Add end-to-end version of MFA FastSpeech2, test=tts

pull/2693/head
WongLaw 3 years ago
parent 58309aa9d7
commit 78d48ddacd

@ -0,0 +1,75 @@
([简体中文](./README_cn.md)|English)
# This example mainly follows the FastSpeech2 with CSMSC
This example contains code used to train a rhythm version of [Fastspeech2](https://arxiv.org/abs/2006.04558) model with [Chinese Standard Mandarin Speech Copus](https://www.data-baker.com/open_source.html).
## Dataset
### Download and Extract
Download CSMSC from it's [Official Website](https://test.data-baker.com/data/index/TNtts/) and extract it to `~/datasets`. Then the dataset is in the directory `~/datasets/BZNSYP`.
### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for fastspeech2.
You can directly download the rhythm version of MFA result from here [sp1_4_duration.zip](https://paddlespeech.bj.bcebos.com/Rhy_e2e/sp1_4_duration.zip), or train your MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
Remember in our repo, you should add `--rhy-with-duration` flag to obtain the rhythm information.
## Get Started
Assume the path to the dataset is `~/datasets/BZNSYP`.
Assume the path to the MFA result of CSMSC is `./baker_alignment_tone`.
Run the command below to
1. **source path**.
2. preprocess the dataset.
3. train the model.
4. synthesize wavs.
- synthesize waveform from `metadata.jsonl`.
- synthesize waveform from a text file.
5. inference using the static model.
```bash
./run.sh
```
You can choose a range of stages you want to run, or set `stage` equal to `stop-stage` to use only one stage, for example, running the following command will only preprocess the dataset.
```bash
./run.sh --stage 0 --stop-stage 0
```
### Data Preprocessing
```bash
./local/preprocess.sh ${conf_path}
```
When it is done. A `dump` folder is created in the current directory. The structure of the dump folder is listed below.
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── energy_stats.npy
├── norm
├── pitch_stats.npy
├── raw
└── speech_stats.npy
```
The dataset is split into 3 parts, namely `train`, `dev`, and` test`, each of which contains a `norm` and `raw` subfolder. The raw folder contains speech、pitch and energy features of each utterance, while the norm folder contains normalized ones. The statistics used to normalize features are computed from the training set, which is located in `dump/train/*_stats.npy`.
Also, there is a `metadata.jsonl` in each subfolder. It is a table-like file that contains phones, text_lengths, speech_lengths, durations, the path of speech features, the path of pitch features, the path of energy features, speaker, and the id of each utterance.
# More details can be refered to the example of FastSpeech2 with CSMSC(tts3)
## Pretrained Model
Pretrained FastSpeech2 model for end-to-end rhythm version:
- [rhy_e2e_pretrain.zip](https://paddlespeech.bj.bcebos.com/Rhy_e2e/rhy_e2e_pretrain.zip)
This FastSpeech2 checkpoint contains files listed below.
```text
rhy_e2e_pretrain
├── default.yaml # default config used to train fastspeech2
├── phone_id_map.txt # phone vocabulary file when training fastspeech2
├── snapshot_iter_153000.pdz # model parameters and optimizer states
├── durations.txt # the intermediate output of preprocess.sh
├── energy_stats.npy
├── pitch_stats.npy
└── speech_stats.npy # statistics used to normalize spectrogram when training fastspeech2
```

@ -0,0 +1,77 @@
(简体中文|[English](./README.md))
# 用 CSMSC 数据集训练 FastSpeech2 模型
本用例包含用于训练 [Fastspeech2](https://arxiv.org/abs/2006.04558) 模型的代码,使用 [Chinese Standard Mandarin Speech Copus](https://www.data-baker.com/open_source.html) 数据集。
## 数据集
### 下载并解压
从 [官方网站](https://test.data-baker.com/data/index/TNtts/) 下载数据集
### 获取MFA结果并解压
我们使用 [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) 去获得 fastspeech2 的音素持续时间。
你们可以从这里直接下载训练好的带节奏时长的 MFA 结果 [sp1_4_duration.zip](https://paddlespeech.bj.bcebos.com/Rhy_e2e/sp1_4_duration.zip), 或参考 [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) 训练你自己的模型。
利用 mfa repo 去训练自己的模型时,请添加 `--rhy-with-duration`
## 开始
假设数据集的路径是 `~/datasets/BZNSYP`.
假设CSMSC的MFA结果路径为 `./baker_alignment_tone`.
运行下面的命令会进行如下操作:
1. **设置原路径**。
2. 对数据集进行预处理。
3. 训练模型
4. 合成波形
- 从 `metadata.jsonl` 合成波形。
- 从文本文件合成波形。
5. 使用静态模型进行推理。
```bash
./run.sh
```
您可以选择要运行的一系列阶段,或者将 `stage` 设置为 `stop-stage` 以仅使用一个阶段,例如,运行以下命令只会预处理数据集。
```bash
./run.sh --stage 0 --stop-stage 0
```
### 数据预处理
```bash
./local/preprocess.sh ${conf_path}
```
当它完成时。将在当前目录中创建 `dump` 文件夹。转储文件夹的结构如下所示。
```text
dump
├── dev
│ ├── norm
│ └── raw
├── phone_id_map.txt
├── speaker_id_map.txt
├── test
│ ├── norm
│ └── raw
└── train
├── energy_stats.npy
├── norm
├── pitch_stats.npy
├── raw
└── speech_stats.npy
```
数据集分为三个部分,即 `train``dev``test` ,每个部分都包含一个 `norm``raw` 子文件夹。原始文件夹包含每个话语的语音、音调和能量特征,而 `norm` 文件夹包含规范化的特征。用于规范化特征的统计数据是从 `dump/train/*_stats.npy` 中的训练集计算出来的。
此外,还有一个 `metadata.jsonl` 在每个子文件夹中。它是一个类似表格的文件,包含音素、文本长度、语音长度、持续时间、语音特征路径、音调特征路径、能量特征路径、说话人和每个话语的 id。
# 更多训练细节请参考 example 下的 CSMSC(tts3)
## 预训练模型
预先训练的端到端带韵律预测的 FastSpeech2 模型:
- [rhy_e2e_pretrain.zip](https://paddlespeech.bj.bcebos.com/Rhy_e2e/rhy_e2e_pretrain.zip)
FastSpeech2检查点包含下列文件。
```text
fastspeech2_nosil_baker_ckpt_0.4
├── default.yaml # 用于训练 fastspeech2 的默认配置
├── phone_id_map.txt # 训练 fastspeech2 时的音素词汇文件
├── snapshot_iter_153000.pdz # 模型参数和优化器状态
├── durations.txt # preprocess.sh的中间过程
├── energy_stats.npy
├── pitch_stats.npy
└── speech_stats.npy # 训练 fastspeech2 时用于规范化频谱图的统计数据

