shortest_first: Sort from batch with shortest samples
|
||||||
|
to longest if true, otherwise reverse
|
||||||
|
|
||||||
|
:param str ikey: key to access input (for ASR ikey="input", for TTS ikey="output".)
|
||||||
|
:param str okey: key to access output (for ASR okey="output". for TTS okey="input".)
|
||||||
|
|
||||||
|
:return: List[Tuple[str, Dict[str, List[Dict[str, Any]]]] list of batches
|
||||||
|
"""
|
||||||
|
if batch_bins <= 0:
|
||||||
|
raise ValueError(f"invalid batch_bins={batch_bins}")
|
||||||
|
length = len(sorted_data)
|
||||||
|
idim = int(sorted_data[0][1][ikey][0]["shape"][1])
|
||||||
|
odim = int(sorted_data[0][1][okey][0]["shape"][1])
|
||||||
|
logger.info("# utts: " + str(len(sorted_data)))
|
||||||
|
minibatches = []
|
||||||
|
start = 0
|
||||||
|
n = 0
|
||||||
|
while True:
|
||||||
|
# Dynamic batch size depending on size of samples
|
||||||
|
b = 0
|
||||||
|
next_size = 0
|
||||||
|
max_olen = 0
|
||||||
|
while next_size < batch_bins and (start + b) < length:
|
||||||
|
ilen = int(sorted_data[start + b][1][ikey][0]["shape"][0]) * idim
|
||||||
|
olen = int(sorted_data[start + b][1][okey][0]["shape"][0]) * odim
|
||||||
|
if olen > max_olen:
|
||||||
|
max_olen = olen
|
||||||
|
next_size = (max_olen + ilen) * (b + 1)
|
||||||
|
if next_size <= batch_bins:
|
||||||
|
b += 1
|
||||||
|
elif next_size == 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"Can't fit one sample in batch_bins ({batch_bins}): "
|
||||||
|
f"Please increase the value")
|
||||||
|
end = min(length, start + max(min_batch_size, b))
|
||||||
|
batch = sorted_data[start:end]
|
||||||
|
if shortest_first:
|
||||||
|
batch.reverse()
|
||||||
|
minibatches.append(batch)
|
||||||
|
# Check for min_batch_size and fixes the batches if needed
|
||||||
|
i = -1
|
||||||
|
while len(minibatches[i]) < min_batch_size:
|
||||||
|
missing = min_batch_size - len(minibatches[i])
|
||||||
|
if -i == len(minibatches):
|
||||||
|
minibatches[i + 1].extend(minibatches[i])
|
||||||
|
minibatches = minibatches[1:]
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
minibatches[i].extend(minibatches[i - 1][:missing])
|
||||||
|
minibatches[i - 1] = minibatches[i - 1][missing:]
|
||||||
|
i -= 1
|
||||||
|
if end == length:
|
||||||
|
break
|
||||||
|
start = end
|
||||||
|
n += 1
|
||||||
|
if num_batches > 0:
|
||||||
|
minibatches = minibatches[:num_batches]
|
||||||
|
lengths = [len(x) for x in minibatches]
|
||||||
|
logger.info(
|
||||||
|
str(len(minibatches)) + " batches containing from " + str(min(lengths))
|
||||||
|
+ " to " + str(max(lengths)) + " samples " + "(avg " + str(
|
||||||
|
int(np.mean(lengths))) + " samples).")
|
||||||
|
return minibatches
|
||||||
|
|
||||||
|
|
||||||
|
def batchfy_by_frame(
|
||||||
|
sorted_data,
|
||||||
|
max_frames_in,
|
||||||
|
max_frames_out,
|
||||||
|
max_frames_inout,
|
||||||
|
num_batches=0,
|
||||||
|
min_batch_size=1,
|
||||||
|
shortest_first=False,
|
||||||
|
ikey="input",
|
||||||
|
okey="output", ):
|
||||||
|
"""Make variable batch set, which maximizes the number of frames to max_batch_frame.
