parent
3a8869fba4
commit
67709155e9
@ -0,0 +1,99 @@
|
|||||||
|
############################################
|
||||||
|
# Network Architecture #
|
||||||
|
############################################
|
||||||
|
cmvn_file:
|
||||||
|
cmvn_file_type: "json"
|
||||||
|
# encoder related
|
||||||
|
encoder: conformer
|
||||||
|
encoder_conf:
|
||||||
|
output_size: 512 # dimension of attention
|
||||||
|
attention_heads: 8
|
||||||
|
linear_units: 2048 # the number of units of position-wise feed forward
|
||||||
|
num_blocks: 12 # the number of encoder blocks
|
||||||
|
dropout_rate: 0.1
|
||||||
|
positional_dropout_rate: 0.1
|
||||||
|
attention_dropout_rate: 0.0
|
||||||
|
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||||
|
normalize_before: True
|
||||||
|
use_cnn_module: True
|
||||||
|
cnn_module_kernel: 15
|
||||||
|
activation_type: swish
|
||||||
|
pos_enc_layer_type: rel_pos
|
||||||
|
selfattention_layer_type: rel_selfattn
|
||||||
|
causal: true
|
||||||
|
use_dynamic_chunk: true
|
||||||
|
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
|
||||||
|
use_dynamic_left_chunk: false
|
||||||
|
# decoder related
|
||||||
|
decoder: transformer
|
||||||
|
decoder_conf:
|
||||||
|
attention_heads: 8
|
||||||
|
linear_units: 2048
|
||||||
|
num_blocks: 6
|
||||||
|
dropout_rate: 0.1
|
||||||
|
positional_dropout_rate: 0.1
|
||||||
|
self_attention_dropout_rate: 0.0
|
||||||
|
src_attention_dropout_rate: 0.0
|
||||||
|
|
||||||
|
# hybrid CTC/attention
|
||||||
|
model_conf:
|
||||||
|
ctc_weight: 0.3
|
||||||
|
lsm_weight: 0.1 # label smoothing option
|
||||||
|
length_normalized_loss: false
|
||||||
|
init_type: 'kaiming_uniform'
|
||||||
|
|
||||||
|
# https://yaml.org/type/float.html
|
||||||
|
###########################################
|
||||||
|
# Data #
|
||||||
|
###########################################
|
||||||
|
train_manifest: data/train_l/data.list
|
||||||
|
dev_manifest: data/dev/data.list
|
||||||
|
test_manifest: data/test_meeting/data.list
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Dataloader #
|
||||||
|
###########################################
|
||||||
|
vocab_filepath: data/lang_char/vocab.txt
|
||||||
|
unit_type: 'char'
|
||||||
|
preprocess_config: conf/preprocess.yaml
|
||||||
|
spm_model_prefix: ''
|
||||||
|
feat_dim: 80
|
||||||
|
stride_ms: 10.0
|
||||||
|
window_ms: 25.0
|
||||||
|
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
||||||
|
batch_size: 32
|
||||||
|
do_filter: True
|
||||||
|
maxlen_in: 1200 # if do_filter == False && input length > maxlen-in, batchsize is automatically reduced
|
||||||
|
maxlen_out: 100 # if do_filter == False && output length > maxlen-out, batchsize is automatically reduced
|
||||||
|
minlen_in: 10
|
||||||
|
minlen_out: 0
|
||||||
|
minibatches: 0 # for debug
|
||||||
|
batch_count: auto
|
||||||
|
batch_bins: 0
|
||||||
|
batch_frames_in: 0
|
||||||
|
batch_frames_out: 0
|
||||||
|
batch_frames_inout: 0
|
||||||
|
num_workers: 0
|
||||||
|
subsampling_factor: 1
|
||||||
|
num_encs: 1
|
||||||
|
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Training #
|
||||||
|
###########################################
|
||||||
|
n_epoch: 26
|
||||||
|
accum_grad: 32
|
||||||
|
global_grad_clip: 5.0
|
||||||
|
dist_sampler: True
|
||||||
|
log_interval: 1
|
||||||
|
checkpoint:
|
||||||
|
kbest_n: 50
|
||||||
|
latest_n: 5
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.001
|
||||||
|
weight_decay: 1.0e-6
|
||||||
|
scheduler: warmuplr
|
||||||
|
scheduler_conf:
|
||||||
|
warmup_steps: 5000
|
||||||
|
lr_decay: 1.0
|
@ -0,0 +1,11 @@
|
|||||||
|
beam_size: 10
|
||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: cer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: 16 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: True # simulate streaming inference. Defaults to False.
|
Loading…
Reference in new issue