add beam search with scorers

pull/916/head
Hui Zhang 3 years ago
parent 9e6f89bde1
commit 6257eda00e

@ -0,0 +1,528 @@
"""Beam search module."""
from itertools import chain
import logger
from typing import Any
from typing import Dict
from typing import List
from typing import NamedTuple
from typing import Tuple
from typing import Union
import paddle
from .utils import end_detect
from .scorers.scorer_interface import PartialScorerInterface
from .scorers.scorer_interface import ScorerInterface
from deepspeech.utils.log import Log
logger = Log(__name__).getlog()
class Hypothesis(NamedTuple):
"""Hypothesis data type."""
yseq: paddle.Tensor # (T,)
score: Union[float, paddle.Tensor] = 0
scores: Dict[str, Union[float, paddle.Tensor]] = dict()
states: Dict[str, Any] = dict()
def asdict(self) -> dict:
"""Convert data to JSON-friendly dict."""
return self._replace(
yseq=self.yseq.tolist(),
score=float(self.score),
scores={k: float(v) for k, v in self.scores.items()},
)._asdict()
class BeamSearch(paddle.nn.Layer):
"""Beam search implementation."""
def __init__(
self,
scorers: Dict[str, ScorerInterface],
weights: Dict[str, float],
beam_size: int,
vocab_size: int,
sos: int,
eos: int,
token_list: List[str] = None,
pre_beam_ratio: float = 1.5,
pre_beam_score_key: str = None,
):
"""Initialize beam search.
Args:
scorers (dict[str, ScorerInterface]): Dict of decoder modules
e.g., Decoder, CTCPrefixScorer, LM
The scorer will be ignored if it is `None`
weights (dict[str, float]): Dict of weights for each scorers
The scorer will be ignored if its weight is 0
beam_size (int): The number of hypotheses kept during search
vocab_size (int): The number of vocabulary
sos (int): Start of sequence id
eos (int): End of sequence id
token_list (list[str]): List of tokens for debug log
pre_beam_score_key (str): key of scores to perform pre-beam search
pre_beam_ratio (float): beam size in the pre-beam search
will be `int(pre_beam_ratio * beam_size)`
"""
super().__init__()
# set scorers
self.weights = weights
self.scorers = dict() # all = full + partial
self.full_scorers = dict() # full tokens
self.part_scorers = dict() # partial tokens
# this module dict is required for recursive cast
# `self.to(device, dtype)` in `recog.py`
self.nn_dict = paddle.nn.LayerDict() # nn.Layer
for k, v in scorers.items():
w = weights.get(k, 0)
if w == 0 or v is None:
continue
assert isinstance(
v, ScorerInterface
), f"{k} ({type(v)}) does not implement ScorerInterface"
self.scorers[k] = v
if isinstance(v, PartialScorerInterface):
self.part_scorers[k] = v
else:
self.full_scorers[k] = v
if isinstance(v, paddle.nn.Layer):
self.nn_dict[k] = v
# set configurations
self.sos = sos
self.eos = eos
self.token_list = token_list
# pre_beam_size > beam_size
self.pre_beam_size = int(pre_beam_ratio * beam_size)
self.beam_size = beam_size
self.n_vocab = vocab_size
if (
pre_beam_score_key is not None
and pre_beam_score_key != "full"
and pre_beam_score_key not in self.full_scorers
):
raise KeyError(f"{pre_beam_score_key} is not found in {self.full_scorers}")
# selected `key` scorer to do pre beam search
self.pre_beam_score_key = pre_beam_score_key
# do_pre_beam when need, valid and has part_scorers
self.do_pre_beam = (
self.pre_beam_score_key is not None
and self.pre_beam_size < self.n_vocab
and len(self.part_scorers) > 0
)
def init_hyp(self, x: paddle.Tensor) -> List[Hypothesis]:
"""Get an initial hypothesis data.
Args:
x (paddle.Tensor): The encoder output feature, (T, D)
Returns:
Hypothesis: The initial hypothesis.
"""
init_states = dict()
init_scores = dict()
for k, d in self.scorers.items():
init_states[k] = d.init_state(x)
init_scores[k] = 0.0
return [
Hypothesis(
yseq=paddle.to_tensor([self.sos], place=x.place),
score=0.0,
scores=init_scores,
states=init_states,
)
]
@staticmethod
def append_token(xs: paddle.Tensor, x: int) -> paddle.Tensor:
"""Append new token to prefix tokens.
