Merge pull request #1225 from Jackwaterveg/new_config
[ASR][Config]refactor the train and test configpull/1269/head
commit
4cab9f625b
@ -1,70 +1,68 @@
|
|||||||
# https://yaml.org/type/float.html
|
# https://yaml.org/type/float.html
|
||||||
data:
|
###########################################
|
||||||
train_manifest: data/manifest.train
|
# Data #
|
||||||
dev_manifest: data/manifest.dev
|
###########################################
|
||||||
test_manifest: data/manifest.test
|
train_manifest: data/manifest.train
|
||||||
min_input_len: 0.0
|
dev_manifest: data/manifest.dev
|
||||||
max_input_len: 27.0 # second
|
test_manifest: data/manifest.test
|
||||||
min_output_len: 0.0
|
min_input_len: 0.0
|
||||||
max_output_len: .inf
|
max_input_len: 27.0 # second
|
||||||
min_output_input_ratio: 0.00
|
min_output_len: 0.0
|
||||||
max_output_input_ratio: .inf
|
max_output_len: .inf
|
||||||
|
min_output_input_ratio: 0.00
|
||||||
|
max_output_input_ratio: .inf
|
||||||
|
|
||||||
collator:
|
###########################################
|
||||||
batch_size: 64 # one gpu
|
# Dataloader #
|
||||||
mean_std_filepath: data/mean_std.json
|
###########################################
|
||||||
unit_type: char
|
batch_size: 64 # one gpu
|
||||||
vocab_filepath: data/lang_char/vocab.txt
|
mean_std_filepath: data/mean_std.json
|
||||||
augmentation_config: conf/augmentation.json
|
unit_type: char
|
||||||
random_seed: 0
|
vocab_filepath: data/lang_char/vocab.txt
|
||||||
spm_model_prefix:
|
augmentation_config: conf/augmentation.json
|
||||||
spectrum_type: linear #linear, mfcc, fbank
|
random_seed: 0
|
||||||
feat_dim:
|
spm_model_prefix:
|
||||||
delta_delta: False
|
spectrum_type: linear #linear, mfcc, fbank
|
||||||
stride_ms: 10.0
|
feat_dim:
|
||||||
window_ms: 20.0
|
delta_delta: False
|
||||||
n_fft: None
|
stride_ms: 10.0
|
||||||
max_freq: None
|
window_ms: 20.0
|
||||||
target_sample_rate: 16000
|
n_fft: None
|
||||||
use_dB_normalization: True
|
max_freq: None
|
||||||
target_dB: -20
|
target_sample_rate: 16000
|
||||||
dither: 1.0
|
use_dB_normalization: True
|
||||||
keep_transcription_text: False
|
target_dB: -20
|
||||||
sortagrad: True
|
dither: 1.0
|
||||||
shuffle_method: batch_shuffle
|
keep_transcription_text: False
|
||||||
num_workers: 0
|
sortagrad: True
|
||||||
|
shuffle_method: batch_shuffle
|
||||||
|
num_workers: 0
|
||||||
|
|
||||||
model:
|
############################################
|
||||||
num_conv_layers: 2
|
# Network Architecture #
|
||||||
num_rnn_layers: 5
|
############################################
|
||||||
rnn_layer_size: 1024
|
num_conv_layers: 2
|
||||||
rnn_direction: forward # [forward, bidirect]
|
num_rnn_layers: 5
|
||||||
num_fc_layers: 0
|
rnn_layer_size: 1024
|
||||||
fc_layers_size_list: -1,
|
rnn_direction: forward # [forward, bidirect]
|
||||||
use_gru: False
|
num_fc_layers: 0
|
||||||
blank_id: 0
|
fc_layers_size_list: -1,
|
||||||
|
use_gru: False
|
||||||
|
blank_id: 0
|
||||||
|
|
||||||
|
|
||||||
training:
|
###########################################
|
||||||
n_epoch: 65
|
# Training #
|
||||||
accum_grad: 1
|
###########################################
|
||||||
lr: 5e-4
|
n_epoch: 65
|
||||||
lr_decay: 0.93
|
accum_grad: 1
|
||||||
weight_decay: 1e-06
|
lr: 5e-4
|
||||||
global_grad_clip: 3.0
|
lr_decay: 0.93
|
||||||
log_interval: 100
|
weight_decay: 1e-06
|
||||||
checkpoint:
|
global_grad_clip: 3.0
|
||||||
|
log_interval: 100
|
||||||
|
checkpoint:
|
||||||
kbest_n: 50
|
kbest_n: 50
|
||||||
latest_n: 5
|
latest_n: 5
|
||||||
|
|
||||||
decoding:
|
|
||||||
batch_size: 32
|
|
||||||
error_rate_type: cer
|
|
||||||
decoding_method: ctc_beam_search
|
|
||||||
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
