Sort the config lines to make it look better.

pull/2/head
Xinghai Sun 7 years ago
parent dfd7652308
commit 792129166a

@ -27,41 +27,25 @@ def add_arg(argname, type, default, help, **kwargs):
# yapf: disable
# configurations of overall
add_arg('host_port', int, 8086, "Server's IP port.")
add_arg('host_ip', str,
'localhost',
"Server's IP address.")
add_arg('speech_save_dir', str,
'demo_cache',
"Directory to save demo audios.")
add_arg('use_gpu', bool, True, "Use GPU or not.")
# configurations of decoder
add_arg('beam_size', int, 500, "Beam search width.")
add_arg('alpha', float, 0.36, "Coef of LM for beam search.")
add_arg('beta', float, 0.25, "Coef of WC for beam search.")
add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.")
add_arg('lang_model_path', str,
'lm/data/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
add_arg('decoder_method', str,
'ctc_beam_search',
"Decoder method. Options: ctc_beam_search, ctc_greedy",
choices = ['ctc_beam_search', 'ctc_greedy'])
# configurations of data preprocess
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
# configurations of model structure
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
add_arg('alpha', float, 0.36, "Coef of LM for beam search.")
add_arg('beta', float, 0.25, "Coef of WC for beam search.")
add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.")
add_arg('use_gru', bool, False, "Use GRUs instead of Simple RNNs.")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
"bi-directional RNNs. Not for GRU.")
# configurations of data io
add_arg('warmup_manifest', str,
add_arg('host_ip', str,
'localhost',
"Server's IP address.")
add_arg('speech_save_dir', str,
'demo_cache',
"Directory to save demo audios.")
add_arg('warmup_manifest', str,
'datasets/manifest.test',
"Filepath of manifest to warm up.")
add_arg('mean_std_path', str,
@ -70,11 +54,21 @@ add_arg('mean_std_path', str,
add_arg('vocab_path', str,
'datasets/vocab/eng_vocab.txt',
"Filepath of vocabulary.")
# configurations of model io
add_arg('model_path', str,
'./checkpoints/params.latest.tar.gz',
"If None, the training starts from scratch, "
"otherwise, it resumes from the pre-trained model.")
add_arg('lang_model_path', str,
'lm/data/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
add_arg('decoder_method', str,
'ctc_beam_search',
"Decoder method. Options: ctc_beam_search, ctc_greedy",
choices = ['ctc_beam_search', 'ctc_greedy'])
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
args = parser.parse_args()
# yapf: disable

@ -26,39 +26,21 @@ def add_arg(argname, type, default, help, **kwargs):
# yapf: disable
# configurations of overall
add_arg('batch_size', int, 128, "Minibatch size.")
add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('error_rate_type', str, 'wer', "Error rate type for evaluation.",
choices=['wer', 'cer'])
# configurations of decoder
add_arg('beam_size', int, 500, "Beam search width.")
add_arg('alpha', float, 0.36, "Coef of LM for beam search.")
add_arg('beta', float, 0.25, "Coef of WC for beam search.")
add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.")
add_arg('parallels_bsearch',int, NUM_CPU,"# of CPUs for beam search.")
add_arg('lang_model_path', str,
'lm/data/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
add_arg('decoder_method', str,
'ctc_beam_search',
"Decoder method. Options: ctc_beam_search, ctc_greedy",
choices = ['ctc_beam_search', 'ctc_greedy'])
# configurations of data preprocess
add_arg('parallels_data', int, NUM_CPU,"# of CPUs for data preprocessing.")
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
# configurations of model structure
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
add_arg('alpha', float, 0.36, "Coef of LM for beam search.")
add_arg('beta', float, 0.25, "Coef of WC for beam search.")
add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.")
add_arg('use_gru', bool, False, "Use GRUs instead of Simple RNNs.")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
"bi-directional RNNs. Not for GRU.")
# configurations of data io
add_arg('test_manifest', str,
'datasets/manifest.test',
"Filepath of manifest to evaluate.")
@ -68,11 +50,25 @@ add_arg('mean_std_path', str,
add_arg('vocab_path', str,
'datasets/vocab/eng_vocab.txt',
"Filepath of vocabulary.")
# configurations of model io
add_arg('model_path', str,
'./checkpoints/params.latest.tar.gz',
"If None, the training starts from scratch, "
"otherwise, it resumes from the pre-trained model.")
add_arg('lang_model_path', str,
'lm/data/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
add_arg('decoder_method', str,
'ctc_beam_search',
"Decoder method. Options: ctc_beam_search, ctc_greedy",
choices = ['ctc_beam_search', 'ctc_greedy'])
add_arg('error_rate_type', str,
'wer',
"Error rate type for evaluation.",
choices=['wer', 'cer'])
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
args = parser.parse_args()
# yapf: disable