Args:
xs (paddle.Tensor): The prefix token, (T,)
x (int): The new token to append
Returns:
paddle.Tensor: (T+1,), New tensor contains: xs + [x] with xs.dtype and xs.device
"""
x = paddle.to_tensor([x], dtype=xs.dtype, place=xs.place)
return paddle.cat((xs, x))
def score_full(
self, hyp: Hypothesis, x: paddle.Tensor
) -> Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]:
"""Score new hypothesis by `self.full_scorers`.
Args:
hyp (Hypothesis): Hypothesis with prefix tokens to score
x (paddle.Tensor): Corresponding input feature, (T, D)
Returns:
Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]: Tuple of
score dict of `hyp` that has string keys of `self.full_scorers`
and tensor score values of shape: `(self.n_vocab,)`,
and state dict that has string keys
and state values of `self.full_scorers`
"""
scores = dict()
states = dict()
for k, d in self.full_scorers.items():
# scores[k] shape (self.n_vocab,)
scores[k], states[k] = d.score(hyp.yseq, hyp.states[k], x)
return scores, states
def score_partial(
self, hyp: Hypothesis, ids: paddle.Tensor, x: paddle.Tensor
) -> Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]:
"""Score new hypothesis by `self.part_scorers`.
Args:
hyp (Hypothesis): Hypothesis with prefix tokens to score
ids (paddle.Tensor): 1D tensor of new partial tokens to score,
len(ids) < n_vocab
x (paddle.Tensor): Corresponding input feature, (T, D)
Returns:
Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]: Tuple of
score dict of `hyp` that has string keys of `self.part_scorers`
and tensor score values of shape: `(len(ids),)`,
and state dict that has string keys
and state values of `self.part_scorers`
"""
scores = dict()
states = dict()
for k, d in self.part_scorers.items():
# scores[k] shape (len(ids),)
scores[k], states[k] = d.score_partial(hyp.yseq, ids, hyp.states[k], x)
return scores, states
def beam(
self, weighted_scores: paddle.Tensor, ids: paddle.Tensor
) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Compute topk full token ids and partial token ids.
Args:
weighted_scores (paddle.Tensor): The weighted sum scores for each tokens.
Its shape is `(self.n_vocab,)`.
ids (paddle.Tensor): The partial token ids(Global) to compute topk.
Returns:
Tuple[paddle.Tensor, paddle.Tensor]:
The topk full token ids and partial token ids.
Their shapes are `(self.beam_size,)`.
i.e. (global ids, global relative local ids).
"""
# no pre beam performed, `ids` equal to `weighted_scores`
if weighted_scores.size(0) == ids.size(0):
top_ids = weighted_scores.topk(self.beam_size)[1] # index in n_vocab
return top_ids, top_ids
# mask pruned in pre-beam not to select in topk
tmp = weighted_scores[ids]
weighted_scores[:] = -float("inf")
weighted_scores[ids] = tmp
# top_ids no equal to local_ids, since ids shape not same
top_ids = weighted_scores.topk(self.beam_size)[1] # index in n_vocab
local_ids = weighted_scores[ids].topk(self.beam_size)[1] # index in len(ids)
return top_ids, local_ids
@staticmethod
def merge_scores(
prev_scores: Dict[str, float],
next_full_scores: Dict[str, paddle.Tensor],
full_idx: int,
next_part_scores: Dict[str, paddle.Tensor],
part_idx: int,
) -> Dict[str, paddle.Tensor]:
"""Merge scores for new hypothesis.
Args:
prev_scores (Dict[str, float]):
The previous hypothesis scores by `self.scorers`
next_full_scores (Dict[str, paddle.Tensor]): scores by `self.full_scorers`
full_idx (int): The next token id for `next_full_scores`
next_part_scores (Dict[str, paddle.Tensor]):
scores of partial tokens by `self.part_scorers`
part_idx (int): The new token id for `next_part_scores`
Returns:
Dict[str, paddle.Tensor]: The new score dict.
Its keys are names of `self.full_scorers` and `self.part_scorers`.
Its values are scalar tensors by the scorers.
"""
new_scores = dict()
for k, v in next_full_scores.items():
new_scores[k] = prev_scores[k] + v[full_idx]
for k, v in next_part_scores.items():
new_scores[k] = prev_scores[k] + v[part_idx]
return new_scores
def merge_states(self, states: Any, part_states: Any, part_idx: int) -> Any:
"""Merge states for new hypothesis.
Args:
states: states of `self.full_scorers`
part_states: states of `self.part_scorers`
part_idx (int): The new token id for `part_scores`
Returns:
Dict[str, paddle.Tensor]: The new score dict.
Its keys are names of `self.full_scorers` and `self.part_scorers`.
Its values are states of the scorers.
