[TTS]add starganv2 vc trainer (#3143)
* add starganv2 vc trainer * fix StarGANv2VCUpdater and losses * fix StarGANv2VCEvaluator * add some typehintpull/3155/head
parent
54ef90fcec
commit
72aa19c32c
@ -0,0 +1,259 @@
|
|||||||
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import argparse
|
||||||
|
import logging
|
||||||
|
import os
|
||||||
|
import shutil
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
import jsonlines
|
||||||
|
import numpy as np
|
||||||
|
import paddle
|
||||||
|
import yaml
|
||||||
|
from paddle import DataParallel
|
||||||
|
from paddle import distributed as dist
|
||||||
|
from paddle.io import DataLoader
|
||||||
|
from paddle.io import DistributedBatchSampler
|
||||||
|
from paddle.optimizer import AdamW
|
||||||
|
from paddle.optimizer.lr import OneCycleLR
|
||||||
|
from yacs.config import CfgNode
|
||||||
|
|
||||||
|
from paddlespeech.t2s.datasets.am_batch_fn import starganv2_vc_batch_fn
|
||||||
|
from paddlespeech.t2s.datasets.data_table import DataTable
|
||||||
|
from paddlespeech.t2s.models.starganv2_vc import ASRCNN
|
||||||
|
from paddlespeech.t2s.models.starganv2_vc import Generator
|
||||||
|
from paddlespeech.t2s.models.starganv2_vc import JDCNet
|
||||||
|
from paddlespeech.t2s.models.starganv2_vc import MappingNetwork
|
||||||
|
from paddlespeech.t2s.models.starganv2_vc import StarGANv2VCEvaluator
|
||||||
|
from paddlespeech.t2s.models.starganv2_vc import StarGANv2VCUpdater
|
||||||
|
from paddlespeech.t2s.models.starganv2_vc import StyleEncoder
|
||||||
|
from paddlespeech.t2s.training.extensions.snapshot import Snapshot
|
||||||
|
from paddlespeech.t2s.training.extensions.visualizer import VisualDL
|
||||||
|
from paddlespeech.t2s.training.seeding import seed_everything
|
||||||
|
from paddlespeech.t2s.training.trainer import Trainer
|
||||||
|
from paddlespeech.utils.env import MODEL_HOME
|
||||||
|
|
||||||
|
|
||||||
|
def train_sp(args, config):
|
||||||
|
# decides device type and whether to run in parallel
|
||||||
|
# setup running environment correctly
|
||||||
|
world_size = paddle.distributed.get_world_size()
|
||||||
|
if (not paddle.is_compiled_with_cuda()) or args.ngpu == 0:
|
||||||
|
paddle.set_device("cpu")
|
||||||
|
else:
|
||||||
|
paddle.set_device("gpu")
|
||||||
|
if world_size > 1:
|
||||||
|
paddle.distributed.init_parallel_env()
|
||||||
|
|
||||||
|
# set the random seed, it is a must for multiprocess training
|
||||||
|
seed_everything(config.seed)
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"rank: {dist.get_rank()}, pid: {os.getpid()}, parent_pid: {os.getppid()}",
|
||||||
|
)
|
||||||
|
# to edit
|
||||||
|
fields = ["speech", "speech_lengths"]
|
||||||
|
converters = {"speech": np.load}
|
||||||
|
|
||||||
|
collate_fn = starganv2_vc_batch_fn
|
||||||
|
|
||||||
|
# dataloader has been too verbose
|
||||||
|
logging.getLogger("DataLoader").disabled = True
|
||||||
|
|
||||||
|
# construct dataset for training and validation
|
||||||
|
with jsonlines.open(args.train_metadata, 'r') as reader:
|
||||||
|
train_metadata = list(reader)
|
||||||
|
train_dataset = DataTable(
|
||||||
|
data=train_metadata,
|
||||||
|
fields=fields,
|
||||||
|
converters=converters, )
|
||||||
|
with jsonlines.open(args.dev_metadata, 'r') as reader:
|
||||||
|
dev_metadata = list(reader)
|
||||||
|
dev_dataset = DataTable(
|
||||||
|
data=dev_metadata,
|
||||||
|
fields=fields,
|
||||||
|
converters=converters, )
|
||||||
|
|
||||||
|
# collate function and dataloader
|
||||||
|
train_sampler = DistributedBatchSampler(
|
||||||
|
train_dataset,
|
||||||
|
batch_size=config.batch_size,
|
||||||
|
shuffle=True,
|
||||||
|
drop_last=True)
|
||||||
|
|
||||||
|
print("samplers done!")