@ -0,0 +1,109 @@
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 24000 # sr
n_fft: 2048 # FFT size (samples).
n_shift: 300 # Hop size (samples). 12.5ms
win_length: 1200 # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
# Only used for feats_type != raw
fmin: 80 # Minimum frequency of Mel basis.
fmax: 7600 # Maximum frequency of Mel basis.
n_mels: 80 # The number of mel basis.
# Only used for the model using pitch features (e.g. FastSpeech2)
f0min: 80 # Minimum f0 for pitch extraction.
f0max: 400 # Maximum f0 for pitch extraction.
###########################################################
# DATA SETTING #
###########################################################
batch_size: 64
num_workers: 4
###########################################################
# MODEL SETTING #
###########################################################
model:
adim: 384 # attention dimension
aheads: 2 # number of attention heads
elayers: 4 # number of encoder layers
eunits: 1536 # number of encoder ff units
dlayers: 4 # number of decoder layers
dunits: 1536 # number of decoder ff units
positionwise_layer_type: conv1d # type of position-wise layer
positionwise_conv_kernel_size: 3 # kernel size of position wise conv layer
duration_predictor_layers: 2 # number of layers of duration predictor
duration_predictor_chans: 256 # number of channels of duration predictor
duration_predictor_kernel_size: 3 # filter size of duration predictor
postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet
encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input
reduction_factor: 1 # reduction factor
encoder_type: conformer # encoder type
decoder_type: conformer # decoder type
conformer_pos_enc_layer_type: rel_pos # conformer positional encoding type
conformer_self_attn_layer_type: rel_selfattn # conformer self-attention type
conformer_activation_type: swish # conformer activation type
use_macaron_style_in_conformer: True # whether to use macaron style in conformer
use_cnn_in_conformer: True # whether to use CNN in conformer
conformer_enc_kernel_size: 7 # kernel size in CNN module of conformer-based encoder
conformer_dec_kernel_size: 31 # kernel size in CNN module of conformer-based decoder
init_type: xavier_uniform # initialization type
transformer_enc_dropout_rate: 0.2 # dropout rate for transformer encoder layer
transformer_enc_positional_dropout_rate: 0.2 # dropout rate for transformer encoder positional encoding
transformer_enc_attn_dropout_rate: 0.2 # dropout rate for transformer encoder attention layer
transformer_dec_dropout_rate: 0.2 # dropout rate for transformer decoder layer
transformer_dec_positional_dropout_rate: 0.2 # dropout rate for transformer decoder positional encoding
transformer_dec_attn_dropout_rate: 0.2 # dropout rate for transformer decoder attention layer
pitch_predictor_layers: 5 # number of conv layers in pitch predictor
pitch_predictor_chans: 256 # number of channels of conv layers in pitch predictor
pitch_predictor_kernel_size: 5 # kernel size of conv leyers in pitch predictor
pitch_predictor_dropout: 0.5 # dropout rate in pitch predictor
pitch_embed_kernel_size: 1 # kernel size of conv embedding layer for pitch
pitch_embed_dropout: 0.0 # dropout rate after conv embedding layer for pitch
stop_gradient_from_pitch_predictor: True # whether to stop the gradient from pitch predictor to encoder
energy_predictor_layers: 2 # number of conv layers in energy predictor
energy_predictor_chans: 256 # number of channels of conv layers in energy predictor
energy_predictor_kernel_size: 3 # kernel size of conv leyers in energy predictor
energy_predictor_dropout: 0.5 # dropout rate in energy predictor
energy_embed_kernel_size: 1 # kernel size of conv embedding layer for energy
energy_embed_dropout: 0.0 # dropout rate after conv embedding layer for energy
stop_gradient_from_energy_predictor: False # whether to stop the gradient from energy predictor to encoder
###########################################################
# UPDATER SETTING #
###########################################################
updater:
use_masking: True # whether to apply masking for padded part in loss calculation
###########################################################
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 1000
num_snapshots: 5
###########################################################
# OTHER SETTING #
###########################################################
seed: 10086

