Merge pull request #371 from lfchener/update-rm

upadte README.md and README_cn.md
pull/374/head
Li Fuchen 5 years ago committed by GitHub
commit 5834f66ed6
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -1,5 +1,7 @@
# DeepSpeech2 on PaddlePaddle # DeepSpeech2 on PaddlePaddle
[中文版](README_cn.md)
*DeepSpeech2 on PaddlePaddle* is an open-source implementation of end-to-end Automatic Speech Recognition (ASR) engine, based on [Baidu's Deep Speech 2 paper](http://proceedings.mlr.press/v48/amodei16.pdf), with [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform. Our vision is to empower both industrial application and academic research on speech recognition, via an easy-to-use, efficient and scalable implementation, including training, inference & testing module, and demo deployment. Besides, several pre-trained models for both English and Mandarin are also released. *DeepSpeech2 on PaddlePaddle* is an open-source implementation of end-to-end Automatic Speech Recognition (ASR) engine, based on [Baidu's Deep Speech 2 paper](http://proceedings.mlr.press/v48/amodei16.pdf), with [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) platform. Our vision is to empower both industrial application and academic research on speech recognition, via an easy-to-use, efficient and scalable implementation, including training, inference & testing module, and demo deployment. Besides, several pre-trained models for both English and Mandarin are also released.
## Table of Contents ## Table of Contents

@ -1,5 +1,7 @@
# 语音识别: DeepSpeech2 # 语音识别: DeepSpeech2
[English](README.md)
*DeepSpeech2*是一个采用[PaddlePaddle](https://github.com/PaddlePaddle/Paddle)平台的端到端自动语音识别ASR引擎的开源项目具体原理参考这篇论文[Baidu's Deep Speech 2 paper](http://proceedings.mlr.press/v48/amodei16.pdf)。 *DeepSpeech2*是一个采用[PaddlePaddle](https://github.com/PaddlePaddle/Paddle)平台的端到端自动语音识别ASR引擎的开源项目具体原理参考这篇论文[Baidu's Deep Speech 2 paper](http://proceedings.mlr.press/v48/amodei16.pdf)。
我们的愿景是为语音识别在工业应用和学术研究上,提供易于使用、高效和可扩展的工具,包括训练,推理,测试模块,以及 demo 部署。同时,我们还将发布一些预训练好的英语和普通话模型。 我们的愿景是为语音识别在工业应用和学术研究上,提供易于使用、高效和可扩展的工具,包括训练,推理,测试模块,以及 demo 部署。同时,我们还将发布一些预训练好的英语和普通话模型。

Loading…
Cancel
Save