commit
5047e8786c
@ -0,0 +1,45 @@
|
||||
#!/bin/bash
|
||||
|
||||
if [ $# != 3 ];then
|
||||
echo "usage: ${0} config_path ckpt_path_prefix audio_file"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
|
||||
echo "using $ngpu gpus..."
|
||||
|
||||
config_path=$1
|
||||
ckpt_prefix=$2
|
||||
audio_file=$3
|
||||
|
||||
chunk_mode=false
|
||||
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
|
||||
chunk_mode=true
|
||||
fi
|
||||
|
||||
# download language model
|
||||
#bash local/download_lm_ch.sh
|
||||
#if [ $? -ne 0 ]; then
|
||||
# exit 1
|
||||
#fi
|
||||
|
||||
for type in attention_rescoring; do
|
||||
echo "decoding ${type}"
|
||||
batch_size=1
|
||||
output_dir=${ckpt_prefix}
|
||||
mkdir -p ${output_dir}
|
||||
python3 -u ${BIN_DIR}/test_wav.py \
|
||||
--nproc ${ngpu} \
|
||||
--config ${config_path} \
|
||||
--result_file ${output_dir}/${type}.rsl \
|
||||
--checkpoint_path ${ckpt_prefix} \
|
||||
--opts decoding.decoding_method ${type} \
|
||||
--opts decoding.batch_size ${batch_size} \
|
||||
--audio_file ${audio_file}
|
||||
|
||||
if [ $? -ne 0 ]; then
|
||||
echo "Failed in evaluation!"
|
||||
exit 1
|
||||
fi
|
||||
done
|
||||
exit 0
|
@ -1,187 +0,0 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Evaluation for U2 model."""
|
||||
import cProfile
|
||||
import os
|
||||
import sys
|
||||
|
||||
import paddle
|
||||
import soundfile
|
||||
|
||||
from paddlespeech.s2t.exps.u2.config import get_cfg_defaults
|
||||
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
||||
from paddlespeech.s2t.io.collator import SpeechCollator
|
||||
from paddlespeech.s2t.models.u2 import U2Model
|
||||
from paddlespeech.s2t.training.cli import default_argument_parser
|
||||
from paddlespeech.s2t.training.trainer import Trainer
|
||||
from paddlespeech.s2t.utils import layer_tools
|
||||
from paddlespeech.s2t.utils import mp_tools
|
||||
from paddlespeech.s2t.utils.log import Log
|
||||
from paddlespeech.s2t.utils.utility import print_arguments
|
||||
from paddlespeech.s2t.utils.utility import UpdateConfig
|
||||
logger = Log(__name__).getlog()
|
||||
|
||||
# TODO(hui zhang): dynamic load
|
||||
|
||||
|
||||
class U2Tester_Hub(Trainer):
|
||||
def __init__(self, config, args):
|
||||
# super().__init__(config, args)
|
||||
self.args = args
|
||||
self.config = config
|
||||
self.audio_file = args.audio_file
|
||||
self.collate_fn_test = SpeechCollator.from_config(config)
|
||||
self._text_featurizer = TextFeaturizer(
|
||||
unit_type=config.collator.unit_type,
|
||||
vocab_filepath=None,
|
||||
spm_model_prefix=config.collator.spm_model_prefix)
|
||||
|
||||
def setup_model(self):
|
||||
config = self.config
|
||||
model_conf = config.model
|
||||
|
||||
with UpdateConfig(model_conf):
|
||||
model_conf.input_dim = self.collate_fn_test.feature_size
|
||||
model_conf.output_dim = self.collate_fn_test.vocab_size
|
||||
|
||||
model = U2Model.from_config(model_conf)
|
||||
|
||||
if self.parallel:
|
||||
model = paddle.DataParallel(model)
|
||||
|
||||
logger.info(f"{model}")
|
||||
layer_tools.print_params(model, logger.info)
|
||||
|
||||
self.model = model
|
||||
logger.info("Setup model")
|
||||
|
||||
@mp_tools.rank_zero_only
|
||||
@paddle.no_grad()
|
||||
def test(self):
|
||||
self.model.eval()
|
||||
cfg = self.config.decoding
|
||||
audio_file = self.audio_file
|
||||
collate_fn_test = self.collate_fn_test
|
||||
audio, _ = collate_fn_test.process_utterance(
|
||||
audio_file=audio_file, transcript="Hello")
|
||||
audio_len = audio.shape[0]
|
||||
audio = paddle.to_tensor(audio, dtype='float32')
|
||||
audio_len = paddle.to_tensor(audio_len)
|
||||
audio = paddle.unsqueeze(audio, axis=0)
|
||||
vocab_list = collate_fn_test.vocab_list
|
||||
|
||||
text_feature = self.collate_fn_test.text_feature
|
||||
result_transcripts = self.model.decode(
|
||||
audio,
|
||||
audio_len,
|
||||
text_feature=text_feature,
|
||||
decoding_method=cfg.decoding_method,
|
||||
lang_model_path=cfg.lang_model_path,
|
||||
beam_alpha=cfg.alpha,
|
||||
beam_beta=cfg.beta,
|
||||
beam_size=cfg.beam_size,
|
||||
cutoff_prob=cfg.cutoff_prob,
|
||||
cutoff_top_n=cfg.cutoff_top_n,
|
||||
num_processes=cfg.num_proc_bsearch,
|
||||
ctc_weight=cfg.ctc_weight,
|
||||
decoding_chunk_size=cfg.decoding_chunk_size,
|
||||
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
|
||||
simulate_streaming=cfg.simulate_streaming)
|
||||
logger.info("The result_transcripts: " + result_transcripts[0][0])
|
||||
|
||||
def run_test(self):
|
||||
self.resume()
|
||||
try:
|
||||
self.test()
|
||||
except KeyboardInterrupt:
|
||||
sys.exit(-1)
|
||||
|
||||
def setup(self):
|
||||
"""Setup the experiment.
