data process for ted-en-zh st1

pull/1050/head
Junkun 4 years ago
parent 383b68d8f4
commit 6a50211c80

@ -2,16 +2,18 @@
set -e set -e
stage=-1 stage=1
stop_stage=100 stop_stage=100
dict_dir=data/lang_char dict_dir=data/lang_char
# bpemode (unigram or bpe) # bpemode (unigram or bpe)
nbpe=8000 nbpe=8000
bpemode=unigram bpemode=bpe
bpeprefix="${dict_dir}/bpe_${bpemode}_${nbpe}" bpeprefix="${dict_dir}/bpe_${bpemode}_${nbpe}"
data_dir=./TED_EnZh data_dir=./TED_EnZh
target_dir=data/ted_en_zh
dumpdir=data/dump
do_delta=false
source ${MAIN_ROOT}/utils/parse_options.sh source ${MAIN_ROOT}/utils/parse_options.sh
@ -38,75 +40,163 @@ if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
exit 1 exit 1
fi fi
# generate manifests # # extract data
python3 ${TARGET_DIR}/ted_en_zh/ted_en_zh.py \ # echo "data Extraction"
--manifest_prefix="data/manifest" \ # python3 local/ted_en_zh.py \
--src_dir="${data_dir}" # --tgt-dir=${target_dir} \
# --src-dir=${data_dir}
echo "Complete raw data pre-process."
fi fi
prep_dir=${target_dir}/data_prep
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# compute mean and stddev for normalizer ### Task dependent. You have to make data the following preparation part by yourself.
num_workers=$(nproc) ### But you can utilize Kaldi recipes in most cases
python3 ${MAIN_ROOT}/utils/compute_mean_std.py \ echo "stage 0: Data preparation"
--manifest_path="data/manifest.train.raw" \ for set in train dev test; do
--num_samples=-1 \ # for set in train; do
--spectrum_type="fbank" \ dst=${target_dir}/${set}
--feat_dim=80 \ for lang in en zh; do
--delta_delta=false \
--sample_rate=16000 \ if [ ${lang} = 'en' ]; then
--stride_ms=10.0 \ echo "remove punctuation $lang"
--window_ms=25.0 \ # remove punctuation
--use_dB_normalization=False \ local/remove_punctuation.pl < ${dst}/${lang}.org > ${dst}/${lang}.raw
--num_workers=${num_workers} \ else
--output_path="data/mean_std.json" cp ${dst}/${lang}.org ${dst}/${lang}.raw
if [ $? -ne 0 ]; then
echo "Compute mean and stddev failed. Terminated."
exit 1
fi fi
paste -d " " ${dst}/.yaml ${dst}/${lang}.raw | sort > ${dst}/text.${lang}
done
# error check
n=$(cat ${dst}/.yaml | wc -l)
n_en=$(cat ${dst}/en.raw | wc -l)
n_tgt=$(cat ${dst}/zh.raw | wc -l)
[ ${n} -ne ${n_en} ] && echo "Warning: expected ${n} data data files, found ${n_en}" && exit 1;
[ ${n} -ne ${n_tgt} ] && echo "Warning: expected ${n} data data files, found ${n_tgt}" && exit 1;
echo "done text processing"
cat ${dst}/wav.scp.org | uniq | sort -k1,1 -u > ${dst}/wav.scp
cat ${dst}/utt2spk.org | uniq | sort -k1,1 -u > ${dst}/utt2spk
cat ${dst}/utt2spk | utils/utt2spk_to_spk2utt.pl | sort -k1,1 -u > ${dst}/spk2utt
rm -rf ${prep_dir}/${set}.en-zh
mkdir -p ${prep_dir}/${set}.en-zh
echo "remove duplicate lines..."
cut -d ' ' -f 1 ${dst}/text.en | sort | uniq -c | sort -n -k1 -r | grep -v '1 ted-en-zh' \
| sed 's/^[ \t]*//' > ${dst}/duplicate_lines
cut -d ' ' -f 1 ${dst}/text.en | sort | uniq -c | sort -n -k1 -r | grep '1 ted-en-zh' \
| cut -d '1' -f 2- | sed 's/^[ \t]*//' > ${dst}/reclist
reduce_data_dir.sh ${dst} ${dst}/reclist ${prep_dir}/${set}.en-zh
echo "done wav processing"
for l in en zh; do
cp ${dst}/text.${l} ${prep_dir}/${set}.en-zh/text.${l}
done
utils/fix_data_dir.sh --utt_extra_files \
"text.en text.zh" \
${prep_dir}/${set}.en-zh
done
fi fi
feat_tr_dir=${dumpdir}/train/delta${do_delta}; mkdir -p ${feat_tr_dir}
feat_dt_dir=${dumpdir}/dev/delta${do_delta}; mkdir -p ${feat_dt_dir}
feat_trans_dir=${dumpdir}/test/delta${do_delta}; mkdir -p ${feat_trans_dir}
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# build vocabulary ### Task dependent. You have to design training and dev sets by yourself.
