|
|
|
@ -12,6 +12,7 @@
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import argparse
|
|
|
|
|
import io
|
|
|
|
|
import os
|
|
|
|
|
import sys
|
|
|
|
|
from typing import List
|
|
|
|
@ -19,10 +20,11 @@ from typing import Optional
|
|
|
|
|
from typing import Union
|
|
|
|
|
|
|
|
|
|
import librosa
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle
|
|
|
|
|
import soundfile
|
|
|
|
|
import yaml
|
|
|
|
|
from yacs.config import CfgNode
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
from ..executor import BaseExecutor
|
|
|
|
|
from ..utils import cli_register
|
|
|
|
@ -46,6 +48,16 @@ pretrained_models = {
|
|
|
|
|
'conf/conformer.yaml',
|
|
|
|
|
'ckpt_path':
|
|
|
|
|
'exp/conformer/checkpoints/wenetspeech',
|
|
|
|
|
},
|
|
|
|
|
"transformer_zh_16k": {
|
|
|
|
|
'url':
|
|
|
|
|
'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr1/transformer.model.tar.gz',
|
|
|
|
|
'md5':
|
|
|
|
|
'4e8b63800c71040b9390b150e2a5d4c4',
|
|
|
|
|
'cfg_path':
|
|
|
|
|
'conf/transformer.yaml',
|
|
|
|
|
'ckpt_path':
|
|
|
|
|
'exp/transformer/checkpoints/avg_20',
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
@ -121,8 +133,7 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
lang: str='zh',
|
|
|
|
|
sample_rate: int=16000,
|
|
|
|
|
cfg_path: Optional[os.PathLike]=None,
|
|
|
|
|
ckpt_path: Optional[os.PathLike]=None
|
|
|
|
|
):
|
|
|
|
|
ckpt_path: Optional[os.PathLike]=None):
|
|
|
|
|
"""
|
|
|
|
|
Init model and other resources from a specific path.
|
|
|
|
|
"""
|
|
|
|
@ -130,10 +141,11 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
sample_rate_str = '16k' if sample_rate == 16000 else '8k'
|
|
|
|
|
tag = model_type + '_' + lang + '_' + sample_rate_str
|
|
|
|
|
res_path = self._get_pretrained_path(tag) # wenetspeech_zh
|
|
|
|
|
self.res_path = res_path
|
|
|
|
|
self.cfg_path = os.path.join(res_path,
|
|
|
|
|
pretrained_models[tag]['cfg_path'])
|
|
|
|
|
self.ckpt_path = os.path.join(res_path,
|
|
|
|
|
pretrained_models[tag]['ckpt_path'] + ".pdparams")
|
|
|
|
|
self.ckpt_path = os.path.join(
|
|
|
|
|
res_path, pretrained_models[tag]['ckpt_path'] + ".pdparams")
|
|
|
|
|
logger.info(res_path)
|
|
|
|
|
logger.info(self.cfg_path)
|
|
|
|
|
logger.info(self.ckpt_path)
|
|
|
|
@ -147,10 +159,8 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
self.config = CfgNode(new_allowed=True)
|
|
|
|
|
self.config.merge_from_file(self.cfg_path)
|
|
|
|
|
self.config.decoding.decoding_method = "attention_rescoring"
|
|
|
|
|
model_conf = self.config.model
|
|
|
|
|
logger.info(model_conf)
|
|
|
|
|
|
|
|
|
|
with UpdateConfig(model_conf):
|
|
|
|
|
with UpdateConfig(self.config):
|
|
|
|
|
if model_type == "ds2_online" or model_type == "ds2_offline":
|
|
|
|
|
from paddlespeech.s2t.io.collator import SpeechCollator
|
|
|
|
|
self.config.collator.vocab_filepath = os.path.join(
|
|
|
|
@ -162,24 +172,29 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
unit_type=self.config.collator.unit_type,
|
|
|
|
|
vocab_filepath=self.config.collator.vocab_filepath,
|
|
|
|
|
spm_model_prefix=self.config.collator.spm_model_prefix)
|
|
|
|
|
model_conf.input_dim = self.collate_fn_test.feature_size
|
|
|
|
|
model_conf.output_dim = text_feature.vocab_size
|
|
|
|
|
self.config.model.input_dim = self.collate_fn_test.feature_size
|
|
|
|
|
self.config.model.output_dim = text_feature.vocab_size
|
|
|
|
|
elif model_type == "conformer" or model_type == "transformer" or model_type == "wenetspeech":
|
|
|
|
|
self.config.collator.vocab_filepath = os.path.join(
|
|
|
|
|
res_path, self.config.collator.vocab_filepath)
|
|
|
|
|
self.config.collator.augmentation_config = os.path.join(
|
|
|
|
|
res_path, self.config.collator.augmentation_config)
|
|
|
|
|
self.config.collator.spm_model_prefix = os.path.join(
|
|
|
|
|
res_path, self.config.collator.spm_model_prefix)
|
|
|
|
|
text_feature = TextFeaturizer(
|
|
|
|
|
unit_type=self.config.collator.unit_type,
|
|
|
|
|
vocab_filepath=self.config.collator.vocab_filepath,
|
|
|
|
|
spm_model_prefix=self.config.collator.spm_model_prefix)
|
|
|
|
|
model_conf.input_dim = self.config.collator.feat_dim
|
|
|
|
|
model_conf.output_dim = text_feature.vocab_size
|
|
|
|
|
self.config.model.input_dim = self.config.collator.feat_dim
|
|
|
|
|
