|
|
@ -148,7 +148,7 @@ def evaluate(args):
|
|
|
|
# multi speaker
|
|
|
|
# multi speaker
|
|
|
|
if am_dataset in {"aishell3", "vctk", "mix", "canton"}:
|
|
|
|
if am_dataset in {"aishell3", "vctk", "mix", "canton"}:
|
|
|
|
# multi-speaker
|
|
|
|
# multi-speaker
|
|
|
|
spk_id = paddle.to_tensor(args.spk_id)
|
|
|
|
spk_id = paddle.to_tensor([args.spk_id])
|
|
|
|
mel = am_inference(part_phone_ids, spk_id)
|
|
|
|
mel = am_inference(part_phone_ids, spk_id)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
# single-speaker
|
|
|
|
# single-speaker
|
|
|
@ -157,7 +157,7 @@ def evaluate(args):
|
|
|
|
part_tone_ids = frontend_dict['tone_ids'][i]
|
|
|
|
part_tone_ids = frontend_dict['tone_ids'][i]
|
|
|
|
if am_dataset in {"aishell3", "vctk", "mix"}:
|
|
|
|
if am_dataset in {"aishell3", "vctk", "mix"}:
|
|
|
|
# multi-speaker
|
|
|
|
# multi-speaker
|
|
|
|
spk_id = paddle.to_tensor(args.spk_id)
|
|
|
|
spk_id = paddle.to_tensor([args.spk_id])
|
|
|
|
mel = am_inference(part_phone_ids, part_tone_ids,
|
|
|
|
mel = am_inference(part_phone_ids, part_tone_ids,
|
|
|
|
spk_id)
|
|
|
|
spk_id)
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|