|
||||||
|
|
||||||
|
train_dataloader = DataLoader(
|
||||||
|
train_dataset,
|
||||||
|
batch_sampler=train_sampler,
|
||||||
|
collate_fn=collate_fn,
|
||||||
|
num_workers=config.num_workers)
|
||||||
|
|
||||||
|
dev_dataloader = DataLoader(
|
||||||
|
dev_dataset,
|
||||||
|
shuffle=False,
|
||||||
|
drop_last=False,
|
||||||
|
batch_size=config.batch_size,
|
||||||
|
collate_fn=collate_fn,
|
||||||
|
num_workers=config.num_workers)
|
||||||
|
|
||||||
|
print("dataloaders done!")
|
||||||
|
|
||||||
|
# load model
|
||||||
|
model_version = '1.0'
|
||||||
|
uncompress_path = download_and_decompress(StarGANv2VC_source[model_version],
|
||||||
|
MODEL_HOME)
|
||||||
|
|
||||||
|
generator = Generator(**config['generator_params'])
|
||||||
|
mapping_network = MappingNetwork(**config['mapping_network_params'])
|
||||||
|
style_encoder = StyleEncoder(**config['style_encoder_params'])
|
||||||
|
|
||||||
|
# load pretrained model
|
||||||
|
jdc_model_dir = os.path.join(uncompress_path, 'jdcnet.pdz')
|
||||||
|
asr_model_dir = os.path.join(uncompress_path, 'asr.pdz')
|
||||||
|
|
||||||
|
F0_model = JDCNet(num_class=1, seq_len=192)
|
||||||
|
F0_model.set_state_dict(paddle.load(jdc_model_dir)['main_params'])
|
||||||
|
F0_model.eval()
|
||||||
|
|
||||||
|
asr_model = ASRCNN(**config['asr_params'])
|
||||||
|
asr_model.set_state_dict(paddle.load(asr_model_dir)['main_params'])
|
||||||
|
asr_model.eval()
|
||||||
|
|
||||||
|
if world_size > 1:
|
||||||
|
generator = DataParallel(generator)
|
||||||
|
discriminator = DataParallel(discriminator)
|
||||||
|
print("models done!")
|
||||||
|
|
||||||
|
lr_schedule_g = OneCycleLR(**config["generator_scheduler_params"])
|
||||||
|
optimizer_g = AdamW(
|
||||||
|
learning_rate=lr_schedule_g,
|
||||||
|
parameters=generator.parameters(),
|
||||||
|
**config["generator_optimizer_params"])
|
||||||
|
|
||||||
|
lr_schedule_s = OneCycleLR(**config["style_encoder_scheduler_params"])
|
||||||
|
optimizer_s = AdamW(
|
||||||
|
learning_rate=lr_schedule_s,
|
||||||
|
parameters=style_encoder.parameters(),
|
||||||
|
**config["style_encoder_optimizer_params"])
|
||||||
|
|
||||||
|
lr_schedule_m = OneCycleLR(**config["mapping_network_scheduler_params"])
|
||||||
|
optimizer_m = AdamW(
|
||||||
|
learning_rate=lr_schedule_m,
|
||||||
|
parameters=mapping_network.parameters(),
|
||||||
|
**config["mapping_network_optimizer_params"])
|
||||||
|
|
||||||
|
lr_schedule_d = OneCycleLR(**config["discriminator_scheduler_params"])
|
||||||
|
optimizer_d = AdamW(
|
||||||
|
learning_rate=lr_schedule_d,
|
||||||
|
parameters=discriminator.parameters(),
|
||||||
|
**config["discriminator_optimizer_params"])
|
||||||
|
print("optimizers done!")