python3 ${MAIN_ROOT}/utils/build_vocab.py \ ### But you can utilize Kaldi recipes in most cases
--unit_type "spm" \ echo "stage 1: Feature Generation"
--spm_vocab_size=${nbpe} \ fbankdir=data/fbank
--spm_mode ${bpemode} \ # Generate the fbank features; by default 80-dimensional fbanks with pitch on each frame
--spm_model_prefix ${bpeprefix} \ for x in train dev test; do
--vocab_path="${dict_dir}/vocab.txt" \ steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 32 --write_utt2num_frames true \
--text_keys 'text' 'text1' \ ${prep_dir}/${x}.en-zh data/make_fbank/${x} ${fbankdir}
--manifest_paths="data/manifest.train.raw" done
echo "speed perturbation"
if [ $? -ne 0 ]; then utils/perturb_data_dir_speed.sh 0.9 ${prep_dir}/train.en-zh ${prep_dir}/temp1.en-zh
echo "Build vocabulary failed. Terminated." utils/perturb_data_dir_speed.sh 1.0 ${prep_dir}/train.en-zh ${prep_dir}/temp2.en-zh
exit 1 utils/perturb_data_dir_speed.sh 1.1 ${prep_dir}/train.en-zh ${prep_dir}/temp3.en-zh
fi
utils/combine_data.sh --extra-files utt2uniq ${prep_dir}/train_sp.en-zh \
${prep_dir}/temp1.en-zh ${prep_dir}/temp2.en-zh ${prep_dir}/temp3.en-zh
rm -r ${prep_dir}/temp*.en-zh
utils/fix_data_dir.sh ${prep_dir}/train_sp.en-zh
steps/make_fbank_pitch.sh --cmd "$train_cmd" --nj 32 --write_utt2num_frames true \
${prep_dir}/train_sp.en-zh exp/make_fbank/train_sp.en-zh ${fbankdir}
for lang in en zh; do
cat /dev/null > ${prep_dir}/train_sp.en-zh/text.${lang}
for p in "sp0.9-" "sp1.0-" "sp1.1-"; do
awk -v p=${p} '{printf("%s %s%s\n", $1, p, $1);}' ${prep_dir}/train.en-zh/utt2spk > ${prep_dir}/train_sp.en-zh/utt_map
utils/apply_map.pl -f 1 ${prep_dir}/train_sp.en-zh/utt_map < ${prep_dir}/train.en-zh/text.${lang} >>${prep_dir}/train_sp.en-zh/text.${lang}
done
done
for x in train_sp dev test; do
local/divide_lang.sh ${prep_dir}/${x}.en-zh zh
done
for x in train_sp dev; do
# remove utt having more than 3000 frames
# remove utt having more than 400 characters
for lang in zh en; do
remove_longshortdata.sh --maxframes 3000 --maxchars 400 ${prep_dir}/${x}.en-zh.${lang} ${prep_dir}/${x}.en-zh.${lang}.tmp
done
cut -f 1 -d " " ${prep_dir}/${x}.en-zh.en.tmp/text > ${prep_dir}/${x}.en-zh.${lang}.tmp/reclist1
cut -f 1 -d " " ${prep_dir}/${x}.en-zh.${lang}.tmp/text > ${prep_dir}/${x}.en-zh.${lang}.tmp/reclist2
comm -12 ${prep_dir}/${x}.en-zh.${lang}.tmp/reclist1 ${prep_dir}/${x}.en-zh.${lang}.tmp/reclist2 > ${prep_dir}/${x}.en-zh.en.tmp/reclist
for lang in zh en; do
reduce_data_dir.sh ${prep_dir}/${x}.en-zh.${lang}.tmp ${prep_dir}/${x}.en-zh.en.tmp/reclist ${prep_dir}/${x}.en-zh.${lang}
utils/fix_data_dir.sh ${prep_dir}/${x}.en-zh.${lang}
done
rm -rf ${prep_dir}/${x}.en-zh.*.tmp
done
compute-cmvn-stats scp:${prep_dir}/train_sp.en-zh/feats.scp ${prep_dir}/train_sp.en-zh/cmvn.ark
dump.sh --cmd "$train_cmd" --nj 80 --do_delta $do_delta \
${prep_dir}/train_sp.en-zh/feats.scp ${prep_dir}/train_sp.en-zh/cmvn.ark ${prep_dir}/dump_feats/train_sp.en-zh ${feat_tr_dir}
dump.sh --cmd "$train_cmd" --nj 32 --do_delta $do_delta \
${prep_dir}/dev.en-zh/feats.scp ${prep_dir}/train_sp.en-zh/cmvn.ark ${prep_dir}/dump_feats/dev.en-zh ${feat_dt_dir}
dump.sh --cmd "$train_cmd" --nj 32 --do_delta $do_delta \
${prep_dir}/test.en-zh/feats.scp ${prep_dir}/train_sp.en-zh/cmvn.ark ${prep_dir}/dump_feats/test.en-zh ${feat_trans_dir}
fi fi
dict=${dict_dir}/ted_en_zh_${bpemode}${nbpe}_joint.txt
nlsyms=${dict_dir}/ted_en_zh_non_lang_syms.txt
bpemodel=${dict_dir}/ted_en_zh_${bpemode}${nbpe}
