Merge pull request #2482 from SmileGoat/check_ec50
[Example] add tess example, testing paddle.audio features,backend.(paddle >= 2.4)pull/2399/head
commit
62fe3d444d
@ -0,0 +1,32 @@
|
|||||||
|
data:
|
||||||
|
dataset: 'paddle.audio.datasets:TESS'
|
||||||
|
num_classes: 7
|
||||||
|
train:
|
||||||
|
mode: 'train'
|
||||||
|
split: 1
|
||||||
|
feat_type: 'logmelspectrogram'
|
||||||
|
dev:
|
||||||
|
mode: 'dev'
|
||||||
|
split: 1
|
||||||
|
feat_type: 'logmelspectrogram'
|
||||||
|
|
||||||
|
model:
|
||||||
|
backbone: 'paddlespeech.cls.models:cnn14'
|
||||||
|
|
||||||
|
feature:
|
||||||
|
n_fft: 1024
|
||||||
|
hop_length: 320
|
||||||
|
window: 'hann'
|
||||||
|
win_length: 1024
|
||||||
|
f_min: 50.0
|
||||||
|
f_max: 14000.0
|
||||||
|
n_mels: 64
|
||||||
|
|
||||||
|
training:
|
||||||
|
epochs: 5
|
||||||
|
learning_rate: 0.0005
|
||||||
|
num_workers: 2
|
||||||
|
batch_size: 128
|
||||||
|
checkpoint_dir: './checkpoint_logmelspectrogram'
|
||||||
|
save_freq: 1
|
||||||
|
log_freq: 1
|
@ -0,0 +1,32 @@
|
|||||||
|
data:
|
||||||
|
dataset: 'paddle.audio.datasets:TESS'
|
||||||
|
num_classes: 7
|
||||||
|
train:
|
||||||
|
mode: 'train'
|
||||||
|
split: 1
|
||||||
|
feat_type: 'melspectrogram'
|
||||||
|
dev:
|
||||||
|
mode: 'dev'
|
||||||
|
split: 1
|
||||||
|
feat_type: 'melspectrogram'
|
||||||
|
|
||||||
|
model:
|
||||||
|
backbone: 'paddlespeech.cls.models:cnn14'
|
||||||
|
|
||||||
|
feature:
|
||||||
|
n_fft: 1024
|
||||||
|
hop_length: 320
|
||||||
|
window: 'hann'
|
||||||
|
win_length: 1024
|
||||||
|
f_min: 50.0
|
||||||
|
f_max: 14000.0
|
||||||
|
n_mels: 64
|
||||||
|
|
||||||
|
training:
|
||||||
|
epochs: 10
|
||||||
|
learning_rate: 0.0005
|
||||||
|
num_workers: 2
|
||||||
|
batch_size: 128
|
||||||
|
checkpoint_dir: './checkpoint_melspectrogram'
|
||||||
|
save_freq: 1
|
||||||
|
log_freq: 1
|
@ -0,0 +1,33 @@
|
|||||||
|
data:
|
||||||
|
dataset: 'paddle.audio.datasets:TESS'
|
||||||
|
num_classes: 7
|
||||||
|
train:
|
||||||
|
mode: 'train'
|
||||||
|
split: 1
|
||||||
|
feat_type: 'mfcc'
|
||||||
|
dev:
|
||||||
|
mode: 'dev'
|
||||||
|
split: 1
|
||||||
|
feat_type: 'mfcc'
|
||||||
|
|
||||||
|
model:
|
||||||
|
backbone: 'paddlespeech.cls.models:cnn14'
|
||||||
|
|
||||||
|
feature:
|
||||||
|
n_fft: 1024
|
||||||
|
hop_length: 320
|
||||||
|
window: 'hann'
|
||||||
|
win_length: 1024
|
||||||
|
f_min: 50.0
|
||||||
|
f_max: 14000.0
|
||||||
|
n_mfcc: 64
|
||||||
|
n_mels: 64
|
||||||
|
|
||||||
|
training:
|
||||||
|
epochs: 5
|
||||||
|
learning_rate: 0.0005
|
||||||
|
num_workers: 2
|
||||||
|
batch_size: 128
|
||||||
|
checkpoint_dir: './checkpoint_mfcc'
|
||||||
|
save_freq: 1