@ -0,0 +1,102 @@
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 24000 # sr
n_fft: 2048 # FFT size (samples).
n_shift: 300 # Hop size (samples). 12.5ms
win_length: 1200 # Window length (samples). 50ms
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
# Only used for feats_type != raw
fmin: 80 # Minimum frequency of Mel basis.
fmax: 7600 # Maximum frequency of Mel basis.
n_mels: 80 # The number of mel basis.
# Only used for the model using pitch features (e.g. FastSpeech2)
f0min: 80 # Minimum f0 for pitch extraction.
f0max: 400 # Maximum f0 for pitch extraction.
###########################################################
# DATA SETTING #
###########################################################
batch_size: 64
num_workers: 4
###########################################################
# MODEL SETTING #
###########################################################
model:
adim: 384 # attention dimension
aheads: 2 # number of attention heads
elayers: 4 # number of encoder layers
eunits: 1536 # number of encoder ff units
dlayers: 4 # number of decoder layers
dunits: 1536 # number of decoder ff units
positionwise_layer_type: conv1d # type of position-wise layer
positionwise_conv_kernel_size: 3 # kernel size of position wise conv layer
duration_predictor_layers: 2 # number of layers of duration predictor
duration_predictor_chans: 256 # number of channels of duration predictor
duration_predictor_kernel_size: 3 # filter size of duration predictor
postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet
use_scaled_pos_enc: True # whether to use scaled positional encoding
encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input
reduction_factor: 1 # reduction factor
init_type: xavier_uniform # initialization type
init_enc_alpha: 1.0 # initial value of alpha of encoder scaled position encoding
init_dec_alpha: 1.0 # initial value of alpha of decoder scaled position encoding
transformer_enc_dropout_rate: 0.2 # dropout rate for transformer encoder layer
transformer_enc_positional_dropout_rate: 0.2 # dropout rate for transformer encoder positional encoding
transformer_enc_attn_dropout_rate: 0.2 # dropout rate for transformer encoder attention layer
transformer_dec_dropout_rate: 0.2 # dropout rate for transformer decoder layer
transformer_dec_positional_dropout_rate: 0.2 # dropout rate for transformer decoder positional encoding
transformer_dec_attn_dropout_rate: 0.2 # dropout rate for transformer decoder attention layer
pitch_predictor_layers: 5 # number of conv layers in pitch predictor
pitch_predictor_chans: 256 # number of channels of conv layers in pitch predictor
pitch_predictor_kernel_size: 5 # kernel size of conv leyers in pitch predictor
pitch_predictor_dropout: 0.5 # dropout rate in pitch predictor
pitch_embed_kernel_size: 1 # kernel size of conv embedding layer for pitch
pitch_embed_dropout: 0.0 # dropout rate after conv embedding layer for pitch
stop_gradient_from_pitch_predictor: True # whether to stop the gradient from pitch predictor to encoder
energy_predictor_layers: 2 # number of conv layers in energy predictor
energy_predictor_chans: 256 # number of channels of conv layers in energy predictor
energy_predictor_kernel_size: 3 # kernel size of conv leyers in energy predictor
energy_predictor_dropout: 0.5 # dropout rate in energy predictor
energy_embed_kernel_size: 1 # kernel size of conv embedding layer for energy
energy_embed_dropout: 0.0 # dropout rate after conv embedding layer for energy
stop_gradient_from_energy_predictor: False # whether to stop the gradient from energy predictor to encoder
###########################################################
# UPDATER SETTING #
###########################################################
updater:
use_masking: True # whether to apply masking for padded part in loss calculation
###########################################################
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 1000
num_snapshots: 5
###########################################################
# OTHER SETTING #
###########################################################
seed: 10086

