refactor converter

pull/756/head
Hui Zhang 3 years ago
parent 7d133368e5
commit 64cf538e17

@ -11,139 +11,3 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle.io import DataLoader
from deepspeech.io.collator import SpeechCollator
from deepspeech.io.dataset import ManifestDataset
from deepspeech.io.sampler import SortagradBatchSampler
from deepspeech.io.sampler import SortagradDistributedBatchSampler
def create_dataloader(manifest_path,
unit_type,
vocab_filepath,
mean_std_filepath,
spm_model_prefix,
augmentation_config='{}',
max_input_len=float('inf'),
min_input_len=0.0,
max_output_len=float('inf'),
min_output_len=0.0,
max_output_input_ratio=float('inf'),
min_output_input_ratio=0.0,
stride_ms=10.0,
window_ms=20.0,
max_freq=None,
specgram_type='linear',
feat_dim=None,
delta_delta=False,
use_dB_normalization=True,
random_seed=0,
keep_transcription_text=False,
is_training=False,
batch_size=1,
num_workers=0,
sortagrad=False,
shuffle_method=None,
dist=False):
dataset = ManifestDataset(
manifest_path=manifest_path,
unit_type=unit_type,
vocab_filepath=vocab_filepath,
mean_std_filepath=mean_std_filepath,
spm_model_prefix=spm_model_prefix,
augmentation_config=augmentation_config,
max_input_len=max_input_len,
min_input_len=min_input_len,
max_output_len=max_output_len,
min_output_len=min_output_len,
max_output_input_ratio=max_output_input_ratio,
min_output_input_ratio=min_output_input_ratio,
stride_ms=stride_ms,
window_ms=window_ms,
max_freq=max_freq,
specgram_type=specgram_type,
feat_dim=feat_dim,
delta_delta=delta_delta,
use_dB_normalization=use_dB_normalization,
random_seed=random_seed,
keep_transcription_text=keep_transcription_text)
if dist:
batch_sampler = SortagradDistributedBatchSampler(
dataset,
batch_size,
num_replicas=None,
rank=None,
shuffle=is_training,
drop_last=is_training,
sortagrad=is_training,
shuffle_method=shuffle_method)
else:
batch_sampler = SortagradBatchSampler(
dataset,
shuffle=is_training,
batch_size=batch_size,
drop_last=is_training,
sortagrad=is_training,
shuffle_method=shuffle_method)
def padding_batch(batch,
padding_to=-1,
flatten=False,
keep_transcription_text=True):
"""
Padding audio features with zeros to make them have the same shape (or
a user-defined shape) within one bach.
If ``padding_to`` is -1, the maximun shape in the batch will be used
as the target shape for padding. Otherwise, `padding_to` will be the
target shape (only refers to the second axis).
If `flatten` is True, features will be flatten to 1darray.
"""
new_batch = []
# get target shape
max_length = max([audio.shape[1] for audio, text in batch])
if padding_to != -1:
if padding_to < max_length:
raise ValueError("If padding_to is not -1, it should be larger "
"than any instance's shape in the batch")
max_length = padding_to
max_text_length = max([len(text) for audio, text in batch])
# padding
padded_audios = []
audio_lens = []
texts, text_lens = [], []
for audio, text in batch:
padded_audio = np.zeros([audio.shape[0], max_length])
padded_audio[:, :audio.shape[1]] = audio
if flatten:
padded_audio = padded_audio.flatten()
padded_audios.append(padded_audio)
audio_lens.append(audio.shape[1])
padded_text = np.zeros([max_text_length])
if keep_transcription_text:
padded_text[:len(text)] = [ord(t) for t in text] # string
else:
padded_text[:len(text)] = text # ids
texts.append(padded_text)
text_lens.append(len(text))
padded_audios = np.array(padded_audios).astype('float32')
audio_lens = np.array(audio_lens).astype('int64')
texts = np.array(texts).astype('int32')
text_lens = np.array(text_lens).astype('int64')
return padded_audios, audio_lens, texts, text_lens
# collate_fn=functools.partial(padding_batch, keep_transcription_text=keep_transcription_text),
collate_fn = SpeechCollator(keep_transcription_text=keep_transcription_text)
loader = DataLoader(
dataset,
batch_sampler=batch_sampler,
collate_fn=collate_fn,
num_workers=num_workers)
return loader