|
||||||
|
log_freq: 1
|
@ -0,0 +1,28 @@
|
|||||||
|
data:
|
||||||
|
dataset: 'paddle.audio.datasets:TESS'
|
||||||
|
num_classes: 7
|
||||||
|
train:
|
||||||
|
mode: 'train'
|
||||||
|
split: 1
|
||||||
|
feat_type: 'spectrogram'
|
||||||
|
dev:
|
||||||
|
mode: 'dev'
|
||||||
|
split: 1
|
||||||
|
feat_type: 'spectrogram'
|
||||||
|
|
||||||
|
model:
|
||||||
|
backbone: 'paddlespeech.cls.models:cnn14'
|
||||||
|
|
||||||
|
feature:
|
||||||
|
n_fft: 126
|
||||||
|
hop_length: 320
|
||||||
|
window: 'hann'
|
||||||
|
|
||||||
|
training:
|
||||||
|
epochs: 10
|
||||||
|
learning_rate: 0.0005
|
||||||
|
num_workers: 2
|
||||||
|
batch_size: 128
|
||||||
|
checkpoint_dir: './checkpoint_spectrogram'
|
||||||
|
save_freq: 1
|
||||||
|
log_freq: 1
|
@ -0,0 +1,190 @@
|
|||||||
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
from paddleaudio.utils import logger
|
||||||
|
from paddleaudio.utils import Timer
|
||||||
|
from paddlespeech.cls.models import SoundClassifier
|
||||||
|
from paddlespeech.utils.dynamic_import import dynamic_import
|
||||||
|
|
||||||
|
|
||||||
|
# yapf: disable
|
||||||
|
parser = argparse.ArgumentParser(__doc__)
|
||||||
|
parser.add_argument("--cfg_path", type=str, required=True)
|
||||||
|
args = parser.parse_args()
|
||||||
|
# yapf: enable
|
||||||
|
|
||||||
|
def _collate_features(batch):
|
||||||
|
# (feat, label)
|
||||||
|
# (( n_mels, length), label)
|
||||||
|
feats = []
|
||||||
|
labels = []
|
||||||
|
lengths = []
|
||||||
|
for sample in batch:
|
||||||
|
feats.append(paddle.transpose(sample[0], perm=[1,0]))
|
||||||
|
lengths.append(sample[0].shape[1])
|
||||||
|
labels.append(sample[1])
|
||||||
|
|
||||||
|
max_length = max(lengths)
|
||||||
|
for i in range(len(feats)):
|
||||||
|
feats[i] = paddle.nn.functional.pad(
|
||||||
|
feats[i], [0, max_length - feats[i].shape[0], 0, 0],
|
||||||
|
data_format='NLC')
|
||||||
|
|
||||||
|
return paddle.stack(feats), paddle.to_tensor(
|
||||||
|
labels), paddle.to_tensor(lengths)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
nranks = paddle.distributed.get_world_size()
|
||||||
|
if paddle.distributed.get_world_size() > 1:
|
||||||
|
paddle.distributed.init_parallel_env()
|
||||||
|
local_rank = paddle.distributed.get_rank()
|
||||||
|
|
||||||
|
args.cfg_path = os.path.abspath(os.path.expanduser(args.cfg_path))
|
||||||
|
with open(args.cfg_path, 'r') as f:
|
||||||
|
config = yaml.safe_load(f)
|
||||||
|
|
||||||
|
model_conf = config['model']
|
||||||
|
data_conf = config['data']
|
||||||
|
feat_conf = config['feature']
|
||||||
|
feat_type = data_conf['train']['feat_type']
|
||||||
|
training_conf = config['training']