@ -0,0 +1,76 @@
#!/bin/bash
stage=0
stop_stage=100
config_path=$1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# get durations from MFA's result
# place the mfa result of rhythm here
echo "Generate durations.txt from MFA results ..."
python3 ${MAIN_ROOT}/utils/gen_duration_from_textgrid.py \
--inputdir=./baker_alignment_tone \
--output=durations.txt \
--config=${config_path}
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# extract features
echo "Extract features ..."
python3 ${BIN_DIR}/preprocess.py \
--dataset=baker \
--rootdir=~/datasets/BZNSYP/ \
--dumpdir=dump \
--dur-file=durations.txt \
--config=${config_path} \
--num-cpu=20 \
--cut-sil=True
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# get features' stats(mean and std)
echo "Get features' stats ..."
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="speech"
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="pitch"
python3 ${MAIN_ROOT}/utils/compute_statistics.py \
--metadata=dump/train/raw/metadata.jsonl \
--field-name="energy"
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# normalize and covert phone/speaker to id, dev and test should use train's stats
echo "Normalize ..."
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/train/raw/metadata.jsonl \
--dumpdir=dump/train/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/dev/raw/metadata.jsonl \
--dumpdir=dump/dev/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
python3 ${BIN_DIR}/normalize.py \
--metadata=dump/test/raw/metadata.jsonl \
--dumpdir=dump/test/norm \
--speech-stats=dump/train/speech_stats.npy \
--pitch-stats=dump/train/pitch_stats.npy \
--energy-stats=dump/train/energy_stats.npy \
--phones-dict=dump/phone_id_map.txt \
--speaker-dict=dump/speaker_id_map.txt
fi

