fix mbmelgan static

pull/959/head
TianYuan 3 years ago
parent ba978fca98
commit 5b9950cdd0

@ -1,146 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections.abc as collections_abc
import paddle
_i0A = [
-4.41534164647933937950E-18, 3.33079451882223809783E-17,
-2.43127984654795469359E-16, 1.71539128555513303061E-15,
-1.16853328779934516808E-14, 7.67618549860493561688E-14,
-4.85644678311192946090E-13, 2.95505266312963983461E-12,
-1.72682629144155570723E-11, 9.67580903537323691224E-11,
-5.18979560163526290666E-10, 2.65982372468238665035E-9,
-1.30002500998624804212E-8, 6.04699502254191894932E-8,
-2.67079385394061173391E-7, 1.11738753912010371815E-6,
-4.41673835845875056359E-6, 1.64484480707288970893E-5,
-5.75419501008210370398E-5, 1.88502885095841655729E-4,
-5.76375574538582365885E-4, 1.63947561694133579842E-3,
-4.32430999505057594430E-3, 1.05464603945949983183E-2,
-2.37374148058994688156E-2, 4.93052842396707084878E-2,
-9.49010970480476444210E-2, 1.71620901522208775349E-1,
-3.04682672343198398683E-1, 6.76795274409476084995E-1
]
_i0B = [
-7.23318048787475395456E-18, -4.83050448594418207126E-18,
4.46562142029675999901E-17, 3.46122286769746109310E-17,
-2.82762398051658348494E-16, -3.42548561967721913462E-16,
1.77256013305652638360E-15, 3.81168066935262242075E-15,
-9.55484669882830764870E-15, -4.15056934728722208663E-14,
1.54008621752140982691E-14, 3.85277838274214270114E-13,
7.18012445138366623367E-13, -1.79417853150680611778E-12,
-1.32158118404477131188E-11, -3.14991652796324136454E-11,
1.18891471078464383424E-11, 4.94060238822496958910E-10,
3.39623202570838634515E-9, 2.26666899049817806459E-8,
2.04891858946906374183E-7, 2.89137052083475648297E-6,
6.88975834691682398426E-5, 3.36911647825569408990E-3,
8.04490411014108831608E-1
]
def piecewise(x, condlist, funclist, *args, **kw):
n2 = len(funclist)
# n = len(condlist)
n = 1
if n == n2 - 1: # compute the "otherwise" condition.
condelse = ~paddle.any(condlist, axis=0, keepdim=True)
condlist = paddle.concat([condlist, condelse], axis=0)
n += 1
elif n != n2:
raise ValueError(
"with {} condition(s), either {} or {} functions are expected"
.format(n, n, n + 1))
y = paddle.zeros(paddle.shape(x), x.dtype)
for k in range(n):
item = funclist[k]
if not isinstance(item, collections_abc.Callable):
y[condlist[k]] = item
else:
temp = condlist[k]
if paddle.shape(x) == paddle.ones([1]):
vals = x
y = item(vals, *args, **kw)
else:
vals = x[temp]
y[temp] = item(vals, *args, **kw)
return y
def _chbevl(x, vals):
b0 = vals[0]
b1 = 0.0
for i in range(1, len(vals)):
b2 = b1
b1 = b0
b0 = x * b1 - b2 + vals[i]
return 0.5 * (b0 - b2)
def _i0_1(x):
out = paddle.exp(x) * _chbevl(x / 2.0 - 2, _i0A)
return paddle.cast(out, dtype="float32")
def _i0_2(x):
out = paddle.exp(x) * _chbevl(32.0 / x - 2.0, _i0B) / paddle.sqrt(x)
return paddle.cast(out, dtype="float32")
def _i0_dispatcher(x):
return (x, )
def i0(x):
x = paddle.abs(x)
condlist = x <= paddle.full([1], 8.0)
condlist = condlist.unsqueeze(0)
return piecewise(x, condlist, [_i0_1, _i0_2])
def _len_guards(M):
"""Handle small or incorrect window lengths"""
if int(M) != M or M < 0:
raise ValueError('Window length M must be a non-negative integer')
return M <= 1
def _extend(M, sym):
"""Extend window by 1 sample if needed for DFT-even symmetry"""
if not sym:
return M + 1, True
else:
return M, False
def _truncate(w, needed):
"""Truncate window by 1 sample if needed for DFT-even symmetry"""
if needed:
return w[:-1]
else:
return w
def kaiser(M, beta, sym=True):
if _len_guards(M):
return paddle.ones(M)
M, needs_trunc = _extend(M, sym)
n = paddle.arange(0, M)
alpha = (M - 1) / 2.0
a = i0(beta * paddle.sqrt(1 - ((n - alpha) / alpha)**2.0))
b = i0(paddle.full([1], beta))
w = a / b
return _truncate(w, needs_trunc)

