Merge pull request #2044 from freeliuzc/updata_doc

Updata doc
pull/2056/head
Hui Zhang 3 years ago committed by GitHub
commit 56eb1f0ebf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -139,28 +139,13 @@ pip install . -i https://pypi.tuna.tsinghua.edu.cn/simple
To avoid the trouble of environment setup, running in a Docker container is highly recommended. Otherwise, if you work on `Ubuntu` with `root` privilege, you can still complete the installation.
### Choice 1: Running in Docker Container (Recommend)
Docker is an open-source tool to build, ship, and run distributed applications in an isolated environment. A Docker image for this project has been provided in [hub.docker.com](https://hub.docker.com) with dependencies of cuda and cudnn installed. This Docker image requires the support of NVIDIA GPU, so please make sure its availability and the [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) has been installed.
Docker is an open-source tool to build, ship, and run distributed applications in an isolated environment. If you do not have a Docker environment, please refer to [Docker](https://www.docker.com/). If you will use GPU version, you also need to install [nvidia-docker](https://github.com/NVIDIA/nvidia-docker).
Take several steps to launch the Docker image:
- Download the Docker image
We provide docker images containing the latest PaddleSpeech code, and all environment and package dependencies are pre-installed. All you have to do is to **pull and run the docker image**. Then you can enjoy PaddleSpeech without any extra steps.
For example, pull paddle 2.2.0 image:
```bash
sudo nvidia-docker pull registry.baidubce.com/paddlepaddle/paddle:2.2.0-gpu-cuda10.2-cudnn7
```
- Clone this repository
```bash
git clone https://github.com/PaddlePaddle/PaddleSpeech.git
```
- Run the Docker image
```bash
sudo nvidia-docker run --net=host --ipc=host --rm -it -v $(pwd)/PaddleSpeech:/PaddleSpeech registry.baidubce.com/paddlepaddle/paddle:2.2.0-gpu-cuda10.2-cudnn7 /bin/bash
```
- Enter PaddleSpeech directory.
```bash
cd /PaddleSpeech
```
Now you can execute training, inference, and hyper-parameters tuning in Docker container.
Get these images and guidance in [docker hub](https://hub.docker.com/repository/docker/paddlecloud/paddlespeech), including CPU, GPU, ROCm environment versions.
If you have some customized requirements about automatic building docker images, you can get it in github repo [PaddlePaddle/PaddleCloud](https://github.com/PaddlePaddle/PaddleCloud/tree/main/tekton).
### Choice 2: Running in Ubuntu with Root Privilege
- Install `build-essential` by apt

@ -130,26 +130,14 @@ pip install . -i https://pypi.tuna.tsinghua.edu.cn/simple
- 选择 2 使用`Ubuntu` ,并且拥有 root 权限。
为了避免各种环境配置问题,我们非常推荐你使用 docker 容器。如果你不想使用 docker但是可以使用拥有 root 权限的 Ubuntu 系统,你也可以完成**困难**方式的安装。
### 选择1 使用Docker容器推荐
Docker 是一种开源工具,用于在和系统本身环境相隔离的环境中构建、发布和运行各类应用程序。你可以访问 [hub.docker.com](https://hub.docker.com) 来下载各种版本的 docker目前已经有适用于 `PaddleSpeech` 的 docker 提供在了该网站上。Docker 镜像需要使用 Nvidia GPU所以你也需要提前安装好 [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) 。
你需要完成几个步骤来启动docker
- 下载 docker 镜像:
例如,拉取 paddle2.2.0 镜像:
```bash
sudo nvidia-docker pull registry.baidubce.com/paddlepaddle/paddle:2.2.0-gpu-cuda10.2-cudnn7
```
- 克隆 `PaddleSpeech` 仓库
```bash
git clone https://github.com/PaddlePaddle/PaddleSpeech.git
```
- 启动 docker 镜像
```bash
sudo nvidia-docker run --net=host --ipc=host --rm -it -v $(pwd)/PaddleSpeech:/PaddleSpeech registry.baidubce.com/paddlepaddle/paddle:2.2.0-gpu-cuda10.2-cudnn7 /bin/bash
```
- 进入 PaddleSpeech 目录
```bash
cd /PaddleSpeech
```
### 选择1 使用 Docker 容器(推荐)
Docker 是一种开源工具,用于在和系统本身环境相隔离的环境中构建、发布和运行各类应用程序。如果您没有 Docker 运行环境,请参考 [Docker 官网](https://www.docker.com/)进行安装,如果您准备使用 GPU 版本镜像,还需要提前安装好 [nvidia-docker](https://github.com/NVIDIA/nvidia-docker) 。
我们提供了包含最新 PaddleSpeech 代码的 docker 镜像,并预先安装好了所有的环境和库依赖,您只需要**拉取并运行 docker 镜像**,无需其他任何额外操作,即可开始享用 PaddleSpeech 的所有功能。
在 [Docker Hub](https://hub.docker.com/repository/docker/paddlecloud/paddlespeech) 中获取这些镜像及相应的使用指南,包括 CPU、GPU、ROCm 版本。
如果您对自动化制作docker镜像感兴趣或有自定义需求请访问 [PaddlePaddle/PaddleCloud](https://github.com/PaddlePaddle/PaddleCloud/tree/main/tekton) 做进一步了解。
完成这些以后,你就可以在 docker 容器中执行训练、推理和超参 fine-tune。
### 选择2 使用有 root 权限的 Ubuntu
- 使用apt安装 `build-essential`

Loading…
Cancel
Save