|
||||||
|
|
||||||
|
:param List[(str, Dict[str, Any])] sorteddata: dictionary loaded from data.json
|
||||||
|
:param int max_frames_in: Maximum input frames of a batch
|
||||||
|
:param int max_frames_out: Maximum output frames of a batch
|
||||||
|
:param int max_frames_inout: Maximum input+output frames of a batch
|
||||||
|
:param int num_batches: # number of batches to use (for debug)
|
||||||
|
:param int min_batch_size: minimum batch size (for multi-gpu)
|
||||||
|
:param int test: Return only every `test` batches
|
||||||
|
:param bool shortest_first: Sort from batch with shortest samples
|
||||||
|
to longest if true, otherwise reverse
|
||||||
|
|
||||||
|
:param str ikey: key to access input (for ASR ikey="input", for TTS ikey="output".)
|
||||||
|
:param str okey: key to access output (for ASR okey="output". for TTS okey="input".)
|
||||||
|
|
||||||
|
:return: List[Tuple[str, Dict[str, List[Dict[str, Any]]]] list of batches
|
||||||
|
"""
|
||||||
|
if max_frames_in <= 0 and max_frames_out <= 0 and max_frames_inout <= 0:
|
||||||
|
raise ValueError(
|
||||||
|
"At least, one of `--batch-frames-in`, `--batch-frames-out` or "
|
||||||
|
"`--batch-frames-inout` should be > 0")
|
||||||
|
length = len(sorted_data)
|
||||||
|
minibatches = []
|
||||||
|
start = 0
|
||||||
|
end = 0
|
||||||
|
while end != length:
|
||||||
|
# Dynamic batch size depending on size of samples
|
||||||
|
b = 0
|
||||||
|
max_olen = 0
|
||||||
|
max_ilen = 0
|
||||||
|
while (start + b) < length:
|
||||||
|
ilen = int(sorted_data[start + b][1][ikey][0]["shape"][0])
|
||||||
|
if ilen > max_frames_in and max_frames_in != 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"Can't fit one sample in --batch-frames-in ({max_frames_in}): "
|
||||||
|
f"Please increase the value")
|
||||||
|
olen = int(sorted_data[start + b][1][okey][0]["shape"][0])
|
||||||
|
if olen > max_frames_out and max_frames_out != 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"Can't fit one sample in --batch-frames-out ({max_frames_out}): "
|
||||||
|
f"Please increase the value")
|
||||||
|
if ilen + olen > max_frames_inout and max_frames_inout != 0:
|
||||||
|
raise ValueError(
|
||||||
|
f"Can't fit one sample in --batch-frames-out ({max_frames_inout}): "
|
||||||
|
f"Please increase the value")
|
||||||
|
max_olen = max(max_olen, olen)
|
||||||
|
max_ilen = max(max_ilen, ilen)
|
||||||
|
in_ok = max_ilen * (b + 1) <= max_frames_in or max_frames_in == 0
|
||||||
|
out_ok = max_olen * (b + 1) <= max_frames_out or max_frames_out == 0
|
||||||
|
inout_ok = (max_ilen + max_olen) * (
|
||||||
|
b + 1) <= max_frames_inout or max_frames_inout == 0
|
||||||
|
if in_ok and out_ok and inout_ok:
|
||||||
|
# add more seq in the minibatch
|
||||||
|
b += 1
|
||||||
|
else:
|
||||||
|
# no more seq in the minibatch
|
||||||
|
break
|
||||||
|
end = min(length, start + b)
|
||||||
|
batch = sorted_data[start:end]
|
||||||
|
if shortest_first:
|
||||||
|
batch.reverse()
|
||||||
|
minibatches.append(batch)
|
||||||
|
# Check for min_batch_size and fixes the batches if needed
|
||||||
|
i = -1
|
||||||
|
while len(minibatches[i]) < min_batch_size:
|
||||||
|
missing = min_batch_size - len(minibatches[i])
|
||||||
|
if -i == len(minibatches):
|
||||||
|
minibatches[i + 1].extend(minibatches[i])
|
||||||
|
minibatches = minibatches[1:]
|
||||||
|
break
|
||||||
|
else:
|
||||||
|
minibatches[i].extend(minibatches[i - 1][:missing])
|
||||||
|
minibatches[i - 1] = minibatches[i - 1][missing:]
|
||||||
|
i -= 1
|
||||||
|
start = end
|
||||||
|
if num_batches > 0:
|
||||||
|
minibatches = minibatches[:num_batches]
|
||||||
|
lengths = [len(x) for x in minibatches]
|
||||||
|
logger.info(
|
||||||
|
str(len(minibatches)) + " batches containing from " + str(min(lengths))
|
||||||
|
+ " to " + str(max(lengths)) + " samples" + "(avg " + str(
|
||||||
|
int(np.mean(lengths))) + " samples).")