File diff suppressed because it is too large Load Diff

@ -0,0 +1,100 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# for more GAN Vocoders
# multi band melgan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=mb_melgan_csmsc \
--voc_config=mb_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=mb_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1000000.pdz\
--voc_stat=mb_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# style melgan
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=style_melgan_csmsc \
--voc_config=style_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=style_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1500000.pdz \
--voc_stat=style_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# hifigan
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "in hifigan syn"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=hifigan_csmsc \
--voc_config=hifigan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=hifigan_csmsc_ckpt_0.1.1/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_csmsc_ckpt_0.1.1/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--test_metadata=dump/test/norm/metadata.jsonl \
--output_dir=${train_output_path}/test \
--phones_dict=dump/phone_id_map.txt
fi

@ -0,0 +1,129 @@
#!/bin/bash
config_path=$1
train_output_path=$2
ckpt_name=$3
stage=0
stop_stage=0
# pwgan
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=pwgan_csmsc \
--voc_config=pwg_baker_ckpt_0.4/pwg_default.yaml \
--voc_ckpt=pwg_baker_ckpt_0.4/pwg_snapshot_iter_400000.pdz \
--voc_stat=pwg_baker_ckpt_0.4/pwg_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--rhy_prediction_model=${MAIN_ROOT}/examples/other/rhy/exp/default/snapshot_iter_2600.pdz \
--rhy_token=${MAIN_ROOT}/examples/other/rhy/data/rhy_token \
--rhy_config=${MAIN_ROOT}/examples/other/rhy/conf/default.yaml
fi
# for more GAN Vocoders
# multi band melgan
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=mb_melgan_csmsc \
--voc_config=mb_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=mb_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1000000.pdz\
--voc_stat=mb_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--rhy_prediction_model=${MAIN_ROOT}/examples/other/rhy/exp/default/snapshot_iter_2600.pdz \
--rhy_token=${MAIN_ROOT}/examples/other/rhy/data/rhy_token \
--rhy_config=${MAIN_ROOT}/examples/other/rhy/conf/default.yaml
fi
# the pretrained models haven't release now
# style melgan
# style melgan's Dygraph to Static Graph is not ready now
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=style_melgan_csmsc \
--voc_config=style_melgan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=style_melgan_csmsc_ckpt_0.1.1/snapshot_iter_1500000.pdz \
--voc_stat=style_melgan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--rhy_prediction_model=${MAIN_ROOT}/examples/other/rhy/exp/default/snapshot_iter_2600.pdz \
--rhy_token=${MAIN_ROOT}/examples/other/rhy/data/rhy_token \
--rhy_config=${MAIN_ROOT}/examples/other/rhy/conf/default.yaml
# --inference_dir=${train_output_path}/inference
fi
# hifigan
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
echo "in hifigan syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=hifigan_csmsc \
--voc_config=hifigan_csmsc_ckpt_0.1.1/default.yaml \
--voc_ckpt=hifigan_csmsc_ckpt_0.1.1/snapshot_iter_2500000.pdz \
--voc_stat=hifigan_csmsc_ckpt_0.1.1/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--rhy_prediction_model=${MAIN_ROOT}/examples/other/rhy/exp/default/snapshot_iter_2600.pdz \
--rhy_token=${MAIN_ROOT}/examples/other/rhy/data/rhy_token \
--rhy_config=${MAIN_ROOT}/examples/other/rhy/conf/default.yaml
fi
# wavernn
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
echo "in wavernn syn_e2e"
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/../synthesize_e2e.py \
--am=fastspeech2_csmsc \
--am_config=${config_path} \
--am_ckpt=${train_output_path}/checkpoints/${ckpt_name} \
--am_stat=dump/train/speech_stats.npy \
--voc=wavernn_csmsc \
--voc_config=wavernn_csmsc_ckpt_0.2.0/default.yaml \
--voc_ckpt=wavernn_csmsc_ckpt_0.2.0/snapshot_iter_400000.pdz \
--voc_stat=wavernn_csmsc_ckpt_0.2.0/feats_stats.npy \
--lang=zh \
--text=${BIN_DIR}/../sentences.txt \
--output_dir=${train_output_path}/test_e2e \
--phones_dict=dump/phone_id_map.txt \
--inference_dir=${train_output_path}/inference \
--rhy_prediction_model=${MAIN_ROOT}/examples/other/rhy/exp/default/snapshot_iter_2600.pdz \
--rhy_token=${MAIN_ROOT}/examples/other/rhy/data/rhy_token \
--rhy_config=${MAIN_ROOT}/examples/other/rhy/conf/default.yaml
fi

