Merge branch 'hongliang1014' of https://github.com/david-95/PaddleSpeech into hongliang1014

pull/2531/head
david.95 2 years ago
commit 60801d8f14

@ -157,6 +157,7 @@ Via the easy-to-use, efficient, flexible and scalable implementation, our vision
- 🧩 *Cascaded models application*: as an extension of the typical traditional audio tasks, we combine the workflows of the aforementioned tasks with other fields like Natural language processing (NLP) and Computer Vision (CV).
### Recent Update
- 👑 2022.10.11: Add [Wav2vec2ASR](./examples/librispeech/asr3), wav2vec2.0 fine-tuning for ASR on LibriSpeech.
- 🔥 2022.09.26: Add Voice Cloning, TTS finetune, and ERNIE-SAT in [PaddleSpeech Web Demo](./demos/speech_web).
- ⚡ 2022.09.09: Add AISHELL-3 Voice Cloning [example](./examples/aishell3/vc2) with ECAPA-TDNN speaker encoder.
- ⚡ 2022.08.25: Release TTS [finetune](./examples/other/tts_finetune/tts3) example.

@ -179,6 +179,7 @@
</div>
### 近期更新
- 👑 2022.10.11: 新增 [Wav2vec2ASR](./examples/librispeech/asr3), 在 LibriSpeech 上针对ASR任务对wav2vec2.0 的fine-tuning.
- 🔥 2022.09.26: 新增 Voice Cloning, TTS finetune 和 ERNIE-SAT 到 [PaddleSpeech 网页应用](./demos/speech_web)。
- ⚡ 2022.09.09: 新增基于 ECAPA-TDNN 声纹模型的 AISHELL-3 Voice Cloning [示例](./examples/aishell3/vc2)。
- ⚡ 2022.08.25: 发布 TTS [finetune](./examples/other/tts_finetune/tts3) 示例。

@ -21,14 +21,14 @@ Paddle Speech Demo 是一个以 PaddleSpeech 的语音交互功能为主体开
+ 小数据微调基于小数据集的微调方案内置用12句话标贝中文女声微调示例你也可以通过一键重置录制自己的声音注意在安静环境下录制效果会更好。你可以在 [【Finetune your own AM based on FastSpeech2 with AISHELL-3】](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/tts_finetune/tts3)中尝试使用自己的数据集进行微调。
+ ENIRE-SAT语言-语音跨模态大模型 ENIRE-SAT 可视化展示示例,支持个性化合成,跨语言语音合成(音频为中文则输入英文文本进行合成),语音编辑(修改音频文字中间的结果)功能。 ENIRE-SAT 更多实现细节,可以参考:
+ ERNIE-SAT语言-语音跨模态大模型 ERNIE-SAT 可视化展示示例,支持个性化合成,跨语言语音合成(音频为中文则输入英文文本进行合成),语音编辑(修改音频文字中间的结果)功能。 ERNIE-SAT 更多实现细节,可以参考:
+ [【ERNIE-SAT with AISHELL-3 dataset】](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3/ernie_sat)
+ [【ERNIE-SAT with with AISHELL3 and VCTK datasets】](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/aishell3_vctk/ernie_sat)
+ [【ERNIE-SAT with VCTK dataset】](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/vctk/ernie_sat)
运行效果:
![效果](https://user-images.githubusercontent.com/30135920/192155349-9ef93d20-730b-413d-8d50-412fedf11d4b.png)
![效果](https://user-images.githubusercontent.com/30135920/196076507-7eb33d39-2345-4268-aee7-6270b9ac8b98.png)

@ -7,7 +7,7 @@ import VPRT from './SubMenu/VPR/VPRT.vue'
import IET from './SubMenu/IE/IET.vue'
import VoiceCloneT from './SubMenu/VoiceClone/VoiceClone.vue'
import ENIRE_SATT from './SubMenu/ENIRE_SAT/ENIRE_SAT.vue'
import ERNIE_SATT from './SubMenu/ERNIE_SAT/ERNIE_SAT.vue'
import FineTuneT from './SubMenu/FineTune/FineTune.vue'
</script>
@ -47,8 +47,8 @@ import FineTuneT from './SubMenu/FineTune/FineTune.vue'
<el-tab-pane label="小数据微调" key="7">
<FineTuneT></FineTuneT>
</el-tab-pane>
<el-tab-pane label="ENIRE-SAT" key="8">
<ENIRE_SATT></ENIRE_SATT>
<el-tab-pane label="ERNIE-SAT" key="8">
<ERNIE_SATT></ERNIE_SATT>
</el-tab-pane>
</el-tabs>
</div>