@ -0,0 +1,80 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from deepspeech.io.utility import pad_list
from deepspeech.utils.log import Log
__all__ = ["CustomConverter"]
logger = Log(__name__).getlog()
class CustomConverter():
"""Custom batch converter.
Args:
subsampling_factor (int): The subsampling factor.
dtype (np.dtype): Data type to convert.
"""
def __init__(self, subsampling_factor=1, dtype=np.float32):
"""Construct a CustomConverter object."""
self.subsampling_factor = subsampling_factor
self.ignore_id = -1
self.dtype = dtype
def __call__(self, batch):
"""Transform a batch and send it to a device.
Args:
batch (list): The batch to transform.
Returns:
tuple(paddle.Tensor, paddle.Tensor, paddle.Tensor)
"""
# batch should be located in list
assert len(batch) == 1
(xs, ys), utts = batch[0]
# perform subsampling
if self.subsampling_factor > 1:
xs = [x[::self.subsampling_factor, :] for x in xs]
# get batch of lengths of input sequences
ilens = np.array([x.shape[0] for x in xs])
# perform padding and convert to tensor
# currently only support real number
if xs[0].dtype.kind == "c":
xs_pad_real = pad_list([x.real for x in xs], 0).astype(self.dtype)
xs_pad_imag = pad_list([x.imag for x in xs], 0).astype(self.dtype)
# Note(kamo):
# {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
# Don't create ComplexTensor and give it E2E here
# because torch.nn.DataParellel can't handle it.
xs_pad = {"real": xs_pad_real, "imag": xs_pad_imag}
else:
xs_pad = pad_list(xs, 0).astype(self.dtype)
# NOTE: this is for multi-output (e.g., speech translation)
ys_pad = pad_list(
[np.array(y[0][:]) if isinstance(y, tuple) else y for y in ys],
self.ignore_id)
olens = np.array(
[y[0].shape[0] if isinstance(y, tuple) else y.shape[0] for y in ys])
return utts, xs_pad, ilens, ys_pad, olens

@ -15,8 +15,8 @@ from paddle.io import DataLoader
from deepspeech.frontend.utility import read_manifest
from deepspeech.io.batchfy import make_batchset
from deepspeech.io.dataset import CustomConverter
from deepspeech.io.dataset import TransformDataset
from deepspeech.io.reader import CustomConverter
from deepspeech.io.reader import LoadInputsAndTargets
from deepspeech.utils.log import Log

@ -13,18 +13,13 @@
# limitations under the License.
from typing import Optional
import numpy as np
from paddle.io import Dataset
from yacs.config import CfgNode
from deepspeech.frontend.utility import read_manifest
from deepspeech.io.utility import pad_list
from deepspeech.utils.log import Log
__all__ = [
"ManifestDataset", "TripletManifestDataset", "TransformDataset",
"CustomConverter"
]
__all__ = ["ManifestDataset", "TripletManifestDataset", "TransformDataset"]
logger = Log(__name__).getlog()
@ -129,65 +124,6 @@ class TripletManifestDataset(ManifestDataset):
"text1"]
class CustomConverter():
"""Custom batch converter.
Args:
subsampling_factor (int): The subsampling factor.
dtype (np.dtype): Data type to convert.
"""
def __init__(self, subsampling_factor=1, dtype=np.float32):
"""Construct a CustomConverter object."""
self.subsampling_factor = subsampling_factor
self.ignore_id = -1
self.dtype = dtype
def __call__(self, batch):
"""Transform a batch and send it to a device.
Args:
batch (list): The batch to transform.
Returns:
tuple(paddle.Tensor, paddle.Tensor, paddle.Tensor)
"""
# batch should be located in list
assert len(batch) == 1
(xs, ys), utts = batch[0]
# perform subsampling
if self.subsampling_factor > 1:
xs = [x[::self.subsampling_factor, :] for x in xs]
# get batch of lengths of input sequences
ilens = np.array([x.shape[0] for x in xs])
# perform padding and convert to tensor
# currently only support real number
if xs[0].dtype.kind == "c":
xs_pad_real = pad_list([x.real for x in xs], 0).astype(self.dtype)
xs_pad_imag = pad_list([x.imag for x in xs], 0).astype(self.dtype)
# Note(kamo):
# {'real': ..., 'imag': ...} will be changed to ComplexTensor in E2E.
# Don't create ComplexTensor and give it E2E here
# because torch.nn.DataParellel can't handle it.
xs_pad = {"real": xs_pad_real, "imag": xs_pad_imag}
else:
xs_pad = pad_list(xs, 0).astype(self.dtype)
# NOTE: this is for multi-output (e.g., speech translation)
ys_pad = pad_list(
[np.array(y[0][:]) if isinstance(y, tuple) else y for y in ys],
self.ignore_id)
olens = np.array(
[y[0].shape[0] if isinstance(y, tuple) else y.shape[0] for y in ys])
return utts, xs_pad, ilens, ys_pad, olens
class TransformDataset(Dataset):
"""Transform Dataset.

Loading…
Cancel
Save