parent
a840f85423
commit
6bc445f235
@ -0,0 +1,86 @@
|
||||
"""Wrapper for various CTC decoders in SWIG."""
|
||||
from __future__ import absolute_import
|
||||
from __future__ import division
|
||||
from __future__ import print_function
|
||||
|
||||
import swig_ctc_decoders
|
||||
import multiprocessing
|
||||
|
||||
|
||||
def ctc_best_path_decoder(probs_seq, vocabulary):
|
||||
"""Wrapper for ctc best path decoder in swig.
|
||||
|
||||
:param probs_seq: 2-D list of probability distributions over each time
|
||||
step, with each element being a list of normalized
|
||||
probabilities over vocabulary and blank.
|
||||
:type probs_seq: 2-D list
|
||||
:param vocabulary: Vocabulary list.
|
||||
:type vocabulary: list
|
||||
:return: Decoding result string.
|
||||
:rtype: basestring
|
||||
"""
|
||||
return swig_ctc_decoders.ctc_best_path_decoder(probs_seq.tolist(),
|
||||
vocabulary)
|
||||
|
||||
|
||||
def ctc_beam_search_decoder(
|
||||
probs_seq,
|
||||
beam_size,
|
||||
vocabulary,
|
||||
blank_id,
|
||||
cutoff_prob=1.0,
|
||||
ext_scoring_func=None, ):
|
||||
"""Wrapper for CTC Beam Search Decoder.
|
||||
|
||||
:param probs_seq: 2-D list of probability distributions over each time
|
||||
step, with each element being a list of normalized
|
||||
probabilities over vocabulary and blank.
|
||||
:type probs_seq: 2-D list
|
||||
:param beam_size: Width for beam search.
|
||||
:type beam_size: int
|
||||
:param vocabulary: Vocabulary list.
|
||||
:type vocabulary: list
|
||||
:param blank_id: ID of blank.
|
||||
:type blank_id: int
|
||||
:param cutoff_prob: Cutoff probability in pruning,
|
||||
default 1.0, no pruning.
|
||||
:type cutoff_prob: float
|
||||
:param ext_scoring_func: External scoring function for
|
||||
partially decoded sentence, e.g. word count
|
||||
or language model.
|
||||
:type external_scoring_func: callable
|
||||
:return: List of tuples of log probability and sentence as decoding
|
||||
results, in descending order of the probability.
|
||||
:rtype: list
|
||||
"""
|
||||
return swig_ctc_decoders.ctc_beam_search_decoder(
|
||||
probs_seq.tolist(), beam_size, vocabulary, blank_id, cutoff_prob,
|
||||
ext_scoring_func)
|
||||
|
||||
|
||||
def ctc_beam_search_decoder_batch(probs_split,
|
||||
beam_size,
|
||||
vocabulary,
|
||||
blank_id,
|
||||
num_processes,
|
||||
cutoff_prob=1.0,
|
||||
ext_scoring_func=None):
|
||||
"""Wrapper for CTC beam search decoder in batch
|
||||
"""
|
||||
|
||||
# TODO: to resolve PicklingError
|
||||
|
||||
if not num_processes > 0:
|
||||
raise ValueError("Number of processes must be positive!")
|
||||
|
||||
pool = multiprocessing.Pool(processes=num_processes)
|
||||
results = []
|
||||
for i, probs_list in enumerate(probs_split):
|
||||
args = (probs_list, beam_size, vocabulary, blank_id, cutoff_prob,
|
||||
ext_scoring_func)
|
||||
results.append(pool.apply_async(ctc_beam_search_decoder, args))
|
||||
|
||||
pool.close()
|
||||
pool.join()
|
||||
beam_search_results = [result.get() for result in results]
|
||||
return beam_search_results
|
Loading…
Reference in new issue