"""
new_states = dict()
for k, v in states.items():
new_states[k] = v
for k, d in self.part_scorers.items():
new_states[k] = d.select_state(part_states[k], part_idx)
return new_states
def search(
self, running_hyps: List[Hypothesis], x: paddle.Tensor
) -> List[Hypothesis]:
"""Search new tokens for running hypotheses and encoded speech x.
Args:
running_hyps (List[Hypothesis]): Running hypotheses on beam
x (paddle.Tensor): Encoded speech feature (T, D)
Returns:
List[Hypotheses]: Best sorted hypotheses
"""
best_hyps = []
part_ids = paddle.arange(self.n_vocab) # no pre-beam
for hyp in running_hyps:
# scoring
weighted_scores = paddle.zeros(self.n_vocab, dtype=x.dtype)
scores, states = self.score_full(hyp, x)
for k in self.full_scorers:
weighted_scores += self.weights[k] * scores[k]
# partial scoring
if self.do_pre_beam:
pre_beam_scores = (
weighted_scores
if self.pre_beam_score_key == "full"
else scores[self.pre_beam_score_key]
)
part_ids = paddle.topk(pre_beam_scores, self.pre_beam_size)[1]
part_scores, part_states = self.score_partial(hyp, part_ids, x)
for k in self.part_scorers:
weighted_scores[part_ids] += self.weights[k] * part_scores[k]
# add previous hyp score
weighted_scores += hyp.score
# update hyps
for j, part_j in zip(*self.beam(weighted_scores, part_ids)):
# `part_j` is `j` relative id in `part_scores`
# will be (2 x beam at most)
best_hyps.append(
Hypothesis(
score=weighted_scores[j],
yseq=self.append_token(hyp.yseq, j),
scores=self.merge_scores(
hyp.scores, scores, j, part_scores, part_j
),
states=self.merge_states(states, part_states, part_j),
)
)
# sort and prune 2 x beam -> beam
best_hyps = sorted(best_hyps, key=lambda x: x.score, reverse=True)[
: min(len(best_hyps), self.beam_size)
]
return best_hyps
def forward(
self, x: paddle.Tensor, maxlenratio: float = 0.0, minlenratio: float = 0.0
) -> List[Hypothesis]:
"""Perform beam search.
Args:
x (paddle.Tensor): Encoded speech feature (T, D)
maxlenratio (float): Input length ratio to obtain max output length.
If maxlenratio=0.0 (default), it uses a end-detect function
to automatically find maximum hypothesis lengths
If maxlenratio<0.0, its absolute value is interpreted
as a constant max output length.
minlenratio (float): Input length ratio to obtain min output length.
Returns:
list[Hypothesis]: N-best decoding results
"""
# set length bounds
if maxlenratio == 0:
maxlen = x.shape[0]
elif maxlenratio < 0:
maxlen = -1 * int(maxlenratio)
else:
maxlen = max(1, int(maxlenratio * x.size(0)))
minlen = int(minlenratio * x.size(0))
logger.info("decoder input length: " + str(x.shape[0]))
logger.info("max output length: " + str(maxlen))
logger.info("min output length: " + str(minlen))
# main loop of prefix search
running_hyps = self.init_hyp(x)
ended_hyps = []
for i in range(maxlen):
logger.debug("position " + str(i))
best = self.search(running_hyps, x)
# post process of one iteration
running_hyps = self.post_process(i, maxlen, maxlenratio, best, ended_hyps)
# end detection
if maxlenratio == 0.0 and end_detect([h.asdict() for h in ended_hyps], i):
logger.info(f"end detected at {i}")
break
if len(running_hyps) == 0:
logger.info("no hypothesis. Finish decoding.")
break
else:
logger.debug(f"remained hypotheses: {len(running_hyps)}")
nbest_hyps = sorted(ended_hyps, key=lambda x: x.score, reverse=True)
# check the number of hypotheses reaching to eos
if len(nbest_hyps) == 0:
logger.warning(
"there is no N-best results, perform recognition "
"again with smaller minlenratio."
)
return (
[]
if minlenratio < 0.1
else self.forward(x, maxlenratio, max(0.0, minlenratio - 0.1))
)
# report the best result
best = nbest_hyps[0]
for k, v in best.scores.items():
logger.info(
f"{v:6.2f} * {self.weights[k]:3} = {v * self.weights[k]:6.2f} for {k}"
)
logger.info(f"total log probability: {best.score:.2f}")
logger.info(f"normalized log probability: {best.score / len(best.yseq):.2f}")
logger.info(f"total number of ended hypotheses: {len(nbest_hyps)}")
if self.token_list is not None:
logger.info(
"best hypo: "
+ "".join([self.token_list[x] for x in best.yseq[1:-1]])
+ "\n"
)
return nbest_hyps
def post_process(
self,
i: int,
maxlen: int,
maxlenratio: float,
running_hyps: List[Hypothesis],
ended_hyps: List[Hypothesis],
) -> List[Hypothesis]:
"""Perform post-processing of beam search iterations.