|
||||||
|
|
||||||
|
output_dir = Path(args.output_dir)
|
||||||
|
output_dir.mkdir(parents=True, exist_ok=True)
|
||||||
|
if dist.get_rank() == 0:
|
||||||
|
config_name = args.config.split("/")[-1]
|
||||||
|
# copy conf to output_dir
|
||||||
|
shutil.copyfile(args.config, output_dir / config_name)
|
||||||
|
|
||||||
|
updater = StarGANv2VCUpdater(
|
||||||
|
models={
|
||||||
|
"generator": generator,
|
||||||
|
"style_encoder": style_encoder,
|
||||||
|
"mapping_network": mapping_network,
|
||||||
|
"discriminator": discriminator,
|
||||||
|
"F0_model": F0_model,
|
||||||
|
"asr_model": asr_model,
|
||||||
|
},
|
||||||
|
optimizers={
|
||||||
|
"generator": optimizer_g,
|
||||||
|
"style_encoder": optimizer_s,
|
||||||
|
"mapping_network": optimizer_m,
|
||||||
|
"discriminator": optimizer_d,
|
||||||
|
},
|
||||||
|
schedulers={
|
||||||
|
"generator": lr_schedule_g,
|
||||||
|
"style_encoder": lr_schedule_s,
|
||||||
|
"mapping_network": lr_schedule_m,
|
||||||
|
"discriminator": lr_schedule_d,
|
||||||
|
},
|
||||||
|
dataloader=train_dataloader,
|
||||||
|
g_loss_params=config.loss_params.g_loss,
|
||||||
|
d_loss_params=config.loss_params.d_loss,
|
||||||
|
adv_cls_epoch=config.loss_params.adv_cls_epoch,
|
||||||
|
con_reg_epoch=config.loss_params.con_reg_epoch,
|
||||||
|
output_dir=output_dir)
|
||||||
|
|
||||||
|
evaluator = StarGANv2VCEvaluator(
|
||||||
|
models={
|
||||||
|
"generator": generator,
|
||||||
|
"style_encoder": style_encoder,
|
||||||
|
"mapping_network": mapping_network,
|
||||||
|
"discriminator": discriminator,
|
||||||
|
"F0_model": F0_model,
|
||||||
|
"asr_model": asr_model,
|
||||||
|
},
|
||||||
|
dataloader=dev_dataloader,
|
||||||
|
g_loss_params=config.loss_params.g_loss,
|
||||||
|
d_loss_params=config.loss_params.d_loss,
|
||||||
|
adv_cls_epoch=config.loss_params.adv_cls_epoch,
|
||||||
|
con_reg_epoch=config.loss_params.con_reg_epoch,
|
||||||
|
output_dir=output_dir)
|
||||||
|
|
||||||
|
trainer = Trainer(updater, (config.max_epoch, 'epoch'), output_dir)
|
||||||
|
|
||||||
|
if dist.get_rank() == 0:
|
||||||
|
trainer.extend(evaluator, trigger=(1, "epoch"))
|
||||||
|
trainer.extend(VisualDL(output_dir), trigger=(1, "iteration"))
|
||||||
|
trainer.extend(
|
||||||
|
Snapshot(max_size=config.num_snapshots), trigger=(1, 'epoch'))
|
||||||
|
print("Trainer Done!")
|
||||||
|
|
||||||
|
trainer.run()
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# parse args and config and redirect to train_sp
|
||||||
|
|
||||||
|
parser = argparse.ArgumentParser(description="Train a HiFiGAN model.")
|
||||||
|
parser.add_argument("--config", type=str, help="HiFiGAN config file.")
|
||||||
|
parser.add_argument("--train-metadata", type=str, help="training data.")
|
||||||
|
parser.add_argument("--dev-metadata", type=str, help="dev data.")
|
||||||
|
parser.add_argument("--output-dir", type=str, help="output dir.")
|
||||||
|
parser.add_argument(
|
||||||
|
"--ngpu", type=int, default=1, help="if ngpu == 0, use cpu.")
|
||||||
|
|
||||||
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
with open(args.config, 'rt') as f:
|
||||||
|
config = CfgNode(yaml.safe_load(f))
|
||||||
|
|
||||||
|
print("========Args========")
|
||||||
|
print(yaml.safe_dump(vars(args)))
|
||||||
|
print("========Config========")
|
||||||
|
print(config)
|
||||||
|
print(
|
||||||
|
f"master see the word size: {dist.get_world_size()}, from pid: {os.getpid()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
# dispatch
|
||||||
|
if args.ngpu > 1:
|
||||||
|
dist.spawn(train_sp, (args, config), nprocs=args.ngpu)
|
||||||
|
else:
|
||||||
|
train_sp(args, config)
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1,143 @@
|
|||||||
|
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import random
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import paddle
|
||||||
|
import paddle.nn.functional as F
|
||||||
|
from paddle import nn
|
||||||
|
|
||||||
|
|
||||||
|