|
||||
"""
|
||||
paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
|
||||
|
||||
#self.setup_output_dir()
|
||||
#self.setup_checkpointer()
|
||||
|
||||
#self.setup_dataloader()
|
||||
self.setup_model()
|
||||
|
||||
self.iteration = 0
|
||||
self.epoch = 0
|
||||
|
||||
def resume(self):
|
||||
"""Resume from the checkpoint at checkpoints in the output
|
||||
directory or load a specified checkpoint.
|
||||
"""
|
||||
params_path = self.args.checkpoint_path + ".pdparams"
|
||||
model_dict = paddle.load(params_path)
|
||||
self.model.set_state_dict(model_dict)
|
||||
|
||||
|
||||
def check(audio_file):
|
||||
logger.info("checking the audio file format......")
|
||||
try:
|
||||
sig, sample_rate = soundfile.read(audio_file)
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
logger.error(
|
||||
"can not open the wav file, please check the audio file format")
|
||||
sys.exit(-1)
|
||||
logger.info("The sample rate is %d" % sample_rate)
|
||||
assert (sample_rate == 16000)
|
||||
logger.info("The audio file format is right")
|
||||
|
||||
|
||||
def main_sp(config, args):
|
||||
exp = U2Tester_Hub(config, args)
|
||||
with exp.eval():
|
||||
exp.setup()
|
||||
exp.run_test()
|
||||
|
||||
|
||||
def main(config, args):
|
||||
main_sp(config, args)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = default_argument_parser()
|
||||
# save asr result to
|
||||
parser.add_argument(
|
||||
"--result_file", type=str, help="path of save the asr result")
|
||||
parser.add_argument(
|
||||
"--audio_file", type=str, help="path of the input audio file")
|
||||
args = parser.parse_args()
|
||||
print_arguments(args, globals())
|
||||
|
||||
if not os.path.isfile(args.audio_file):
|
||||
print("Please input the right audio file path")
|
||||
sys.exit(-1)
|
||||
check(args.audio_file)
|
||||
# https://yaml.org/type/float.html
|
||||
config = get_cfg_defaults()
|
||||
if args.config:
|
||||
config.merge_from_file(args.config)
|
||||
if args.opts:
|
||||
config.merge_from_list(args.opts)
|
||||
config.freeze()
|
||||
print(config)
|
||||
if args.dump_config:
|
||||
with open(args.dump_config, 'w') as f:
|
||||
print(config, file=f)
|
||||
|
||||
# Setting for profiling
|
||||
pr = cProfile.Profile()
|
||||
pr.runcall(main, config, args)
|
||||
pr.dump_stats('test.profile')
|
@ -0,0 +1,148 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Evaluation for U2 model."""
