|
|
@ -21,6 +21,8 @@ __all__ = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def summary(layer: nn.Layer, print_func=print):
|
|
|
|
def summary(layer: nn.Layer, print_func=print):
|
|
|
|
|
|
|
|
if print_func is None:
|
|
|
|
|
|
|
|
return
|
|
|
|
num_params = num_elements = 0
|
|
|
|
num_params = num_elements = 0
|
|
|
|
for name, param in layer.state_dict().items():
|
|
|
|
for name, param in layer.state_dict().items():
|
|
|
|
if print_func:
|
|
|
|
if print_func:
|
|
|
@ -32,15 +34,6 @@ def summary(layer: nn.Layer, print_func=print):
|
|
|
|
print_func(f"Total parameters: {num_params}, {num_elements} elements.")
|
|
|
|
print_func(f"Total parameters: {num_params}, {num_elements} elements.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gradient_norm(layer: nn.Layer):
|
|
|
|
|
|
|
|
grad_norm_dict = {}
|
|
|
|
|
|
|
|
for name, param in layer.state_dict().items():
|
|
|
|
|
|
|
|
if param.trainable:
|
|
|
|
|
|
|
|
grad = param.gradient() # return numpy.ndarray
|
|
|
|
|
|
|
|
grad_norm_dict[name] = np.linalg.norm(grad) / grad.size
|
|
|
|
|
|
|
|
return grad_norm_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def print_grads(model, print_func=print):
|
|
|
|
def print_grads(model, print_func=print):
|
|
|
|
if print_func is None:
|
|
|
|
if print_func is None:
|
|
|
|
return
|
|
|
|
return
|
|
|
@ -64,6 +57,15 @@ def print_params(model, print_func=print):
|
|
|
|
print_func(f"Total parameters: {num_params}, {total} elements.")
|
|
|
|
print_func(f"Total parameters: {num_params}, {total} elements.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def gradient_norm(layer: nn.Layer):
|
|
|
|
|
|
|
|
grad_norm_dict = {}
|
|
|
|
|
|
|
|
for name, param in layer.state_dict().items():
|
|
|
|
|
|
|
|
if param.trainable:
|
|
|
|
|
|
|
|
grad = param.gradient() # return numpy.ndarray
|
|
|
|
|
|
|
|
grad_norm_dict[name] = np.linalg.norm(grad) / grad.size
|
|
|
|
|
|
|
|
return grad_norm_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def recursively_remove_weight_norm(layer: nn.Layer):
|
|
|
|
def recursively_remove_weight_norm(layer: nn.Layer):
|
|
|
|
for layer in layer.sublayers():
|
|
|
|
for layer in layer.sublayers():
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|