adding pre-commit

pull/735/head
huangyuxin 3 years ago
parent 7b201ba457
commit 66c59cdeae

@ -15,25 +15,23 @@
from typing import Optional from typing import Optional
import paddle import paddle
from paddle import nn
import paddle.nn.functional as F import paddle.nn.functional as F
from paddle import nn
from paddle.fluid.layers import fc
from paddle.nn import GRU
from paddle.nn import LayerList
from paddle.nn import LayerNorm
from paddle.nn import Linear
from paddle.nn import LSTM
from yacs.config import CfgNode from yacs.config import CfgNode
from deepspeech.models.ds2_online.conv import ConvStack from deepspeech.models.ds2_online.conv import ConvStack
from deepspeech.modules.ctc import CTCDecoder
from deepspeech.models.ds2_online.rnn import RNNStack from deepspeech.models.ds2_online.rnn import RNNStack
from deepspeech.modules.ctc import CTCDecoder
from deepspeech.utils import layer_tools from deepspeech.utils import layer_tools
from deepspeech.utils.checkpoint import Checkpoint from deepspeech.utils.checkpoint import Checkpoint
from deepspeech.utils.log import Log from deepspeech.utils.log import Log
from paddle.nn import LSTM, GRU, Linear
from paddle.nn import LayerNorm
from paddle.nn import LayerList
from paddle.fluid.layers import fc
logger = Log(__name__).getlog() logger = Log(__name__).getlog()
__all__ = ['DeepSpeech2ModelOnline', 'DeepSpeech2InferModeOnline'] __all__ = ['DeepSpeech2ModelOnline', 'DeepSpeech2InferModeOnline']
@ -68,20 +66,39 @@ class CRNNEncoder(nn.Layer):
layernorm_size = rnn_size layernorm_size = rnn_size
if use_gru == True: if use_gru == True:
self.rnn.append(GRU(input_size=i_size, hidden_size=rnn_size, num_layers=1, direction = rnn_direction)) self.rnn.append(
GRU(input_size=i_size,
hidden_size=rnn_size,
num_layers=1,
direction=rnn_direction))
self.layernorm_list.append(LayerNorm(layernorm_size)) self.layernorm_list.append(LayerNorm(layernorm_size))
for i in range(1, num_rnn_layers): for i in range(1, num_rnn_layers):
self.rnn.append(GRU(input_size=layernorm_size, hidden_size=rnn_size, num_layers=1, direction = rnn_direction)) self.rnn.append(
GRU(input_size=layernorm_size,
hidden_size=rnn_size,
num_layers=1,
direction=rnn_direction))
self.layernorm_list.append(LayerNorm(layernorm_size)) self.layernorm_list.append(LayerNorm(layernorm_size))
else: else:
self.rnn.append(LSTM(input_size=i_size, hidden_size=rnn_size, num_layers=1, direction = rnn_direction)) self.rnn.append(
LSTM(
input_size=i_size,
hidden_size=rnn_size,
num_layers=1,
direction=rnn_direction))
self.layernorm_list.append(LayerNorm(layernorm_size)) self.layernorm_list.append(LayerNorm(layernorm_size))
for i in range(1, num_rnn_layers): for i in range(1, num_rnn_layers):
self.rnn.append(LSTM(input_size=layernorm_size, hidden_size=rnn_size, num_layers=1, direction = rnn_direction)) self.rnn.append(
LSTM(
input_size=layernorm_size,
hidden_size=rnn_size,
num_layers=1,
direction=rnn_direction))
self.layernorm_list.append(LayerNorm(layernorm_size)) self.layernorm_list.append(LayerNorm(layernorm_size))
fc_input_size = layernorm_size fc_input_size = layernorm_size
for i in range(self.num_fc_layers): for i in range(self.num_fc_layers):
self.fc_layers_list.append(nn.Linear(fc_input_size, fc_layers_size_list[i])) self.fc_layers_list.append(
nn.Linear(fc_input_size, fc_layers_size_list[i]))
fc_input_size = fc_layers_size_list[i] fc_input_size = fc_layers_size_list[i]
@property @property
@ -119,7 +136,7 @@ class CRNNEncoder(nn.Layer):
x, output_state = self.rnn[0](x, None, x_lens) x, output_state = self.rnn[0](x, None, x_lens)
x = self.layernorm_list[0](x) x = self.layernorm_list[0](x)
for i in range(1, self.num_rnn_layers): for i in range(1, self.num_rnn_layers):
x, output_state = self.rnn[i](x, output_state, x_lens) #[B, T, D] x, output_state = self.rnn[i](x, output_state, x_lens) #[B, T, D]
x = self.layernorm_list[i](x) x = self.layernorm_list[i](x)
for i in range(self.num_fc_layers): for i in range(self.num_fc_layers):
@ -166,7 +183,7 @@ class DeepSpeech2ModelOnline(nn.Layer):
num_rnn_layers=4, #Number of stacking RNN layers. num_rnn_layers=4, #Number of stacking RNN layers.
rnn_layer_size=1024, #RNN layer size (number of RNN cells). rnn_layer_size=1024, #RNN layer size (number of RNN cells).
num_fc_layers=2, num_fc_layers=2,
fc_layers_size_list = [512,256], fc_layers_size_list=[512, 256],
use_gru=True, #Use gru if set True. Use simple rnn if set False. use_gru=True, #Use gru if set True. Use simple rnn if set False.
share_rnn_weights=True #Whether to share input-hidden weights between forward and backward directional RNNs.Notice that for GRU, weight sharing is not supported. share_rnn_weights=True #Whether to share input-hidden weights between forward and backward directional RNNs.Notice that for GRU, weight sharing is not supported.
)) ))

Loading…
Cancel
Save