@ -0,0 +1,12 @@
#!/bin/bash
config_path=$1
train_output_path=$2
python3 ${BIN_DIR}/train.py \
--train-metadata=dump/train/norm/metadata.jsonl \
--dev-metadata=dump/dev/norm/metadata.jsonl \
--config=${config_path} \
--output-dir=${train_output_path} \
--ngpu=1 \
--phones-dict=dump/phone_id_map.txt

@ -0,0 +1,13 @@
#!/bin/bash
export MAIN_ROOT=`realpath ${PWD}/../../../`
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
export LC_ALL=C
export PYTHONDONTWRITEBYTECODE=1
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
MODEL=fastspeech2
export BIN_DIR=${MAIN_ROOT}/paddlespeech/t2s/exps/${MODEL}

@ -0,0 +1,38 @@
#!/bin/bash
set -e
source path.sh
gpus=0,1
stage=0
stop_stage=100
conf_path=conf/default.yaml
train_output_path=exp/default
ckpt_name=snapshot_iter_153.pdz
# with the following command, you can choose the stage range you want to run
# such as `./run.sh --stage 0 --stop-stage 0`
# this can not be mixed use with `$1`, `$2` ...
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
### please place the mfa result of rhythm here
./local/preprocess.sh ${conf_path} || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `train_output_path/checkpoints/` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${train_output_path} || exit -1
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# synthesize, vocoder is pwgan by default
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# synthesize_e2e, vocoder is pwgan by default
CUDA_VISIBLE_DEVICES=${gpus} ./local/synthesize_e2e.sh ${conf_path} ${train_output_path} ${ckpt_name} || exit -1
fi

@ -163,10 +163,11 @@ def get_test_dataset(test_metadata: List[Dict[str, Any]],
# frontend
def get_frontend(lang: str='zh',
phones_dict: Optional[os.PathLike]=None,
tones_dict: Optional[os.PathLike]=None):
tones_dict: Optional[os.PathLike]=None,
rhy_tuple=None):
if lang == 'zh':
frontend = Frontend(
phone_vocab_path=phones_dict, tone_vocab_path=tones_dict)
phone_vocab_path=phones_dict, tone_vocab_path=tones_dict, rhy_tuple=rhy_tuple)
elif lang == 'en':
frontend = English(phone_vocab_path=phones_dict)
elif lang == 'mix':

