parent
dd96a65892
commit
716bf6f1dd
@ -1 +1,3 @@
|
||||
* s0 is for deepspeech
|
||||
# ASR
|
||||
* s0 is for deepspeech2
|
||||
* s1 is for U2
|
||||
|
@ -0,0 +1,3 @@
|
||||
data
|
||||
exp
|
||||
log
|
@ -1,90 +1,115 @@
|
||||
# https://yaml.org/type/float.html
|
||||
data:
|
||||
train_manifest: data/manifest.tiny
|
||||
dev_manifest: data/manifest.tiny
|
||||
test_manifest: data/manifest.tiny
|
||||
vocab_filepath: data/vocab.txt
|
||||
unit_type: 'spm'
|
||||
spm_model_prefix: 'data/bpe_unigram_200'
|
||||
mean_std_filepath: ""
|
||||
augmentation_config: conf/augmentation.json
|
||||
batch_size: 4
|
||||
min_input_len: 0.5
|
||||
max_input_len: 20.0
|
||||
min_output_len: 0.0
|
||||
max_output_len: 400.0
|
||||
min_output_input_ratio: 0.05
|
||||
max_output_input_ratio: 10.0
|
||||
raw_wav: True # use raw_wav or kaldi feature
|
||||
specgram_type: fbank #linear, mfcc, fbank
|
||||
feat_dim: 80
|
||||
delta_delta: False
|
||||
dither: 1.0
|
||||
target_sample_rate: 16000
|
||||
max_freq: None
|
||||
n_fft: None
|
||||
stride_ms: 10.0
|
||||
window_ms: 25.0
|
||||
use_dB_normalization: True
|
||||
target_dB: -20
|
||||
random_seed: 0
|
||||
keep_transcription_text: False
|
||||
sortagrad: True
|
||||
shuffle_method: batch_shuffle
|
||||
num_workers: 2
|
||||
|
||||
|
||||
# network architecture
|
||||
# encoder related
|
||||
encoder: conformer
|
||||
encoder_conf:
|
||||
output_size: 256 # dimension of attention
|
||||
attention_heads: 4
|
||||
linear_units: 2048 # the number of units of position-wise feed forward
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||
normalize_before: true
|
||||
cnn_module_kernel: 15
|
||||
use_cnn_module: True
|
||||
activation_type: 'swish'
|
||||
pos_enc_layer_type: 'rel_pos'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
causal: true
|
||||
use_dynamic_chunk: true
|
||||
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
|
||||
use_dynamic_left_chunk: false
|
||||
model:
|
||||
cmvn_file: "data/mean_std.json"
|
||||
cmvn_file_type: "json"
|
||||
# encoder related
|
||||
encoder: conformer
|
||||
encoder_conf:
|
||||
output_size: 256 # dimension of attention
|
||||
attention_heads: 4
|
||||
linear_units: 2048 # the number of units of position-wise feed forward
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||
normalize_before: True
|
||||
use_cnn_module: True
|
||||
cnn_module_kernel: 15
|
||||
activation_type: 'swish'
|
||||
pos_enc_layer_type: 'rel_pos'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
causal: True
|
||||
use_dynamic_chunk: True
|
||||
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
|
||||
use_dynamic_left_chunk: false
|
||||
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
|
||||
|
||||
# use raw_wav or kaldi feature
|
||||
raw_wav: true
|
||||
training:
|
||||
n_epoch: 20
|
||||
accum_grad: 1
|
||||
global_grad_clip: 5.0
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.001
|
||||
weight_decay: 1e-06
|
||||
scheduler: warmuplr # pytorch v1.1.0+ required
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
lr_decay: 1.0
|
||||
log_interval: 1
|
||||
|
||||
# feature extraction
|
||||
collate_conf:
|
||||
# waveform level config
|
||||
wav_distortion_conf:
|
||||
wav_dither: 1.0
|
||||
wav_distortion_rate: 0.0
|
||||
distortion_methods: []
|
||||
speed_perturb: true
|
||||
feature_extraction_conf:
|
||||
feature_type: 'fbank'
|
||||
mel_bins: 80
|
||||
frame_shift: 10
|
||||
frame_length: 25
|
||||
using_pitch: false
|
||||
# spec level config
|
||||
# spec_swap: false
|
||||
feature_dither: 0.0 # add dither [-feature_dither,feature_dither] on fbank feature
|
||||
spec_aug: true
|
||||
spec_aug_conf:
|
||||
warp_for_time: False
|
||||
num_t_mask: 2
|
||||
num_f_mask: 2
|
||||
max_t: 50
|
||||
max_f: 10
|
||||
max_w: 80
|
||||
|
||||
# dataset related
|
||||
dataset_conf:
|
||||
max_length: 40960
|
||||
min_length: 0
|
||||
batch_type: 'static' # static or dynamic
|
||||
# the size of batch_size should be set according to your gpu memory size, here we used 2080ti gpu whose memory size is 11GB
|
||||
batch_size: 16
|
||||
sort: true
|
||||
decoding:
