fix dataloader

pull/756/head
Hui Zhang 3 years ago
parent 981cecf72b
commit 5ae639196c

@ -23,7 +23,7 @@ from deepspeech.frontend.featurizer.speech_featurizer import SpeechFeaturizer
from deepspeech.frontend.normalizer import FeatureNormalizer
from deepspeech.frontend.speech import SpeechSegment
from deepspeech.frontend.utility import IGNORE_ID
from deepspeech.io.utility import pad_sequence
from deepspeech.io.utility import pad_list
from deepspeech.utils.log import Log
__all__ = ["SpeechCollator"]
@ -286,13 +286,12 @@ class SpeechCollator():
texts.append(tokens)
text_lens.append(tokens.shape[0])
padded_audios = pad_sequence(
audios, padding_value=0.0).astype(np.float32) #[B, T, D]
audio_lens = np.array(audio_lens).astype(np.int64)
padded_texts = pad_sequence(
texts, padding_value=IGNORE_ID).astype(np.int64)
text_lens = np.array(text_lens).astype(np.int64)
return utts, padded_audios, audio_lens, padded_texts, text_lens
#[B, T, D]
xs_pad = pad_list(audios, 0.0).astype(np.float32)
ilens = np.array(audio_lens).astype(np.int64)
ys_pad = pad_list(texts, IGNORE_ID).astype(np.int64)
olens = np.array(text_lens).astype(np.int64)
return utts, xs_pad, ilens, ys_pad, olens
@property
def manifest(self):

@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
from paddle.io import DataLoader
from deepspeech.frontend.utility import read_manifest
@ -30,11 +31,11 @@ class CustomConverter():
Args:
subsampling_factor (int): The subsampling factor.
dtype (paddle.dtype): Data type to convert.
dtype (np.dtype): Data type to convert.
"""
def __init__(self, subsampling_factor=1, dtype=paddle.float32):
def __init__(self, subsampling_factor=1, dtype=np.float32):
"""Construct a CustomConverter object."""
self.subsampling_factor = subsampling_factor
self.ignore_id = -1
@ -52,7 +53,7 @@ class CustomConverter():
"""
# batch should be located in list
assert len(batch) == 1
xs, ys = batch[0]
(xs, ys), utts = batch[0]
# perform subsampling
if self.subsampling_factor > 1:
@ -74,15 +75,14 @@ class CustomConverter():
else:
xs_pad = pad_list(xs, 0).astype(self.dtype)
ilens = paddle.to_tensor(ilens)
# NOTE: this is for multi-output (e.g., speech translation)
ys_pad = pad_list(
[np.array(y[0][:]) if isinstance(y, tuple) else y for y in ys],
self.ignore_id)
olens = np.array([y.shape[0] for y in ys])
return xs_pad, ilens, ys_pad, olens
olens = np.array(
[y[0].shape[0] if isinstance(y, tuple) else y.shape[0] for y in ys])
return utts, xs_pad, ilens, ys_pad, olens
class BatchDataLoader():
@ -166,7 +166,7 @@ class BatchDataLoader():
# we used an empty collate function instead which returns list
self.train_loader = DataLoader(
dataset=TransformDataset(
self.data, lambda data: self.converter([self.load(data)])),
self.data, lambda data: self.converter([self.load(data, return_uttid=True)])),
batch_size=1,
shuffle=not use_sortagrad if train_mode else False,
collate_fn=lambda x: x[0],

@ -16,7 +16,6 @@ from typing import Optional
from paddle.io import Dataset
from yacs.config import CfgNode
from deepspeech.utils.log import Log
__all__ = ["ManifestDataset", "TripletManifestDataset", "TransformDataset"]

@ -14,7 +14,9 @@
from collections import OrderedDict
from typing import List
import kaldiio
import numpy as np
import soundfile
from deepspeech.frontend.augmentor.augmentation import AugmentationPipeline
from deepspeech.utils.log import Log
@ -383,3 +385,91 @@ class LoadInputsAndTargets():
else:
raise NotImplementedError(
"Not supported: loader_type={}".format(filetype))
class SoundHDF5File():
"""Collecting sound files to a HDF5 file
>>> f = SoundHDF5File('a.flac.h5', mode='a')
>>> array = np.random.randint(0, 100, 100, dtype=np.int16)
>>> f['id'] = (array, 16000)
>>> array, rate = f['id']
:param: str filepath:
:param: str mode:
:param: str format: The type used when saving wav. flac, nist, htk, etc.
:param: str dtype:
"""
def __init__(self,
filepath,
mode="r+",
format=None,
dtype="int16",
**kwargs):
self.filepath = filepath
self.mode = mode
self.dtype = dtype
self.file = h5py.File(filepath, mode, **kwargs)
if format is None:
# filepath = a.flac.h5 -> format = flac
second_ext = os.path.splitext(os.path.splitext(filepath)[0])[1]
format = second_ext[1:]
if format.upper() not in soundfile.available_formats():
# If not found, flac is selected
format = "flac"
# This format affects only saving
self.format = format
def __repr__(self):
return '<SoundHDF5 file "{}" (mode {}, format {}, type {})>'.format(
self.filepath, self.mode, self.format, self.dtype)
def create_dataset(self, name, shape=None, data=None, **kwds):
f = io.BytesIO()
array, rate = data
soundfile.write(f, array, rate, format=self.format)
self.file.create_dataset(
name, shape=shape, data=np.void(f.getvalue()), **kwds)
def __setitem__(self, name, data):
self.create_dataset(name, data=data)
def __getitem__(self, key):
data = self.file[key][()]
f = io.BytesIO(data.tobytes())
array, rate = soundfile.read(f, dtype=self.dtype)
return array, rate
def keys(self):
return self.file.keys()
def values(self):
for k in self.file:
yield self[k]
def items(self):
for k in self.file:
yield k, self[k]
def __iter__(self):
return iter(self.file)
def __contains__(self, item):
return item in self.file
def __len__(self, item):
return len(self.file)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.file.close()
def close(self):
self.file.close()

Loading…
Cancel
Save