|
||||||
|
|
||||||
|
# Dataset
|
||||||
|
|
||||||
|
# set audio backend, make sure paddleaudio >= 1.0.2 installed.
|
||||||
|
paddle.audio.backends.set_backend('soundfile')
|
||||||
|
|
||||||
|
ds_class = dynamic_import(data_conf['dataset'])
|
||||||
|
train_ds = ds_class(**data_conf['train'], **feat_conf)
|
||||||
|
dev_ds = ds_class(**data_conf['dev'], **feat_conf)
|
||||||
|
train_sampler = paddle.io.DistributedBatchSampler(
|
||||||
|
train_ds,
|
||||||
|
batch_size=training_conf['batch_size'],
|
||||||
|
shuffle=True,
|
||||||
|
drop_last=False)
|
||||||
|
train_loader = paddle.io.DataLoader(
|
||||||
|
train_ds,
|
||||||
|
batch_sampler=train_sampler,
|
||||||
|
num_workers=training_conf['num_workers'],
|
||||||
|
return_list=True,
|
||||||
|
use_buffer_reader=True,
|
||||||
|
collate_fn=_collate_features)
|
||||||
|
|
||||||
|
# Model
|
||||||
|
backbone_class = dynamic_import(model_conf['backbone'])
|
||||||
|
backbone = backbone_class(pretrained=True, extract_embedding=True)
|
||||||
|
model = SoundClassifier(backbone, num_class=data_conf['num_classes'])
|
||||||
|
model = paddle.DataParallel(model)
|
||||||
|
optimizer = paddle.optimizer.Adam(
|
||||||
|
learning_rate=training_conf['learning_rate'],
|
||||||
|
parameters=model.parameters())
|
||||||
|
criterion = paddle.nn.loss.CrossEntropyLoss()
|
||||||
|
|
||||||
|
steps_per_epoch = len(train_sampler)
|
||||||
|
timer = Timer(steps_per_epoch * training_conf['epochs'])
|
||||||
|
timer.start()
|
||||||
|
|
||||||
|
for epoch in range(1, training_conf['epochs'] + 1):
|
||||||
|
model.train()
|
||||||
|
|
||||||
|
avg_loss = 0
|
||||||
|
num_corrects = 0
|
||||||
|
num_samples = 0
|
||||||
|
for batch_idx, batch in enumerate(train_loader):
|
||||||
|
feats, labels, length = batch # feats-->(N, length, n_mels)
|
||||||
|
|
||||||
|
logits = model(feats)
|
||||||
|
|
||||||
|
loss = criterion(logits, labels)
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
if isinstance(optimizer._learning_rate,
|
||||||
|
paddle.optimizer.lr.LRScheduler):
|
||||||
|
optimizer._learning_rate.step()
|
||||||
|
optimizer.clear_grad()
|
||||||
|
|
||||||
|
# Calculate loss
|
||||||
|
avg_loss += loss.numpy()[0]
|
||||||
|
|
||||||
|
# Calculate metrics
|
||||||
|
preds = paddle.argmax(logits, axis=1)
|
||||||
|
num_corrects += (preds == labels).numpy().sum()
|
||||||
|
num_samples += feats.shape[0]
|
||||||
|
|
||||||
|
timer.count()
|
||||||
|
|
||||||
|
if (batch_idx + 1
|
||||||
|
) % training_conf['log_freq'] == 0 and local_rank == 0:
|
||||||
|
lr = optimizer.get_lr()
|
||||||
|
avg_loss /= training_conf['log_freq']
|
||||||
|
avg_acc = num_corrects / num_samples
|
||||||
|
|
||||||
|
print_msg = feat_type + ' Epoch={}/{}, Step={}/{}'.format(
|
||||||
|
epoch, training_conf['epochs'], batch_idx + 1,
|
||||||
|
steps_per_epoch)
|
||||||
|
print_msg += ' loss={:.4f}'.format(avg_loss)
|
||||||
|
print_msg += ' acc={:.4f}'.format(avg_acc)
|
||||||
|
print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format(
|
||||||
|
lr, timer.timing, timer.eta)
|
||||||
|
logger.train(print_msg)
|
||||||
|
|
||||||
|
avg_loss = 0
|
||||||
|
num_corrects = 0
|
||||||
|
num_samples = 0
|
||||||
|
|
||||||
|
if epoch % training_conf[
|
||||||
|
'save_freq'] == 0 and batch_idx + 1 == steps_per_epoch and local_rank == 0:
|
||||||
|
dev_sampler = paddle.io.BatchSampler(
|
||||||
|
dev_ds,
|
||||||
|
