parent
7d133368e5
commit
64cf538e17
@ -0,0 +1,80 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import numpy as np
|
||||
|
||||
from deepspeech.io.utility import pad_list
|
||||
from deepspeech.utils.log import Log
|
||||
|
||||
__all__ = ["CustomConverter"]
|
||||
|
||||
logger = Log(__name__).getlog()
|
||||
|
||||
|
||||
class CustomConverter():
|
||||
"""Custom batch converter.
|
||||
|
||||
Args:
|
||||
subsampling_factor (int): The subsampling factor.
|
||||
dtype (np.dtype): Data type to convert.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, subsampling_factor=1, dtype=np.float32):
|
||||
"""Construct a CustomConverter object."""
|
||||
self.subsampling_factor = subsampling_factor
|
||||
self.ignore_id = -1
|
||||
self.dtype = dtype
|
||||
|
||||
def __call__(self, batch):
|
||||
"""Transform a batch and send it to a device.
|
||||
|
||||
Args:
|
||||
batch (list): The batch to transform.
|
||||
|
||||
Returns:
|
||||
tuple(paddle.Tensor, paddle.Tensor, paddle.Tensor)
|
||||
|
||||
"""
|
||||
# batch should be located in list
|
||||
assert len(batch) == 1
|
||||
(xs, ys), utts = batch[0]
|
||||
|
||||
# perform subsampling
|
||||
if self.subsampling_factor > 1:
|
||||
xs = [x[::self.subsampling_factor, :] for x in xs]
|
||||
|
||||
# get batch of lengths of input sequences
|
||||
ilens = np.array([x.shape[0] for x in xs])
|
||||
|
||||
# perform padding and convert to tensor
|
||||
# currently only support real number
|
||||
if xs[0].dtype.kind == "c":
|
||||
xs_pad_real = pad_list([x.real for x in xs], 0).astype(self.dtype)
|
||||
xs_pad_imag = pad_list([x.imag for x in xs], 0).astype(self.dtype)
|
||||
# Note(kamo):
|
||||
# {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
|
||||
# Don't create ComplexTensor and give it E2E here
|
||||
# because torch.nn.DataParellel can't handle it.
|
||||
xs_pad = {"real": xs_pad_real, "imag": xs_pad_imag}
|
||||
else:
|
||||
xs_pad = pad_list(xs, 0).astype(self.dtype)
|
||||
|
||||
# NOTE: this is for multi-output (e.g., speech translation)
|
||||
ys_pad = pad_list(
|
||||
[np.array(y[0][:]) if isinstance(y, tuple) else y for y in ys],
|
||||
self.ignore_id)
|
||||
|
||||
olens = np.array(
|
||||
[y[0].shape[0] if isinstance(y, tuple) else y.shape[0] for y in ys])
|
||||
return utts, xs_pad, ilens, ys_pad, olens
|
Loading…
Reference in new issue