@ -28,6 +28,8 @@ We borrowed a lot of code from these repos to build `model` and `engine`, thanks
* [speechbrain](https://github.com/speechbrain/speechbrain/blob/develop/LICENSE)
- Apache-2.0 License
- ECAPA-TDNN SV model
- ASR with CTC and pre-trained wav2vec2 models.
* [chainer](https://github.com/chainer/chainer/blob/master/LICENSE)
- MIT License
@ -43,3 +45,7 @@ We borrowed a lot of code from these repos to build `model` and `engine`, thanks
* [g2pW](https://github.com/GitYCC/g2pW/blob/master/LICENCE)
- Apache-2.0 license
*[transformers](https://github.com/huggingface/transformers)
- Apache-2.0 License
- Wav2vec2.0

@ -18,6 +18,12 @@ Acoustic Model | Training Data | Token-based | Size | Descriptions | CER | WER |
[Transformer Librispeech ASR1 Model](https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr1/asr1_transformer_librispeech_ckpt_0.1.1.model.tar.gz) | Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: Attention rescoring |-| 0.0381 | 960 h | [Transformer Librispeech ASR1](../../examples/librispeech/asr1) | python |
[Transformer Librispeech ASR2 Model](https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr2/asr2_transformer_librispeech_ckpt_0.1.1.model.tar.gz) | Librispeech Dataset | subword-based | 131 MB | Encoder:Transformer, Decoder:Transformer, Decoding method: JoinCTC w/ LM |-| 0.0240 | 960 h | [Transformer Librispeech ASR2](../../examples/librispeech/asr2) | python |
### Self-Supervised Pre-trained Model
Model | Pre-Train Method | Pre-Train Data | Finetune Data | Size | Descriptions | CER | WER | Example Link |
:-------------:| :------------:| :-----: | -----: | :-----: |:-----:| :-----: | :-----: | :-----: |
[Wav2vec2-large-960h-lv60-self Model](https://paddlespeech.bj.bcebos.com/wav2vec/wav2vec2-large-960h-lv60-self.pdparams) | wav2vec2 | Librispeech and LV-60k Dataset (5.3w h) | - | 1.18 GB |Pre-trained Wav2vec2.0 Model | - | - | - |
[Wav2vec2ASR-large-960h-librispeech Model](https://paddlespeech.bj.bcebos.com/s2t/librispeech/asr3/wav2vec2ASR-large-960h-librispeech_ckpt_1.3.0.model.tar.gz) | wav2vec2 | Librispeech and LV-60k Dataset (5.3w h) | Librispeech (960 h) | 1.18 GB |Encoder: Wav2vec2.0, Decoder: CTC, Decoding method: Greedy search | - | 0.0189 | [Wav2vecASR Librispeech ASR3](../../examples/librispeech/asr3) |
### Language Model based on NGram
Language Model | Training Data | Token-based | Size | Descriptions
:------------:| :------------:|:------------: | :------------: | :------------:

@ -13,6 +13,7 @@
# limitations under the License.
"""Contains wav2vec2 model."""
import json
import math
import os
import time
from collections import defaultdict
@ -46,25 +47,20 @@ logger = Log(__name__).getlog()
class Wav2Vec2ASRTrainer(Trainer):
def __init__(self, config, args):
super().__init__(config, args)
self.avg_train_loss = 0
self.avg_train_loss = 0.0
def update_average(self, batch_index, loss, avg_loss):
def update_average(self, batch_index, loss):
"""Update running average of the loss.
Arguments
---------
batch_index : int
current batch index
loss : paddle.tensor
detached loss, a single float value.
avg_loss : float
current running average.
Returns
-------
avg_loss : float
The average loss.
"""
if paddle.isfinite(loss):
avg_loss -= avg_loss / (batch_index + 1)
avg_loss += float(loss) / (batch_index + 1)
return avg_loss
if math.isfinite(loss):
self.avg_train_loss -= self.avg_train_loss / (batch_index + 1)
self.avg_train_loss += loss / (batch_index + 1)
def train_batch(self, batch_index, batch, msg):
train_conf = self.config
@ -80,8 +76,8 @@ class Wav2Vec2ASRTrainer(Trainer):
# loss div by `batch_size * accum_grad`
loss /= train_conf.accum_grad
self.avg_train_loss = self.update_average(batch_index, loss,
self.avg_train_loss)
# update self.avg_train_loss
self.update_average(batch_index, float(loss))
# loss backward
if (batch_index + 1) % train_conf.accum_grad != 0:
@ -106,7 +102,7 @@ class Wav2Vec2ASRTrainer(Trainer):
self.lr_scheduler.step()
self.iteration += 1
losses_np = {'loss': float(self.avg_train_loss) * train_conf.accum_grad}
losses_np = {'loss': self.avg_train_loss * train_conf.accum_grad}
iteration_time = time.time() - start
for k, v in losses_np.items():
report(k, v)

Loading…
Cancel
Save