|
||||
batch_size: 64
|
||||
error_rate_type: wer
|
||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||
alpha: 2.5
|
||||
beta: 0.3
|
||||
beam_size: 10
|
||||
cutoff_prob: 1.0
|
||||
cutoff_top_n: 0
|
||||
num_proc_bsearch: 8
|
||||
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
|
||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||
# <0: for decoding, use full chunk.
|
||||
# >0: for decoding, use fixed chunk size as set.
|
||||
# 0: used for training, it's prohibited here.
|
||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
||||
|
||||
grad_clip: 5
|
||||
accum_grad: 1
|
||||
max_epoch: 180
|
||||
log_interval: 100
|
||||
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.001
|
||||
scheduler: warmuplr # pytorch v1.1.0+ required
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
@ -1,83 +1,108 @@
|
||||
# https://yaml.org/type/float.html
|
||||
data:
|
||||
train_manifest: data/manifest.tiny
|
||||
dev_manifest: data/manifest.tiny
|
||||
test_manifest: data/manifest.tiny
|
||||
vocab_filepath: data/vocab.txt
|
||||
unit_type: 'spm'
|
||||
spm_model_prefix: 'data/bpe_unigram_200'
|
||||
mean_std_filepath: ""
|
||||
augmentation_config: conf/augmentation.json
|
||||
batch_size: 4
|
||||
min_input_len: 0.5 # second
|
||||
max_input_len: 20.0 # second
|
||||
min_output_len: 0.0 # tokens
|
||||
max_output_len: 400.0 # tokens
|
||||
min_output_input_ratio: 0.05
|
||||
max_output_input_ratio: 10.0
|
||||
raw_wav: True # use raw_wav or kaldi feature
|
||||
specgram_type: fbank #linear, mfcc, fbank
|
||||
feat_dim: 80
|
||||
delta_delta: False
|
||||
dither: 1.0
|
||||
target_sample_rate: 16000
|
||||
max_freq: None
|
||||
n_fft: None
|
||||
stride_ms: 10.0
|
||||
window_ms: 25.0
|
||||
use_dB_normalization: True
|
||||
target_dB: -20
|
||||
random_seed: 0
|
||||
keep_transcription_text: False
|
||||
sortagrad: True
|
||||
shuffle_method: batch_shuffle
|
||||
num_workers: 2
|
||||
|
||||
|
||||
# network architecture
|
||||
# encoder related
|
||||
encoder: transformer
|
||||
encoder_conf:
|
||||
output_size: 256 # dimension of attention
|
||||
attention_heads: 4
|
||||
linear_units: 2048 # the number of units of position-wise feed forward
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: conv2d # encoder architecture type
|
||||
normalize_before: true
|
||||
use_dynamic_chunk: true
|
||||
use_dynamic_left_chunk: false
|
||||
model:
|
||||
cmvn_file: "data/mean_std.json"
|
||||
cmvn_file_type: "json"
|
||||
# encoder related
|
||||
encoder: transformer
|
||||
encoder_conf:
|
||||
output_size: 256 # dimension of attention
|
||||
attention_heads: 4
|
||||
linear_units: 2048 # the number of units of position-wise feed forward
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||
normalize_before: true
|
||||
use_dynamic_chunk: true
|
||||
use_dynamic_left_chunk: false
|
||||
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
|
||||
# use raw_wav or kaldi feature
|
||||
raw_wav: true
|
||||
|
||||
# feature extraction
|
||||
collate_conf:
|
||||
# waveform level config
|
||||
wav_distortion_conf:
|
||||
wav_dither: 0.0
|
||||
wav_distortion_rate: 0.0
|
||||
distortion_methods: []
|
||||
speed_perturb: false
|
||||
feature_extraction_conf:
|
||||
feature_type: 'fbank'
|
||||
mel_bins: 80
|
||||
frame_shift: 10
|
||||
frame_length: 25
|
||||
using_pitch: false
|
||||
# spec level config
|
||||
# spec_swap: false
|
||||
feature_dither: 0.0 # add dither [-feature_dither,feature_dither] on fbank feature
|
||||
spec_aug: true
|
||||
spec_aug_conf:
|
||||