@ -29,35 +29,18 @@ def add_arg(argname, type, default, help, **kwargs):
# configurations of overall
add_arg('num_samples', int, 10, "# of samples to infer.")
add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('error_rate_type', str, 'wer', "Error rate type for evaluation.",
choices=['wer', 'cer'])
# configurations of decoder
add_arg('beam_size', int, 500, "Beam search width.")
add_arg('alpha', float, 0.36, "Coef of LM for beam search.")
add_arg('beta', float, 0.25, "Coef of WC for beam search.")
add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.")
add_arg('parallels_bsearch',int, NUM_CPU,"# of CPUs for beam search.")
add_arg('lang_model_path', str,
'lm/data/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
add_arg('decoder_method', str,
'ctc_beam_search',
"Decoder method. Options: ctc_beam_search, ctc_greedy",
choices = ['ctc_beam_search', 'ctc_greedy'])
# configurations of data preprocess
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
# configurations of model structure
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
add_arg('alpha', float, 0.36, "Coef of LM for beam search.")
add_arg('beta', float, 0.25, "Coef of WC for beam search.")
add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.")
add_arg('use_gru', bool, False, "Use GRUs instead of Simple RNNs.")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
"bi-directional RNNs. Not for GRU.")
# configurations of data io
add_arg('infer_manifest', str,
'datasets/manifest.dev',
"Filepath of manifest to infer.")
@ -67,11 +50,25 @@ add_arg('mean_std_path', str,
add_arg('vocab_path', str,
'datasets/vocab/eng_vocab.txt',
"Filepath of vocabulary.")
# configurations of model io
add_arg('lang_model_path', str,
'lm/data/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
add_arg('model_path', str,
'./checkpoints/params.latest.tar.gz',
"If None, the training starts from scratch, "
"otherwise, it resumes from the pre-trained model.")
add_arg('decoder_method', str,
'ctc_beam_search',
"Decoder method. Options: ctc_beam_search, ctc_greedy",
choices = ['ctc_beam_search', 'ctc_greedy'])
add_arg('error_rate_type', str,
'wer',
"Error rate type for evaluation.",
choices=['wer', 'cer'])
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
args = parser.parse_args()
# yapf: disable

@ -25,39 +25,24 @@ def add_arg(argname, type, default, help, **kwargs):
# yapf: disable
# configurations of optimization
add_arg('batch_size', int, 256, "Minibatch size.")
add_arg('learning_rate', float, 5e-4, "Learning rate.")
add_arg('use_sortagrad', bool, True, "Use SortaGrad or not.")
add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('num_passes', int, 200, "# of training epochs.")
add_arg('is_local', bool, True, "Use pserver or not.")
add_arg('num_iter_print', int, 100, "Every # iterations for printing "
"train cost.")
# configurations of data preprocess
add_arg('max_duration', float, 27.0, "Longest audio duration allowed.")
add_arg('min_duration', float, 0.0, "Shortest audio duration allowed.")
add_arg('parallels_data', int, NUM_CPU,"# of CPUs for data preprocessing.")
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
add_arg('augment_conf_path',str,
'conf/augmentation.config',
"Filepath of augmentation configuration file (json-format).")
add_arg('shuffle_method', str,
'batch_shuffle_clipped',
"Shuffle method.",
choices=['instance_shuffle', 'batch_shuffle', 'batch_shuffle_clipped'])
# configurations of model structure
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
add_arg('num_iter_print', int, 100, "Every # iterations for printing "
"train cost.")
add_arg('learning_rate', float, 5e-4, "Learning rate.")
add_arg('max_duration', float, 27.0, "Longest audio duration allowed.")
add_arg('min_duration', float, 0.0, "Shortest audio duration allowed.")
add_arg('use_sortagrad', bool, True, "Use SortaGrad or not.")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('is_local', bool, True, "Use pserver or not.")
add_arg('use_gru', bool, False, "Use GRUs instead of Simple RNNs.")
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
"bi-directional RNNs. Not for GRU.")
# configurations of data io
add_arg('train_manifest', str,
'datasets/manifest.train',
"Filepath of train manifest.")
@ -70,7 +55,6 @@ add_arg('mean_std_path', str,
add_arg('vocab_path', str,
'datasets/vocab/eng_vocab.txt',
"Filepath of vocabulary.")
# configurations of model io
add_arg('init_model_path', str,
None,
"If None, the training starts from scratch, "
@ -78,6 +62,17 @@ add_arg('init_model_path', str,
add_arg('output_model_dir', str,
"./checkpoints",
"Directory for saving checkpoints.")
add_arg('augment_conf_path',str,
'conf/augmentation.config',
"Filepath of augmentation configuration file (json-format).")
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
add_arg('shuffle_method', str,
'batch_shuffle_clipped',
"Shuffle method.",
choices=['instance_shuffle', 'batch_shuffle', 'batch_shuffle_clipped'])
args = parser.parse_args()
# yapf: disable