|
||||||
|
|
||||||
|
return minibatches
|
||||||
|
|
||||||
|
|
||||||
|
def batchfy_shuffle(data, batch_size, min_batch_size, num_batches,
|
||||||
|
shortest_first):
|
||||||
|
import random
|
||||||
|
|
||||||
|
logger.info("use shuffled batch.")
|
||||||
|
sorted_data = random.sample(data.items(), len(data.items()))
|
||||||
|
logger.info("# utts: " + str(len(sorted_data)))
|
||||||
|
# make list of minibatches
|
||||||
|
minibatches = []
|
||||||
|
start = 0
|
||||||
|
while True:
|
||||||
|
end = min(len(sorted_data), start + batch_size)
|
||||||
|
# check each batch is more than minimum batchsize
|
||||||
|
minibatch = sorted_data[start:end]
|
||||||
|
if shortest_first:
|
||||||
|
minibatch.reverse()
|
||||||
|
if len(minibatch) < min_batch_size:
|
||||||
|
mod = min_batch_size - len(minibatch) % min_batch_size
|
||||||
|
additional_minibatch = [
|
||||||
|
sorted_data[i] for i in np.random.randint(0, start, mod)
|
||||||
|
]
|
||||||
|
if shortest_first:
|
||||||
|
additional_minibatch.reverse()
|
||||||
|
minibatch.extend(additional_minibatch)
|
||||||
|
minibatches.append(minibatch)
|
||||||
|
if end == len(sorted_data):
|
||||||
|
break
|
||||||
|
start = end
|
||||||
|
|
||||||
|
# for debugging
|
||||||
|
if num_batches > 0:
|
||||||
|
minibatches = minibatches[:num_batches]
|
||||||
|
logger.info("# minibatches: " + str(len(minibatches)))
|
||||||
|
return minibatches
|
||||||
|
|
||||||
|
|
||||||
|
BATCH_COUNT_CHOICES = ["auto", "seq", "bin", "frame"]
|
||||||
|
BATCH_SORT_KEY_CHOICES = ["input", "output", "shuffle"]
|
||||||
|
|
||||||
|
|
||||||
|
def make_batchset(
|
||||||
|
data,
|
||||||
|
batch_size=0,
|
||||||
|
max_length_in=float("inf"),
|
||||||
|
max_length_out=float("inf"),
|
||||||
|
num_batches=0,
|
||||||
|
min_batch_size=1,
|
||||||
|
shortest_first=False,
|
||||||
|
batch_sort_key="input",
|
||||||
|
count="auto",
|
||||||
|
batch_bins=0,
|
||||||
|
batch_frames_in=0,
|
||||||
|
batch_frames_out=0,
|
||||||
|
batch_frames_inout=0,
|
||||||
|
iaxis=0,
|
||||||
|
oaxis=0, ):
|
||||||
|
"""Make batch set from json dictionary
|
||||||
|
|
||||||
|
if utts have "category" value,
|
||||||
|
|
||||||
|
>>> data = {'utt1': {'category': 'A', 'input': ...},
|
||||||
|
... 'utt2': {'category': 'B', 'input': ...},
|
||||||
|
... 'utt3': {'category': 'B', 'input': ...},
|
||||||
|
... 'utt4': {'category': 'A', 'input': ...}}
|
||||||
|
>>> make_batchset(data, batchsize=2, ...)
|
||||||
|
[[('utt1', ...), ('utt4', ...)], [('utt2', ...), ('utt3': ...)]]
|
||||||
|
|
||||||
|
Note that if any utts doesn't have "category",
|
||||||
|
perform as same as batchfy_by_{count}
|
||||||
|
|
||||||
|
:param Dict[str, Dict[str, Any]] data: dictionary loaded from data.json
|
||||||
|
:param int batch_size: maximum number of sequences in a minibatch.