warp_for_time: False
|
||||
num_t_mask: 2
|
||||
num_f_mask: 2
|
||||
max_t: 50
|
||||
max_f: 10
|
||||
max_w: 80
|
||||
training:
|
||||
n_epoch: 20
|
||||
accum_grad: 1
|
||||
global_grad_clip: 5.0
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.002
|
||||
weight_decay: 1e-06
|
||||
scheduler: warmuplr # pytorch v1.1.0+ required
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
lr_decay: 1.0
|
||||
log_interval: 1
|
||||
|
||||
|
||||
# dataset related
|
||||
dataset_conf:
|
||||
max_length: 40960
|
||||
min_length: 0
|
||||
batch_type: 'static' # static or dynamic
|
||||
# the size of batch_size should be set according to your gpu memory size, here we used 2080ti gpu whose memory size is 11GB
|
||||
batch_size: 16
|
||||
sort: true
|
||||
decoding:
|
||||
batch_size: 64
|
||||
error_rate_type: wer
|
||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||
alpha: 2.5
|
||||
beta: 0.3
|
||||
beam_size: 10
|
||||
cutoff_prob: 1.0
|
||||
cutoff_top_n: 0
|
||||
num_proc_bsearch: 8
|
||||
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
|
||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||
# <0: for decoding, use full chunk.
|
||||
# >0: for decoding, use fixed chunk size as set.
|
||||
# 0: used for training, it's prohibited here.
|
||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
||||
|
||||
grad_clip: 5
|
||||
accum_grad: 1
|
||||
max_epoch: 180
|
||||
log_interval: 100
|
||||
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.002
|
||||
scheduler: warmuplr # pytorch v1.1.0+ required
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
@ -1,80 +1,106 @@
|
||||
# https://yaml.org/type/float.html
|
||||
data:
|
||||
train_manifest: data/manifest.tiny
|
||||
dev_manifest: data/manifest.tiny
|
||||
test_manifest: data/manifest.tiny
|
||||
vocab_filepath: data/vocab.txt
|
||||
unit_type: 'spm'
|
||||
spm_model_prefix: 'data/bpe_unigram_200'
|
||||
mean_std_filepath: ""
|
||||
augmentation_config: conf/augmentation.json
|
||||
batch_size: 4
|
||||
min_input_len: 0.5 # second
|
||||
max_input_len: 20.0 # second
|
||||
min_output_len: 0.0 # tokens
|
||||
max_output_len: 400.0 # tokens
|
||||
min_output_input_ratio: 0.05
|
||||
max_output_input_ratio: 10.0
|
||||
raw_wav: True # use raw_wav or kaldi feature
|
||||
specgram_type: fbank #linear, mfcc, fbank
|
||||
feat_dim: 80
|
||||
delta_delta: False
|
||||
dither: 1.0
|
||||
target_sample_rate: 16000
|
||||
max_freq: None
|
||||
n_fft: None
|
||||
stride_ms: 10.0
|
||||
window_ms: 25.0
|
||||
use_dB_normalization: True
|
||||
target_dB: -20
|
||||
random_seed: 0
|
||||
keep_transcription_text: False
|
||||
sortagrad: True
|
||||
shuffle_method: batch_shuffle
|
||||
num_workers: 2
|
||||
|
||||
|
||||
# network architecture
|
||||
# encoder related
|
||||
encoder: transformer
|
||||
encoder_conf:
|
||||
output_size: 256 # dimension of attention
|
||||
attention_heads: 4
|
||||
linear_units: 2048 # the number of units of position-wise feed forward
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: conv2d # encoder architecture type
|
||||
normalize_before: true
|
||||
model:
|
||||
cmvn_file: "data/mean_std.json"
|
||||
cmvn_file_type: "json"
|
||||
# encoder related
|
||||
encoder: transformer
|
||||
encoder_conf:
|
||||
output_size: 256 # dimension of attention
|
||||
attention_heads: 4
|
||||
linear_units: 2048 # the number of units of position-wise feed forward
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||
normalize_before: true
|
||||
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
|
||||
