parent
3e780dfe1f
commit
70a8a75476
@ -0,0 +1,77 @@
|
||||
# Speech Translation
|
||||
|
||||
## Introduction
|
||||
Speech translation is the process by which conversational spoken phrases are instantly translated and spoken aloud in a second language.
|
||||
|
||||
This demo is an implementation to recognize text from a specific audio file and translate to target language. It can be done by a single command or a few lines in python using `PaddleSpeech`.
|
||||
|
||||
## Usage
|
||||
### 1. Installation
|
||||
```bash
|
||||
pip install paddlespeech
|
||||
```
|
||||
|
||||
### 2. Prepare Input File
|
||||
Input of this demo should be a WAV file(`.wav`).
|
||||
|
||||
Here are sample files for this demo that can be downloaded:
|
||||
```bash
|
||||
wget https://paddlespeech.bj.bcebos.com/PaddleAudio/zh.wav https://paddlespeech.bj.bcebos.com/PaddleAudio/en.wav
|
||||
```
|
||||
|
||||
### 3. Usage
|
||||
- Command Line(Recommended)
|
||||
```bash
|
||||
paddlespeech st --input ~/en.wav
|
||||
```
|
||||
Usage:
|
||||
```bash
|
||||
paddlespeech st --help
|
||||
```
|
||||
Arguments:
|
||||
- `input`(required): Audio file to recognize and translate.
|
||||
- `model`: Model type of st task. Default: `fat_st_ted`.
|
||||
- `src_lang`: Source language. Default: `en`.
|
||||
- `tgt_lang`: Target language. Default: `zh`.
|
||||
- `sample_rate`: Sample rate of the model. Default: `16000`.
|
||||
- `config`: Config of st task. Use pretrained model when it is None. Default: `None`.
|
||||
- `ckpt_path`: Model checkpoint. Use pretrained model when it is None. Default: `None`.
|
||||
- `device`: Choose device to execute model inference. Default: default device of paddlepaddle in current environment.
|
||||
|
||||
Output:
|
||||
```bash
|
||||
[2021-12-09 11:13:03,178] [ INFO] [utils.py] [L225] - ST Result: ['我 在 这栋 建筑 的 古老 门上 敲门 。']
|
||||
```
|
||||
|
||||
- Python API
|
||||
```python
|
||||
import paddle
|
||||
from paddlespeech.cli import STExecutor
|
||||
|
||||
st_executor = STExecutor()
|
||||
text = st_executor(
|
||||
model='fat_st_ted',
|
||||
src_lang='en',
|
||||
tgt_lang='zh',
|
||||
sample_rate=16000,
|
||||
config=None, # Set `config` and `ckpt_path` to None to use pretrained model.
|
||||
ckpt_path=None,
|
||||
audio_file='./en.wav',
|
||||
device=paddle.get_device())
|
||||
print('ST Result: \n{}'.format(text))
|
||||
```
|
||||
|
||||
Output:
|
||||
```bash
|
||||
ST Result:
|
||||
['我 在 这栋 建筑 的 古老 门上 敲门 。']
|
||||
```
|
||||
|
||||
|
||||
### 4.Pretrained Models
|
||||
|
||||
Here is a list of pretrained models released by PaddleSpeech that can be used by command and python api:
|
||||
|
||||
| Model | Source Language | Target Language
|
||||
| :--- | :---: | :---: |
|
||||
| fat_st_ted| en| zh
|
Loading…
Reference in new issue