## 1. RandomTimeStrech
|
||||||
|
class TimeStrech(nn.Layer):
|
||||||
|
def __init__(self, scale):
|
||||||
|
super().__init__()
|
||||||
|
self.scale = scale
|
||||||
|
|
||||||
|
def forward(self, x: paddle.Tensor):
|
||||||
|
mel_size = x.shape[-1]
|
||||||
|
|
||||||
|
x = F.interpolate(
|
||||||
|
x,
|
||||||
|
scale_factor=(1, self.scale),
|
||||||
|
align_corners=False,
|
||||||
|
mode='bilinear').squeeze()
|
||||||
|
|
||||||
|
if x.shape[-1] < mel_size:
|
||||||
|
noise_length = (mel_size - x.shape[-1])
|
||||||
|
random_pos = random.randint(0, x.shape[-1]) - noise_length
|
||||||
|
if random_pos < 0:
|
||||||
|
random_pos = 0
|
||||||
|
noise = x[..., random_pos:random_pos + noise_length]
|
||||||
|
x = paddle.concat([x, noise], axis=-1)
|
||||||
|
else:
|
||||||
|
x = x[..., :mel_size]
|
||||||
|
|
||||||
|
return x.unsqueeze(1)
|
||||||
|
|
||||||
|
|
||||||
|
## 2. PitchShift
|
||||||
|
class PitchShift(nn.Layer):
|
||||||
|
def __init__(self, shift):
|
||||||
|
super().__init__()
|
||||||
|
self.shift = shift
|
||||||
|
|
||||||
|
def forward(self, x: paddle.Tensor):
|
||||||
|
if len(x.shape) == 2:
|
||||||
|
x = x.unsqueeze(0)
|
||||||
|
x = x.squeeze()
|
||||||
|
mel_size = x.shape[1]
|
||||||
|
shift_scale = (mel_size + self.shift) / mel_size
|
||||||
|
x = F.interpolate(
|
||||||
|
x.unsqueeze(1),
|
||||||
|
scale_factor=(shift_scale, 1.),
|
||||||
|
align_corners=False,
|
||||||
|
mode='bilinear').squeeze(1)
|
||||||
|
|
||||||
|
x = x[:, :mel_size]
|
||||||
|
if x.shape[1] < mel_size:
|
||||||
|
pad_size = mel_size - x.shape[1]
|
||||||
|
x = paddle.cat(
|
||||||
|
[x, paddle.zeros(x.shape[0], pad_size, x.shape[2])], axis=1)
|
||||||
|
x = x.squeeze()
|
||||||
|
return x.unsqueeze(1)
|
||||||
|
|
||||||
|
|
||||||
|
## 3. ShiftBias
|
||||||
|
class ShiftBias(nn.Layer):
|
||||||
|
def __init__(self, bias):
|
||||||
|
super().__init__()
|
||||||
|
self.bias = bias
|
||||||
|
|
||||||
|
def forward(self, x: paddle.Tensor):
|
||||||
|
return x + self.bias
|
||||||
|
|
||||||
|
|
||||||
|
## 4. Scaling
|
||||||
|
class SpectScaling(nn.Layer):
|
||||||
|
def __init__(self, scale):
|
||||||
|
super().__init__()
|
||||||
|
self.scale = scale
|
||||||
|
|
||||||
|
def forward(self, x: paddle.Tensor):
|
||||||
|
return x * self.scale
|
||||||
|
|
||||||
|
|
||||||
|
## 5. Time Flip
|
||||||
|
class TimeFlip(nn.Layer):
|
||||||
|
def __init__(self, length):
|
||||||
|
super().__init__()
|
||||||
|
self.length = round(length)
|
||||||
|
|
||||||
|
def forward(self, x: paddle.Tensor):
|
||||||
|
if self.length > 1:
|
||||||
|
start = np.random.randint(0, x.shape[-1] - self.length)
|
||||||
|
x_ret = x.clone()
|
||||||
|
x_ret[..., start:start + self.length] = paddle.flip(
|
||||||
|
x[..., start:start + self.length], axis=[-1])
|
||||||
|
x = x_ret
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
class PhaseShuffle2D(nn.Layer):
|
||||||
|
def __init__(self, n: int=2):
|
||||||
|
super().__init__()
|
||||||
|
self.n = n
|
||||||
|
self.random = random.Random(1)
|
||||||
|
|
||||||
|
def forward(self, x: paddle.Tensor, move=None):
|
||||||
|
# x.size = (B, C, M, L)
|
||||||
|
if move is None:
|
||||||
|
move = self.random.randint(-self.n, self.n)
|
||||||
|
|
||||||
|
if move == 0:
|
||||||
|
return x
|
||||||
|
else:
|
||||||
|
left = x[:, :, :, :move]
|
||||||
|
right = x[:, :, :, move:]
|
||||||
|
shuffled = paddle.concat([right, left], axis=3)
|
||||||
|
|
||||||
|
return shuffled
|
||||||
|
|
||||||
|
|
||||||
|
def build_transforms():
|
||||||
|
transforms = [
|
||||||
|
lambda M: TimeStrech(1 + (np.random.random() - 0.5) * M * 0.2),
|
||||||
|
lambda M: SpectScaling(1 + (np.random.random() - 1) * M * 0.1),
|
||||||
|
lambda M: PhaseShuffle2D(192),
|
||||||
|
]
|
||||||
|
N, M = len(transforms), np.random.random()
|
||||||
|
composed = nn.Sequential(
|
||||||
|
* [trans(M) for trans in np.random.choice(transforms, N)])
|
||||||
|
return composed
|
Loading…
Reference in new issue