Args:
i (int): The length of hypothesis tokens.
maxlen (int): The maximum length of tokens in beam search.
maxlenratio (int): The maximum length ratio in beam search.
running_hyps (List[Hypothesis]): The running hypotheses in beam search.
ended_hyps (List[Hypothesis]): The ended hypotheses in beam search.
Returns:
List[Hypothesis]: The new running hypotheses.
"""
logger.debug(f"the number of running hypotheses: {len(running_hyps)}")
if self.token_list is not None:
logger.debug(
"best hypo: "
+ "".join([self.token_list[x] for x in running_hyps[0].yseq[1:]])
)
# add eos in the final loop to avoid that there are no ended hyps
if i == maxlen - 1:
logger.info("adding <eos> in the last position in the loop")
running_hyps = [
h._replace(yseq=self.append_token(h.yseq, self.eos))
for h in running_hyps
]
# add ended hypotheses to a final list, and removed them from current hypotheses
# (this will be a problem, number of hyps < beam)
remained_hyps = []
for hyp in running_hyps:
if hyp.yseq[-1] == self.eos:
# e.g., Word LM needs to add final <eos> score
for k, d in chain(self.full_scorers.items(), self.part_scorers.items()):
s = d.final_score(hyp.states[k])
hyp.scores[k] += s
hyp = hyp._replace(score=hyp.score + self.weights[k] * s)
ended_hyps.append(hyp)
else:
remained_hyps.append(hyp)
return remained_hyps
def beam_search(
x: paddle.Tensor,
sos: int,
eos: int,
beam_size: int,
vocab_size: int,
scorers: Dict[str, ScorerInterface],
weights: Dict[str, float],
token_list: List[str] = None,
maxlenratio: float = 0.0,
minlenratio: float = 0.0,
pre_beam_ratio: float = 1.5,
pre_beam_score_key: str = "full",
) -> list:
"""Perform beam search with scorers.
Args:
x (paddle.Tensor): Encoded speech feature (T, D)
sos (int): Start of sequence id
eos (int): End of sequence id
beam_size (int): The number of hypotheses kept during search
vocab_size (int): The number of vocabulary
scorers (dict[str, ScorerInterface]): Dict of decoder modules
e.g., Decoder, CTCPrefixScorer, LM
The scorer will be ignored if it is `None`
weights (dict[str, float]): Dict of weights for each scorers
The scorer will be ignored if its weight is 0
token_list (list[str]): List of tokens for debug log
maxlenratio (float): Input length ratio to obtain max output length.
If maxlenratio=0.0 (default), it uses a end-detect function
to automatically find maximum hypothesis lengths
minlenratio (float): Input length ratio to obtain min output length.
pre_beam_score_key (str): key of scores to perform pre-beam search
pre_beam_ratio (float): beam size in the pre-beam search
will be `int(pre_beam_ratio * beam_size)`
Returns:
List[Dict]: N-best decoding results
"""
ret = BeamSearch(
scorers,
weights,
beam_size=beam_size,
vocab_size=vocab_size,
pre_beam_ratio=pre_beam_ratio,
pre_beam_score_key=pre_beam_score_key,
sos=sos,
eos=eos,
token_list=token_list,
).forward(x=x, maxlenratio=maxlenratio, minlenratio=minlenratio)
return [h.asdict() for h in ret]

@ -354,7 +354,7 @@ def make_batchset(
:param int batch_frames_out: maximum number of output frames in a minibatch. :param int batch_frames_out: maximum number of output frames in a minibatch.
:param int batch_frames_out: maximum number of input+output frames in a minibatch. :param int batch_frames_out: maximum number of input+output frames in a minibatch.
:param str count: strategy to count maximum size of batch. :param str count: strategy to count maximum size of batch.
For choices, see espnet.asr.batchfy.BATCH_COUNT_CHOICES For choices, see io.batchfy.BATCH_COUNT_CHOICES
:param int max_length_in: maximum length of input to decide adaptive batch size :param int max_length_in: maximum length of input to decide adaptive batch size
:param int max_length_out: maximum length of output to decide adaptive batch size :param int max_length_out: maximum length of output to decide adaptive batch size

Loading…
Cancel
Save