|
||||||
|
:param int batch_bins: maximum number of bins (frames x dim) in a minibatch.
|
||||||
|
:param int batch_frames_in: maximum number of input frames in a minibatch.
|
||||||
|
:param int batch_frames_out: maximum number of output frames in a minibatch.
|
||||||
|
:param int batch_frames_out: maximum number of input+output frames in a minibatch.
|
||||||
|
:param str count: strategy to count maximum size of batch.
|
||||||
|
For choices, see espnet.asr.batchfy.BATCH_COUNT_CHOICES
|
||||||
|
|
||||||
|
:param int max_length_in: maximum length of input to decide adaptive batch size
|
||||||
|
:param int max_length_out: maximum length of output to decide adaptive batch size
|
||||||
|
:param int num_batches: # number of batches to use (for debug)
|
||||||
|
:param int min_batch_size: minimum batch size (for multi-gpu)
|
||||||
|
:param bool shortest_first: Sort from batch with shortest samples
|
||||||
|
to longest if true, otherwise reverse
|
||||||
|
:param str batch_sort_key: how to sort data before creating minibatches
|
||||||
|
["input", "output", "shuffle"]
|
||||||
|
:param bool swap_io: if True, use "input" as output and "output"
|
||||||
|
as input in `data` dict
|
||||||
|
:param bool mt: if True, use 0-axis of "output" as output and 1-axis of "output"
|
||||||
|
as input in `data` dict
|
||||||
|
:param int iaxis: dimension to access input
|
||||||
|
(for ASR, TTS iaxis=0, for MT iaxis="1".)
|
||||||
|
:param int oaxis: dimension to access output (for ASR, TTS, MT oaxis=0,
|
||||||
|
reserved for future research, -1 means all axis.)
|
||||||
|
:return: List[List[Tuple[str, dict]]] list of batches
|
||||||
|
"""
|
||||||
|
|
||||||
|
# check args
|
||||||
|
if count not in BATCH_COUNT_CHOICES:
|
||||||
|
raise ValueError(
|
||||||
|
f"arg 'count' ({count}) should be one of {BATCH_COUNT_CHOICES}")
|
||||||
|
if batch_sort_key not in BATCH_SORT_KEY_CHOICES:
|
||||||
|
raise ValueError(f"arg 'batch_sort_key' ({batch_sort_key}) should be "
|
||||||
|
f"one of {BATCH_SORT_KEY_CHOICES}")
|
||||||
|
|
||||||
|
ikey = "input"
|
||||||
|
okey = "output"
|
||||||
|
batch_sort_axis = 0 # index of list
|
||||||
|
|
||||||
|
if count == "auto":
|
||||||
|
if batch_size != 0:
|
||||||
|
count = "seq"
|
||||||
|
elif batch_bins != 0:
|
||||||
|
count = "bin"
|
||||||
|
elif batch_frames_in != 0 or batch_frames_out != 0 or batch_frames_inout != 0:
|
||||||
|
count = "frame"
|
||||||
|
else:
|
||||||
|
raise ValueError(
|
||||||
|
f"cannot detect `count` manually set one of {BATCH_COUNT_CHOICES}"
|
||||||
|
)
|
||||||
|
logger.info(f"count is auto detected as {count}")
|
||||||
|
|
||||||
|
if count != "seq" and batch_sort_key == "shuffle":
|
||||||
|
raise ValueError(
|
||||||
|
"batch_sort_key=shuffle is only available if batch_count=seq")
|
||||||
|
|
||||||
|
category2data = {} # Dict[str, dict]
|
||||||
|
for k, v in data.items():
|
||||||
|
category2data.setdefault(v.get("category"), {})[k] = v
|
||||||
|
|
||||||
|
batches_list = [] # List[List[List[Tuple[str, dict]]]]
|
||||||
|
for d in category2data.values():
|
||||||
|
if batch_sort_key == "shuffle":
|
||||||
|
batches = batchfy_shuffle(d, batch_size, min_batch_size,
|
||||||
|
num_batches, shortest_first)
|
||||||
|