self.config.model.output_dim = text_feature.vocab_size
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
raise Exception("wrong type")
|
|
|
|
|
self.config.freeze()
|
|
|
|
|
# Enter the path of model root
|
|
|
|
|
os.chdir(res_path)
|
|
|
|
|
|
|
|
|
|
model_class = dynamic_import(model_type, model_alias)
|
|
|
|
|
model_conf = self.config.model
|
|
|
|
|
logger.info(model_conf)
|
|
|
|
|
model = model_class.from_config(model_conf)
|
|
|
|
|
self.model = model
|
|
|
|
|
self.model.eval()
|
|
|
|
@ -212,10 +227,17 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
|
|
|
|
|
elif model_type == "conformer" or model_type == "transformer" or model_type == "wenetspeech":
|
|
|
|
|
logger.info("get the preprocess conf")
|
|
|
|
|
preprocess_conf = os.path.join(
|
|
|
|
|
os.path.dirname(os.path.abspath(self.cfg_path)),
|
|
|
|
|
"preprocess.yaml")
|
|
|
|
|
|
|
|
|
|
preprocess_conf_file = self.config.collator.augmentation_config
|
|
|
|
|
# redirect the cmvn path
|
|
|
|
|
with io.open(preprocess_conf_file, encoding="utf-8") as f:
|
|
|
|
|
preprocess_conf = yaml.safe_load(f)
|
|
|
|
|
for idx, process in enumerate(preprocess_conf["process"]):
|
|
|
|
|
if process['type'] == "cmvn_json":
|
|
|
|
|
preprocess_conf["process"][idx][
|
|
|
|
|
"cmvn_path"] = os.path.join(
|
|
|
|
|
self.res_path,
|
|
|
|
|
preprocess_conf["process"][idx]["cmvn_path"])
|
|
|
|
|
break
|
|
|
|
|
logger.info(preprocess_conf)
|
|
|
|
|
preprocess_args = {"train": False}
|
|
|
|
|
preprocessing = Transformation(preprocess_conf)
|
|
|
|
@ -310,14 +332,14 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
return self._outputs["result"]
|
|
|
|
|
|
|
|
|
|
def _pcm16to32(self, audio):
|
|
|
|
|
assert(audio.dtype == np.int16)
|
|
|
|
|
assert (audio.dtype == np.int16)
|
|
|
|
|
audio = audio.astype("float32")
|
|
|
|
|
bits = np.iinfo(np.int16).bits
|
|
|
|
|
audio = audio / (2**(bits - 1))
|
|
|
|
|
return audio
|
|
|
|
|
|
|
|
|
|
def _pcm32to16(self, audio):
|
|
|
|
|
assert(audio.dtype == np.float32)
|
|
|
|
|
assert (audio.dtype == np.float32)
|
|
|
|
|
bits = np.iinfo(np.int16).bits
|
|
|
|
|
audio = audio * (2**(bits - 1))
|
|
|
|
|
audio = np.round(audio).astype("int16")
|
|
|
|
@ -326,9 +348,7 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
def _check(self, audio_file: str, sample_rate: int):
|
|
|
|
|
self.sample_rate = sample_rate
|
|
|
|
|
if self.sample_rate != 16000 and self.sample_rate != 8000:
|
|
|
|
|
logger.error(
|
|
|
|
|
"please input --sr 8000 or --sr 16000"
|
|
|
|
|
)
|
|
|
|
|
logger.error("please input --sr 8000 or --sr 16000")
|
|
|
|
|
raise Exception("invalid sample rate")
|
|
|
|
|
sys.exit(-1)
|
|
|
|
|
|
|
|
|
@ -354,13 +374,11 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
sys.exit(-1)
|
|
|
|
|
logger.info("The sample rate is %d" % audio_sample_rate)
|
|
|
|
|
if audio_sample_rate != self.sample_rate:
|
|
|
|
|
logger.warning(
|
|
|
|
|
"The sample rate of the input file is not {}.\n \
|
|
|
|
|
logger.warning("The sample rate of the input file is not {}.\n \
|
|
|
|
|
The program will resample the wav file to {}.\n \
|
|
|
|
|
If the result does not meet your expectations,\n \
|
|
|
|
|
Please input the 16k 16 bit 1 channel wav file. \
|
|
|
|
|
"
|
|
|
|
|
.format(self.sample_rate, self.sample_rate))
|
|
|
|
|
".format(self.sample_rate, self.sample_rate))
|
|
|
|
|
while (True):
|
|
|
|
|
logger.info(
|
|
|
|
|
"Whether to change the sample rate and the channel. Y: change the sample. N: exit the prgream."
|
|
|
|
@ -398,16 +416,16 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
device = parser_args.device
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
res = self(model, lang, sample_rate, config, ckpt_path,
|
|
|
|
|
audio_file, device)
|
|
|
|
|
res = self(model, lang, sample_rate, config, ckpt_path, audio_file,
|
|
|
|
|
device)
|
|
|
|
|
logger.info('ASR Result: {}'.format(res))
|
|
|
|
|
return True
|
|
|
|
|
except Exception as e:
|
|
|
|
|
print(e)
|
|
|
|
|
return False
|
|
|
|
|
|
|
|
|
|
def __call__(self, model, lang, sample_rate, config, ckpt_path,
|
|
|
|
|
audio_file, device):
|
|
|
|
|
def __call__(self, model, lang, sample_rate, config, ckpt_path, audio_file,
|
|
|
|
|
device):
|
|
|
|
|
"""
|
|
|
|
|
Python API to call an executor.
|
|
|
|
|
"""
|
|
|
|
|