@ -27,40 +27,25 @@ def add_arg(argname, type, default, help, **kwargs):
# yapf: disable
# configurations of overall
add_arg('num_samples', int, 100, "# of samples to infer.")
add_arg('trainer_count', int, 8, "# of Trainers (CPUs or GPUs).")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('error_rate_type', str, 'wer', "Error rate type for evaluation.",
choices=['wer', 'cer'])
# configurations of tuning parameters
add_arg('alpha_from', float, 0.1, "Where alpha starts tuning from.")
add_arg('alpha_to', float, 0.36, "Where alpha ends tuning with.")
add_arg('num_alphas', int, 14, "# of alpha candidates for tuning.")
add_arg('beta_from', float, 0.05, "Where beta starts tuning from.")
add_arg('beta_to', float, 0.36, "Where beta ends tuning with.")
add_arg('num_betas', int, 20, "# of beta candidates for tuning.")
# configurations of decoder
add_arg('beam_size', int, 500, "Beam search width.")
add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.")
add_arg('parallels_bsearch',int, NUM_CPU,"# of CPUs for beam search.")
add_arg('lang_model_path', str,
'lm/data/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
# configurations of data preprocess
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
# configurations of model structure
add_arg('num_conv_layers', int, 2, "# of convolution layers.")
add_arg('num_rnn_layers', int, 3, "# of recurrent layers.")
add_arg('rnn_layer_size', int, 2048, "# of recurrent cells per layer.")
add_arg('num_alphas', int, 14, "# of alpha candidates for tuning.")
add_arg('num_betas', int, 20, "# of beta candidates for tuning.")
add_arg('alpha_from', float, 0.1, "Where alpha starts tuning from.")
add_arg('alpha_to', float, 0.36, "Where alpha ends tuning with.")
add_arg('beta_from', float, 0.05, "Where beta starts tuning from.")
add_arg('beta_to', float, 0.36, "Where beta ends tuning with.")
add_arg('cutoff_prob', float, 0.99, "Cutoff probability for pruning.")
add_arg('use_gru', bool, False, "Use GRUs instead of Simple RNNs.")
add_arg('use_gpu', bool, True, "Use GPU or not.")
add_arg('share_rnn_weights',bool, True, "Share input-hidden weights across "
"bi-directional RNNs. Not for GRU.")
# configurations of data io
add_arg('tune_manifest', str,
add_arg('tune_manifest', str,
'datasets/manifest.test',
"Filepath of manifest to tune.")
add_arg('mean_std_path', str,
@ -69,11 +54,21 @@ add_arg('mean_std_path', str,
add_arg('vocab_path', str,
'datasets/vocab/eng_vocab.txt',
"Filepath of vocabulary.")
# configurations of model io
add_arg('lang_model_path', str,
'lm/data/common_crawl_00.prune01111.trie.klm',
"Filepath for language model.")
add_arg('model_path', str,
'./checkpoints/params.latest.tar.gz',
"If None, the training starts from scratch, "
"otherwise, it resumes from the pre-trained model.")
add_arg('error_rate_type', str,
'wer',
"Error rate type for evaluation.",
choices=['wer', 'cer'])
add_arg('specgram_type', str,
'linear',
"Audio feature type. Options: linear, mfcc.",
choices=['linear', 'mfcc'])
args = parser.parse_args()
# yapf: disable

Loading…
Cancel
Save