@ -15,8 +15,7 @@
import numpy as np import numpy as np
import paddle import paddle
import paddle.nn.functional as F import paddle.nn.functional as F
from scipy.signal import kaiser
from parakeet.modules.kaiser import kaiser
def design_prototype_filter(taps=62, cutoff_ratio=0.142, beta=9.0): def design_prototype_filter(taps=62, cutoff_ratio=0.142, beta=9.0):
@ -41,16 +40,18 @@ def design_prototype_filter(taps=62, cutoff_ratio=0.142, beta=9.0):
# check the arguments are valid # check the arguments are valid
assert taps % 2 == 0, "The number of taps mush be even number." assert taps % 2 == 0, "The number of taps mush be even number."
assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0." assert 0.0 < cutoff_ratio < 1.0, "Cutoff ratio must be > 0.0 and < 1.0."
# make initial filter # make initial filter
omega_c = np.pi * cutoff_ratio omega_c = np.pi * cutoff_ratio
with np.errstate(invalid="ignore"): with np.errstate(invalid="ignore"):
h_i = paddle.sin(omega_c * (paddle.arange(taps + 1) - 0.5 * taps)) / ( h_i = np.sin(omega_c * (np.arange(taps + 1) - 0.5 * taps)) / (
np.pi * (paddle.arange(taps + 1) - 0.5 * taps)) np.pi * (np.arange(taps + 1) - 0.5 * taps))
h_i[taps // 2] = 1 * cutoff_ratio # fix nan due to indeterminate form h_i[taps //
2] = np.cos(0) * cutoff_ratio # fix nan due to indeterminate form
# apply kaiser window # apply kaiser window
w = kaiser(taps + 1, beta) w = kaiser(taps + 1, beta)
h = h_i * w h = h_i * w
return h return h
@ -77,24 +78,24 @@ class PQMF(paddle.nn.Layer):
Beta coefficient for kaiser window. Beta coefficient for kaiser window.
""" """
super().__init__() super().__init__()
h_proto = design_prototype_filter(taps, cutoff_ratio, beta) h_proto = design_prototype_filter(taps, cutoff_ratio, beta)
h_proto_len = paddle.shape(h_proto)[0] h_analysis = np.zeros((subbands, len(h_proto)))
h_analysis = paddle.zeros((subbands, h_proto_len)) h_synthesis = np.zeros((subbands, len(h_proto)))
h_synthesis = paddle.zeros((subbands, h_proto_len))
for k in range(subbands): for k in range(subbands):
h_analysis[k] = ( h_analysis[k] = (
2 * h_proto * 2 * h_proto * np.cos((2 * k + 1) * (np.pi / (2 * subbands)) * (
paddle.cos((2 * k + 1) * (np.pi / (2 * subbands)) * ( np.arange(taps + 1) - (taps / 2)) + (-1)**k * np.pi / 4))
paddle.arange(taps + 1) - (taps / 2)) + (-1)**k * np.pi / 4)
)
h_synthesis[k] = ( h_synthesis[k] = (
2 * h_proto * 2 * h_proto * np.cos((2 * k + 1) * (np.pi / (2 * subbands)) * (
paddle.cos((2 * k + 1) * (np.pi / (2 * subbands)) * ( np.arange(taps + 1) - (taps / 2)) - (-1)**k * np.pi / 4))
paddle.arange(taps + 1) - (taps / 2)) - (-1)**k * np.pi / 4)
) # convert to tensor
self.analysis_filter = paddle.to_tensor(
h_analysis, dtype="float32").unsqueeze(1)
self.synthesis_filter = paddle.to_tensor(
h_synthesis, dtype="float32").unsqueeze(0)
self.analysis_filter = h_analysis.unsqueeze(1)
self.synthesis_filter = h_synthesis.unsqueeze(0)
# filter for downsampling & upsampling # filter for downsampling & upsampling
updown_filter = paddle.zeros( updown_filter = paddle.zeros(
(subbands, subbands, subbands), dtype="float32") (subbands, subbands, subbands), dtype="float32")

Loading…
Cancel
Save