@ -45,11 +45,17 @@ def evaluate(args):
sentences = get_sentences(text_file=args.text, lang=args.lang)
if len(args.rhy_prediction_model)>1:
rhy_tuple = (args.rhy_prediction_model, args.rhy_config, args.rhy_token)
else:
rhy_tuple = None
# frontend
frontend = get_frontend(
lang=args.lang,
phones_dict=args.phones_dict,
tones_dict=args.tones_dict)
tones_dict=args.tones_dict,
rhy_tuple=rhy_tuple)
print("frontend done!")
# acoustic model
@ -240,7 +246,10 @@ def parse_args():
type=str,
help="text to synthesize, a 'utt_id sentence' pair per line.")
parser.add_argument("--output_dir", type=str, help="output dir.")
parser.add_argument("--rhy_prediction_model", type=str, help="rhy prediction model path.")
parser.add_argument("--rhy_token", type=str, help="rhy prediction token path.")
parser.add_argument("--rhy_config", type=str, help="rhy prediction config path.")
args = parser.parse_args()
return args

@ -0,0 +1,94 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import re
import paddle
import yaml
from paddlenlp.transformers import ErnieTokenizer
from yacs.config import CfgNode
from paddlespeech.text.models.ernie_linear import ErnieLinear
DefinedClassifier = {
'ErnieLinear': ErnieLinear,
}
class Rhy_predictor():
def __init__(self, model_path, config_path, punc_path):
with open(config_path) as f:
config = CfgNode(yaml.safe_load(f))
self.punc_list = []
with open(punc_path, 'r') as f:
for line in f:
self.punc_list.append(line.strip())
self.punc_list = [0] + self.punc_list
self.make_rhy_dict()
self.model = DefinedClassifier[config["model_type"]](**config["model"])
pretrained_token = config['data_params']['pretrained_token']
self.tokenizer = ErnieTokenizer.from_pretrained(pretrained_token)
state_dict = paddle.load(model_path)
self.model.set_state_dict(state_dict["main_params"])
self.model.eval()
def _clean_text(self, text):
text = text.lower()
text = re.sub('[^A-Za-z0-9\u4e00-\u9fa5]', '', text)
text = re.sub(f'[{"".join([p for p in self.punc_list][1:])}]', '', text)
return text
def preprocess(self, text, tokenizer):
clean_text = self._clean_text(text)
assert len(clean_text) > 0, f'Invalid input string: {text}'
tokenized_input = tokenizer(
list(clean_text), return_length=True, is_split_into_words=True)
_inputs = dict()
_inputs['input_ids'] = tokenized_input['input_ids']
_inputs['seg_ids'] = tokenized_input['token_type_ids']
_inputs['seq_len'] = tokenized_input['seq_len']
return _inputs
def get_prediction(self, raw_text):
_inputs = self.preprocess(raw_text, self.tokenizer)
seq_len = _inputs['seq_len']
input_ids = paddle.to_tensor(_inputs['input_ids']).unsqueeze(0)
seg_ids = paddle.to_tensor(_inputs['seg_ids']).unsqueeze(0)
logits, _ = self.model(input_ids, seg_ids)
preds = paddle.argmax(logits, axis=-1).squeeze(0)
tokens = self.tokenizer.convert_ids_to_tokens(
_inputs['input_ids'][1:seq_len - 1])
labels = preds[1:seq_len - 1].tolist()
assert len(tokens) == len(labels)
# add 0 for non punc
text = ''
for t, l in zip(tokens, labels):
text += t
if l != 0: # Non punc.
text += self.punc_list[l]
return text
def make_rhy_dict(self):
self.rhy_dict = {}
for i, p in enumerate(self.punc_list[1:]):
self.rhy_dict[p] = 'sp'+str(i+1)
def pinyin_align(self, pinyins, rhy_pre):
final_py = []
j=0
for i in range(len(rhy_pre)):
if rhy_pre[i] in self.rhy_dict:
final_py.append(self.rhy_dict[rhy_pre[i]])
else:
final_py.append(pinyins[j])
j+=1
return final_py