|
||||
import os
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
import paddle
|
||||
import soundfile
|
||||
|
||||
from paddlespeech.s2t.exps.u2.config import get_cfg_defaults
|
||||
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
|
||||
from paddlespeech.s2t.models.u2 import U2Model
|
||||
from paddlespeech.s2t.training.cli import default_argument_parser
|
||||
from paddlespeech.s2t.transform.transformation import Transformation
|
||||
from paddlespeech.s2t.utils.log import Log
|
||||
from paddlespeech.s2t.utils.utility import UpdateConfig
|
||||
logger = Log(__name__).getlog()
|
||||
|
||||
# TODO(hui zhang): dynamic load
|
||||
|
||||
|
||||
class U2Infer():
|
||||
def __init__(self, config, args):
|
||||
self.args = args
|
||||
self.config = config
|
||||
self.audio_file = args.audio_file
|
||||
self.sr = config.collator.target_sample_rate
|
||||
|
||||
self.preprocess_conf = config.collator.augmentation_config
|
||||
self.preprocess_args = {"train": False}
|
||||
self.preprocessing = Transformation(self.preprocess_conf)
|
||||
|
||||
self.text_feature = TextFeaturizer(
|
||||
unit_type=config.collator.unit_type,
|
||||
vocab_filepath=config.collator.vocab_filepath,
|
||||
spm_model_prefix=config.collator.spm_model_prefix)
|
||||
|
||||
paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
|
||||
|
||||
# model
|
||||
model_conf = config.model
|
||||
with UpdateConfig(model_conf):
|
||||
model_conf.input_dim = config.collator.feat_dim
|
||||
model_conf.output_dim = self.text_feature.vocab_size
|
||||
model = U2Model.from_config(model_conf)
|
||||
self.model = model
|
||||
self.model.eval()
|
||||
|
||||
# load model
|
||||
params_path = self.args.checkpoint_path + ".pdparams"
|
||||
model_dict = paddle.load(params_path)
|
||||
self.model.set_state_dict(model_dict)
|
||||
|
||||
def run(self):
|
||||
check(args.audio_file)
|
||||
|
||||
with paddle.no_grad():
|
||||
# read
|
||||
audio, sample_rate = soundfile.read(
|
||||
self.audio_file, dtype="int16", always_2d=True)
|
||||
if sample_rate != self.sr:
|
||||
logger.error(
|
||||
f"sample rate error: {sample_rate}, need {self.sr} ")
|
||||
sys.exit(-1)
|
||||
|
||||
audio = audio[:, 0]
|
||||
logger.info(f"audio shape: {audio.shape}")
|
||||
|
||||
# fbank
|
||||
feat = self.preprocessing(audio, **self.preprocess_args)
|
||||
logger.info(f"feat shape: {feat.shape}")
|
||||
|
||||
ilen = paddle.to_tensor(feat.shape[0])
|
||||
xs = paddle.to_tensor(feat, dtype='float32').unsqueeze(axis=0)
|
||||
|
||||
cfg = self.config.decoding
|
||||
result_transcripts = self.model.decode(
|
||||
xs,
|
||||
ilen,
|
||||
text_feature=self.text_feature,
|
||||
decoding_method=cfg.decoding_method,
|
||||
lang_model_path=cfg.lang_model_path,
|
||||
beam_alpha=cfg.alpha,
|
||||
beam_beta=cfg.beta,
|
||||
beam_size=cfg.beam_size,
|
||||
cutoff_prob=cfg.cutoff_prob,
|
||||
cutoff_top_n=cfg.cutoff_top_n,
|
||||
num_processes=cfg.num_proc_bsearch,
|
||||
ctc_weight=cfg.ctc_weight,
|
||||
decoding_chunk_size=cfg.decoding_chunk_size,
|
||||
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
|
||||
simulate_streaming=cfg.simulate_streaming)
|
||||
rsl = result_transcripts[0][0]
|
||||
utt = Path(self.audio_file).name
|
||||
logger.info(f"hyp: {utt} {result_transcripts[0][0]}")
|
||||
return rsl
|
||||
|
||||
|
||||
def check(audio_file):
|
||||
if not os.path.isfile(audio_file):
|
||||
print("Please input the right audio file path")
|
||||
sys.exit(-1)
|
||||
|
||||
logger.info("checking the audio file format......")
|
||||
try:
|
||||
sig, sample_rate = soundfile.read(audio_file)
|
||||
except Exception as e:
|
||||
logger.error(str(e))
|
||||
logger.error(
|
||||
"can not open the wav file, please check the audio file format")
|
||||
sys.exit(-1)
|
||||
logger.info("The sample rate is %d" % sample_rate)
|
||||
assert (sample_rate == 16000)
|
||||
logger.info("The audio file format is right")
|
||||
|
||||
|
||||
def main(config, args):
|
||||
U2Infer(config, args).run()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = default_argument_parser()
|
||||
# save asr result to
|
||||
parser.add_argument(
|
||||
"--result_file", type=str, help="path of save the asr result")
|
||||
parser.add_argument(
|
||||
"--audio_file", type=str, help="path of the input audio file")
|
||||
args = parser.parse_args()
|
||||
|
||||
config = get_cfg_defaults()
|
||||
if args.config:
|
||||
config.merge_from_file(args.config)
|
||||
if args.opts:
|
||||
config.merge_from_list(args.opts)
|
||||
config.freeze()
|
||||
main(config, args)
|
Loading…
Reference in new issue