batch_size=training_conf['batch_size'],
|
||||||
|
shuffle=False,
|
||||||
|
drop_last=False)
|
||||||
|
dev_loader = paddle.io.DataLoader(
|
||||||
|
dev_ds,
|
||||||
|
batch_sampler=dev_sampler,
|
||||||
|
num_workers=training_conf['num_workers'],
|
||||||
|
return_list=True,
|
||||||
|
use_buffer_reader=True,
|
||||||
|
collate_fn=_collate_features)
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
num_corrects = 0
|
||||||
|
num_samples = 0
|
||||||
|
with logger.processing('Evaluation on validation dataset'):
|
||||||
|
for batch_idx, batch in enumerate(dev_loader):
|
||||||
|
feats, labels, length = batch
|
||||||
|
logits = model(feats)
|
||||||
|
|
||||||
|
preds = paddle.argmax(logits, axis=1)
|
||||||
|
num_corrects += (preds == labels).numpy().sum()
|
||||||
|
num_samples += feats.shape[0]
|
||||||
|
|
||||||
|
print_msg = '[Evaluation result] ' + str(feat_type)
|
||||||
|
print_msg += ' dev_acc={:.4f}'.format(num_corrects / num_samples)
|
||||||
|
|
||||||
|
logger.eval(print_msg)
|
||||||
|
|
||||||
|
# Save model
|
||||||
|
save_dir = os.path.join(training_conf['checkpoint_dir'],
|
||||||
|
'epoch_{}'.format(epoch))
|
||||||
|
logger.info('Saving model checkpoint to {}'.format(save_dir))
|
||||||
|
paddle.save(model.state_dict(),
|
||||||
|
os.path.join(save_dir, 'model.pdparams'))
|
||||||
|
paddle.save(optimizer.state_dict(),
|
||||||
|
os.path.join(save_dir, 'model.pdopt'))
|
@ -0,0 +1,12 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
ngpu=$1
|
||||||
|
cfg_path=$2
|
||||||
|
|
||||||
|
if [ ${ngpu} -gt 0 ]; then
|
||||||
|
python3 -m paddle.distributed.launch --gpus $CUDA_VISIBLE_DEVICES local/train.py \
|
||||||
|
--cfg_path ${cfg_path}
|
||||||
|
else
|
||||||
|
python3 local/train.py \
|
||||||
|
--cfg_path ${cfg_path}
|
||||||
|
fi
|
@ -0,0 +1,13 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
export MAIN_ROOT=`realpath ${PWD}/../../../`
|
||||||
|
|
||||||
|
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/utils:${PATH}
|
||||||
|
export LC_ALL=C
|
||||||
|
|
||||||
|
export PYTHONDONTWRITEBYTECODE=1
|
||||||
|
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
|
||||||
|
export PYTHONIOENCODING=UTF-8
|
||||||
|
export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
|
||||||
|
|
||||||
|
MODEL=panns
|
||||||
|
export BIN_DIR=${MAIN_ROOT}/paddlespeech/cls/exps/${MODEL}
|
@ -0,0 +1,35 @@
|
|||||||
|
#!/bin/bash
|
||||||
|
set -e
|
||||||
|
source path.sh
|
||||||
|
|
||||||
|
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||||
|
|
||||||
|
stage=$1
|
||||||
|
stop_stage=100
|
||||||
|
|
||||||
|
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
|
||||||
|
cfg_path=$2
|
||||||
|
./local/train.sh ${ngpu} ${cfg_path} || exit -1
|
||||||
|
exit 0
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
|
||||||
|
cfg_path=$2
|
||||||
|
./local/infer.sh ${cfg_path} || exit -1
|
||||||
|
exit 0
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
|
||||||
|
ckpt=$2
|
||||||
|
output_dir=$3
|
||||||
|
./local/export.sh ${ckpt} ${output_dir} || exit -1
|
||||||
|
exit 0
|
||||||
|
fi
|
||||||
|
|
||||||
|
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
|
||||||
|
infer_device=$2
|
||||||
|
graph_dir=$3
|
||||||
|
audio_file=$4
|
||||||
|
./local/static_model_infer.sh ${infer_device} ${graph_dir} ${audio_file} || exit -1
|
||||||
|
exit 0
|
||||||
|
fi
|
Loading…
Reference in new issue