|
|
|
@ -58,7 +58,8 @@ class ConvolutionModule(nn.Layer):
|
|
|
|
|
kernel_size=1,
|
|
|
|
|
stride=1,
|
|
|
|
|
padding=0,
|
|
|
|
|
bias=None if bias else False, # None for True as default
|
|
|
|
|
bias_attr=None
|
|
|
|
|
if bias else False, # None for True, using bias as default config
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# self.lorder is used to distinguish if it's a causal convolution,
|
|
|
|
@ -82,7 +83,8 @@ class ConvolutionModule(nn.Layer):
|
|
|
|
|
stride=1,
|
|
|
|
|
padding=padding,
|
|
|
|
|
groups=channels,
|
|
|
|
|
bias=None if bias else False, # None for True as default
|
|
|
|
|
bias_attr=None
|
|
|
|
|
if bias else False, # None for True, using bias as default config
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
assert norm in ['batch_norm', 'layer_norm']
|
|
|
|
@ -99,7 +101,8 @@ class ConvolutionModule(nn.Layer):
|
|
|
|
|
kernel_size=1,
|
|
|
|
|
stride=1,
|
|
|
|
|
padding=0,
|
|
|
|
|
bias=None if bias else False, # None for True as default
|
|
|
|
|
bias_attr=None
|
|
|
|
|
if bias else False, # None for True, using bias as default config
|
|
|
|
|
)
|
|
|
|
|
self.activation = activation
|
|
|
|
|
|
|
|
|
@ -109,10 +112,10 @@ class ConvolutionModule(nn.Layer):
|
|
|
|
|
Args:
|
|
|
|
|
x (paddle.Tensor): Input tensor (#batch, time, channels).
|
|
|
|
|
cache (paddle.Tensor): left context cache, it is only
|
|
|
|
|
used in causal convolution. (#batch, channels, time)
|
|
|
|
|
used in causal convolution. (#batch, channels, time')
|
|
|
|
|
Returns:
|
|
|
|
|
paddle.Tensor: Output tensor (#batch, time, channels).
|
|
|
|
|
paddle.Tensor: Output cache tensor (#batch, channels, time)
|
|
|
|
|
paddle.Tensor: Output cache tensor (#batch, channels, time')
|
|
|
|
|
"""
|
|
|
|
|
# exchange the temporal dimension and the feature dimension
|
|
|
|
|
x = x.transpose([0, 2, 1]) # [B, C, T]
|
|
|
|
|