@ -33,6 +33,7 @@ from paddlespeech.t2s.frontend.generate_lexicon import generate_lexicon
from paddlespeech.t2s.frontend.tone_sandhi import ToneSandhi
from paddlespeech.t2s.frontend.zh_normalization.text_normlization import TextNormalizer
from paddlespeech.t2s.ssml.xml_processor import MixTextProcessor
from paddlespeech.t2s.frontend.rhy_prediction.rhy_predictor import Rhy_predictor
INITIALS = [
'b', 'p', 'm', 'f', 'd', 't', 'n', 'l', 'g', 'k', 'h', 'zh', 'ch', 'sh',
@ -82,7 +83,8 @@ class Frontend():
def __init__(self,
g2p_model="g2pW",
phone_vocab_path=None,
tone_vocab_path=None):
tone_vocab_path=None,
rhy_tuple=None):
self.mix_ssml_processor = MixTextProcessor()
self.tone_modifier = ToneSandhi()
self.text_normalizer = TextNormalizer()
@ -105,6 +107,9 @@ class Frontend():
'': [['lei5']],
'掺和': [['chan1'], ['huo5']]
}
if rhy_tuple is not None:
self.rhy_predictor = Rhy_predictor(rhy_tuple[0], rhy_tuple[1], rhy_tuple[2])
print("Rhythm predictor loaded.")
# g2p_model can be pypinyin and g2pM and g2pW
self.g2p_model = g2p_model
if self.g2p_model == "g2pM":
@ -195,9 +200,13 @@ class Frontend():
segments = sentences
phones_list = []
for seg in segments:
if self.rhy_predictor is not None:
seg = self.rhy_predictor._clean_text(seg)
phones = []
# Replace all English words in the sentence
seg = re.sub('[a-zA-Z]+', '', seg)
if self.rhy_predictor is not None:
seg = self.rhy_predictor.get_prediction(seg)
seg_cut = psg.lcut(seg)
initials = []
finals = []
@ -205,11 +214,17 @@ class Frontend():
# 为了多音词获得更好的效果,这里采用整句预测
if self.g2p_model == "g2pW":
try:
if self.rhy_predictor is not None:
seg = self.rhy_predictor._clean_text(seg)
pinyins = self.g2pW_model(seg)[0]
except Exception:
# g2pW采用模型采用繁体输入如果有cover不了的简体词采用g2pM预测
print("[%s] not in g2pW dict,use g2pM" % seg)
pinyins = self.g2pM_model(seg, tone=True, char_split=False)
if self.rhy_predictor is not None:
rhy_text = self.rhy_predictor.get_prediction(seg)
final_py = self.rhy_predictor.pinyin_align(pinyins, rhy_text)
pinyins = final_py
pre_word_length = 0
for word, pos in seg_cut:
sub_initials = []
@ -503,6 +518,27 @@ class Frontend():
print(all_phonemes[0])
print("----------------------------")
return [sum(all_phonemes, [])]
def del_same_sp(self, phonemes):
new_phonemes = []
for ph_seq in phonemes:
new_ph_seq = []
de_str = ''
for ph in ph_seq:
if len(new_ph_seq) == 0:
new_ph_seq.append(ph)
else:
if ph == new_ph_seq[-1] and ph.startswith("sp"):
continue
else:
new_ph_seq.append(ph)
new_phonemes.append(new_ph_seq)
return new_phonemes
def add_sp_ifno(self, phonemes):
if not phonemes[-1][-1].startswith('sp'):
phonemes[-1].append('sp4')
return phonemes
def get_input_ids(self,
sentence: str,
@ -519,6 +555,9 @@ class Frontend():
merge_sentences=merge_sentences,
print_info=print_info,
robot=robot)
if self.rhy_predictor is not None:
phonemes = self.del_same_sp(phonemes)
phonemes = self.add_sp_ifno(phonemes)
result = {}
phones = []
tones = []

Loading…
Cancel
Save