# use raw_wav or kaldi feature
|
||||
raw_wav: true
|
||||
|
||||
# feature extraction
|
||||
collate_conf:
|
||||
# waveform level config
|
||||
wav_distortion_conf:
|
||||
wav_dither: 0.1
|
||||
wav_distortion_rate: 0.0
|
||||
distortion_methods: []
|
||||
speed_perturb: true
|
||||
feature_extraction_conf:
|
||||
feature_type: 'fbank'
|
||||
mel_bins: 80
|
||||
frame_shift: 10
|
||||
frame_length: 25
|
||||
using_pitch: false
|
||||
# spec level config
|
||||
feature_dither: 0.0 # add dither [-feature_dither,feature_dither] on fbank feature
|
||||
spec_aug: true
|
||||
spec_aug_conf:
|
||||
warp_for_time: False
|
||||
num_t_mask: 2
|
||||
num_f_mask: 2
|
||||
max_t: 50
|
||||
max_f: 10
|
||||
max_w: 80
|
||||
training:
|
||||
n_epoch: 20
|
||||
accum_grad: 1
|
||||
global_grad_clip: 5.0
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.002
|
||||
weight_decay: 1e-06
|
||||
scheduler: warmuplr # pytorch v1.1.0+ required
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
lr_decay: 1.0
|
||||
log_interval: 1
|
||||
|
||||
|
||||
# dataset related
|
||||
dataset_conf:
|
||||
max_length: 40960
|
||||
min_length: 0
|
||||
batch_type: 'static' # static or dynamic
|
||||
# the size of batch_size should be set according to your gpu memory size, here we used 2080ti gpu whose memory size is 11GB
|
||||
batch_size: 26
|
||||
sort: true
|
||||
decoding:
|
||||
batch_size: 64
|
||||
error_rate_type: wer
|
||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||
alpha: 2.5
|
||||
beta: 0.3
|
||||
beam_size: 10
|
||||
cutoff_prob: 1.0
|
||||
cutoff_top_n: 0
|
||||
num_proc_bsearch: 8
|
||||
ctc_weight: 0.0 # ctc weight for attention rescoring decode mode.
|
||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||
# <0: for decoding, use full chunk.
|
||||
# >0: for decoding, use fixed chunk size as set.
|
||||
# 0: used for training, it's prohibited here.
|
||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
||||
|
||||
grad_clip: 5
|
||||
accum_grad: 1
|
||||
max_epoch: 240
|
||||
log_interval: 100
|
||||
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.002
|
||||
scheduler: warmuplr # pytorch v1.1.0+ required
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
@ -0,0 +1,23 @@
|
||||
#! /usr/bin/env bash
|
||||
|
||||
if [ $# != 2 ];then
|
||||
echo "usage: ${0} ckpt_dir avg_num"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
ckpt_dir=${1}
|
||||
average_num=${2}
|
||||
decode_checkpoint=${ckpt_dir}/avg_${average_num}.pdparams
|
||||
|
||||
python3 -u ${MAIN_ROOT}/utils/avg_model.py \
|
||||
--dst_model ${decode_checkpoint} \
|
||||
--ckpt_dir ${ckpt_dir} \
|
||||
--num ${average_num} \
|
||||
--val_best
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed in avg ckpt!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
exit 0
|
@ -1,18 +1,31 @@
|
||||
#! /usr/bin/env bash
|
||||
|
||||
if [ $# != 2 ];then
|
||||
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
echo "using $ngpu gpus..."
|
||||
|
||||
config_path=$1
|
||||
ckpt_name=$2
|
||||
device=gpu
|
||||
if [ ngpu != 0 ];then
|
||||
device=cpu
|
||||
fi
|
||||
|
||||
mkdir -p exp
|
||||
|
||||
python3 -u ${BIN_DIR}/train.py \
|
||||
--device 'gpu' \
|
||||
--device ${device} \
|
||||
--nproc ${ngpu} \
|
||||
--config conf/conformer.yaml \
|
||||
--output ckpt-${1}
|
||||
--config ${config_path} \
|
||||
--output exp/${ckpt_name}
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed in training!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
|
||||
exit 0
|
||||
|
Loading…
Reference in new issue