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# format manifest with tokenids, vocab size echo "stage 2: Dictionary and Json Data Preparation"
for set in train dev test; do # echo "make a non-linguistic symbol list for all languages"
{ # grep sp1.0 ${prep_dir}/train_sp.en-zh.*/text | cut -f 2- -d' ' | grep -o -P '&[^;];'| sort | uniq > ${nlsyms}
python3 ${MAIN_ROOT}/utils/format_triplet_data.py \ # cat ${nlsyms}
--feat_type "raw" \
--cmvn_path "data/mean_std.json" \ echo "make a joint source and target dictionary"
--unit_type "spm" \ echo "<unk> 1" > ${dict} # <unk> must be 1, 0 will be used for "blank" in CTC
--spm_model_prefix ${bpeprefix} \ offset=$(wc -l < ${dict})
--vocab_path="${dict_dir}/vocab.txt" \ grep sp1.0 ${prep_dir}/train_sp.en-zh.*/text | cut -f 2- -d' ' | grep -v -e '^\s*$' > ${dict_dir}/input.txt
--manifest_path="data/manifest.${set}.raw" \ spm_train --input=${dict_dir}/input.txt --vocab_size=${nbpe} --model_type=${bpemode} --model_prefix=${bpemodel} --input_sentence_size=100000000 --character_coverage=1.0
--output_path="data/manifest.${set}" spm_encode --model=${bpemodel}.model --output_format=piece < ${dict_dir}/input.txt | tr ' ' '\n' | sort | uniq | awk -v offset=${offset} '{print $0 " " NR+offset}' >> ${dict}
wc -l ${dict}
if [ $? -ne 0 ]; then
echo "Formt mnaifest failed. Terminated." echo "make json files"
exit 1 data2json.sh --nj 16 --feat ${feat_tr_dir}/feats.scp --text ${prep_dir}/train_sp.en-zh.zh/text --bpecode ${bpemodel}.model --lang zh \
fi ${prep_dir}/train_sp.en-zh.zh ${dict} > ${feat_tr_dir}/data_${bpemode}${nbpe}.json
}& data2json.sh --feat ${feat_dt_dir}/feats.scp --text ${prep_dir}/dev.en-zh.zh/text --bpecode ${bpemodel}.model --lang zh \
${prep_dir}/dev.en-zh.zh ${dict} > ${feat_dt_dir}/data_${bpemode}${nbpe}.json
data2json.sh --feat ${feat_dt_dir}/feats.scp --text ${prep_dir}/test.en-zh.zh/text --bpecode ${bpemodel}.model --lang zh \
${prep_dir}/test.en-zh.zh ${dict} > ${feat_trans_dir}/data_${bpemode}${nbpe}.json
echo "update json (add source references)"
# update json (add source references)
for x in ${train_set} ${train_dev}; do
feat_dir=${dumpdir}/${x}/delta${do_delta}
data_dir=data/$(echo ${x} | cut -f 1 -d ".").en-zh.en
update_json.sh --text ${data_dir}/text.${src_case} --bpecode ${bpemodel}.model \
${feat_dir}/data_${bpemode}${nbpe}.json ${data_dir} ${dict}
done done
wait
fi fi
echo "Ted En-Zh Data preparation done." echo "Ted En-Zh Data preparation done."
exit 0 exit 0

@ -1,6 +1,6 @@
export MAIN_ROOT=`realpath ${PWD}/../../../` export MAIN_ROOT=`realpath ${PWD}/../../../`
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH} export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PWD}/utils:${PATH}
export LC_ALL=C export LC_ALL=C
export PYTHONDONTWRITEBYTECODE=1 export PYTHONDONTWRITEBYTECODE=1
@ -13,3 +13,11 @@ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib/
MODEL=u2_st MODEL=u2_st
export BIN_DIR=${MAIN_ROOT}/paddlespeech/s2t/exps/${MODEL}/bin export BIN_DIR=${MAIN_ROOT}/paddlespeech/s2t/exps/${MODEL}/bin
# Kaldi
export KALDI_ROOT=${MAIN_ROOT}/tools/kaldi
[ -f $KALDI_ROOT/tools/env.sh ] && . $KALDI_ROOT/tools/env.sh
export PATH=$PWD/utils/:$KALDI_ROOT/tools/openfst/bin:$PWD:$PATH
[ ! -f $KALDI_ROOT/tools/config/common_path.sh ] && echo >&2 "The standard file $KALDI_ROOT/tools/config/common_path.sh is not present, can not using Kaldi!"
[ -f $KALDI_ROOT/tools/config/common_path.sh ] && . $KALDI_ROOT/tools/config/common_path.sh
export train_cmd="run.pl"
Loading…
Cancel
Save