batches_list.append(batches)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# sort it by input lengths (long to short)
|
||||||
|
sorted_data = sorted(
|
||||||
|
d.items(),
|
||||||
|
key=lambda data: int(data[1][batch_sort_key][batch_sort_axis]["shape"][0]),
|
||||||
|
reverse=not shortest_first, )
|
||||||
|
logger.info("# utts: " + str(len(sorted_data)))
|
||||||
|
if count == "seq":
|
||||||
|
batches = batchfy_by_seq(
|
||||||
|
sorted_data,
|
||||||
|
batch_size=batch_size,
|
||||||
|
max_length_in=max_length_in,
|
||||||
|
max_length_out=max_length_out,
|
||||||
|
min_batch_size=min_batch_size,
|
||||||
|
shortest_first=shortest_first,
|
||||||
|
ikey=ikey,
|
||||||
|
iaxis=iaxis,
|
||||||
|
okey=okey,
|
||||||
|
oaxis=oaxis, )
|
||||||
|
if count == "bin":
|
||||||
|
batches = batchfy_by_bin(
|
||||||
|
sorted_data,
|
||||||
|
batch_bins=batch_bins,
|
||||||
|
min_batch_size=min_batch_size,
|
||||||
|
shortest_first=shortest_first,
|
||||||
|
ikey=ikey,
|
||||||
|
okey=okey, )
|
||||||
|
if count == "frame":
|
||||||
|
batches = batchfy_by_frame(
|
||||||
|
sorted_data,
|
||||||
|
max_frames_in=batch_frames_in,
|
||||||
|
max_frames_out=batch_frames_out,
|
||||||
|
max_frames_inout=batch_frames_inout,
|
||||||
|
min_batch_size=min_batch_size,
|
||||||
|
shortest_first=shortest_first,
|
||||||
|
ikey=ikey,
|
||||||
|
okey=okey, )
|
||||||
|
batches_list.append(batches)
|
||||||
|
|
||||||
|
if len(batches_list) == 1:
|
||||||
|
batches = batches_list[0]
|
||||||
|
else:
|
||||||
|
# Concat list. This way is faster than "sum(batch_list, [])"
|
||||||
|
batches = list(itertools.chain(*batches_list))
|
||||||
|
|
||||||
|
# for debugging
|
||||||
|
if num_batches > 0:
|
||||||
|
batches = batches[:num_batches]
|
||||||
|
logger.info("# minibatches: " + str(len(batches)))
|
||||||
|
|
||||||
|
# batch: List[List[Tuple[str, dict]]]
|
||||||
|
return batches
|
@ -0,0 +1,36 @@
|
|||||||
|
#!/usr/bin/env python
|
||||||
|
import argparse
|
||||||
|
import json
|
||||||
|
|
||||||
|
|
||||||
|
def main(args):
|
||||||
|
with open(args.json_file, 'r') as fin:
|
||||||
|
data_json = json.load(fin)
|
||||||
|
|
||||||
|
# manifest format:
|
||||||
|
# {"input": [
|
||||||
|
# {"feat": "dev/deltafalse/feats.1.ark:842920", "name": "input1", "shape": [349, 83]}
|
||||||
|
# ],
|
||||||
|
# "output": [
|
||||||
|
# {"name": "target1", "shape": [12, 5002], "text": "NO APOLLO", "token": "▁NO ▁A PO LL O", "tokenid": "3144 482 352 269 317"}
|
||||||
|
# ],
|
||||||
|
# "utt2spk": "116-288045",
|
||||||
|
# "utt": "116-288045-0019"}
|
||||||
|
with open(args.manifest_file, 'w') as fout:
|
||||||
|
for key, value in data_json['utts'].items():
|
||||||
|
value['utt'] = key
|
||||||
|
fout.write(json.dumps(value, ensure_ascii=False))
|
||||||
|
fout.write("\n")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
parser = argparse.ArgumentParser(description=__doc__)
|
||||||
|
parser.add_argument(
|
||||||
|
'--json-file', type=str, default=None, help="espnet data json file.")
|
||||||
|
parser.add_argument(
|
||||||
|
'--manifest-file',
|
||||||
|
type=str,
|
||||||
|
default='maniefst.train',
|
||||||
|
help='manifest data json line file.')
|
||||||
|
args = parser.parse_args()
|
||||||
|
main(args)
|
Loading…
Reference in new issue