|
|
||||||
alpha: 2.2 #1.9
|
|
||||||
beta: 4.3
|
|
||||||
beam_size: 300
|
|
||||||
cutoff_prob: 0.99
|
|
||||||
cutoff_top_n: 40
|
|
||||||
num_proc_bsearch: 10
|
|
||||||
|
@ -0,0 +1,10 @@
|
|||||||
|
chunk_batch_size: 32
|
||||||
|
error_rate_type: cer
|
||||||
|
decoding_method: ctc_beam_search
|
||||||
|
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
|
||||||
|
alpha: 2.2 #1.9
|
||||||
|
beta: 4.3
|
||||||
|
beam_size: 300
|
||||||
|
cutoff_prob: 0.99
|
||||||
|
cutoff_top_n: 40
|
||||||
|
num_proc_bsearch: 10
|
@ -0,0 +1,10 @@
|
|||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: cer
|
||||||
|
decoding_method: ctc_beam_search
|
||||||
|
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
|
||||||
|
alpha: 1.9
|
||||||
|
beta: 5.0
|
||||||
|
beam_size: 300
|
||||||
|
cutoff_prob: 0.99
|
||||||
|
cutoff_top_n: 40
|
||||||
|
num_proc_bsearch: 10
|
@ -0,0 +1,11 @@
|
|||||||
|
beam_size: 10
|
||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: cer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
@ -0,0 +1,11 @@
|
|||||||
|
beam_size: 10
|
||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: cer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
@ -0,0 +1,11 @@
|
|||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: cer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
beam_size: 10
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: true # simulate streaming inference. Defaults to False.
|
@ -0,0 +1,13 @@
|
|||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: cer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
beam_size: 10
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
||||||
|
|
||||||
|
|
@ -0,0 +1,10 @@
|
|||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: ctc_beam_search
|
||||||
|
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||||
|
alpha: 1.9
|
||||||
|
beta: 0.3
|
||||||
|
beam_size: 500
|
||||||
|
cutoff_prob: 1.0
|
||||||
|
cutoff_top_n: 40
|
||||||
|
num_proc_bsearch: 8
|
@ -0,0 +1,10 @@
|
|||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: ctc_beam_search
|
||||||
|
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||||
|
alpha: 1.9
|
||||||
|
beta: 0.3
|
||||||
|
beam_size: 500
|
||||||
|
cutoff_prob: 1.0
|
||||||
|
cutoff_top_n: 40
|
||||||
|
num_proc_bsearch: 8
|
@ -0,0 +1,11 @@
|
|||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
beam_size: 10
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: true # simulate streaming inference. Defaults to False.
|
@ -0,0 +1,11 @@
|
|||||||
|
decode_batch_size: 64
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
beam_size: 10
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
@ -0,0 +1,11 @@
|
|||||||
|
decode_batch_size: 1
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
beam_size: 10
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
@ -1,67 +1,65 @@
|
|||||||
# https://yaml.org/type/float.html
|
# https://yaml.org/type/float.html
|
||||||
data:
|
###########################################
|
||||||
train_manifest: data/manifest.train
|
# Data #
|
||||||
dev_manifest: data/manifest.dev
|
###########################################
|
||||||
test_manifest: data/manifest.test
|
train_manifest: data/manifest.train
|
||||||
min_input_len: 0.0
|
dev_manifest: data/manifest.dev
|
||||||
max_input_len: 27.0 # second
|
test_manifest: data/manifest.test
|
||||||
min_output_len: 0.0
|
min_input_len: 0.0
|
||||||
max_output_len: .inf
|
max_input_len: 27.0 # second
|
||||||
min_output_input_ratio: 0.00
|
min_output_len: 0.0
|
||||||
max_output_input_ratio: .inf
|
max_output_len: .inf
|
||||||
|
min_output_input_ratio: 0.00
|
||||||
|
max_output_input_ratio: .inf
|
||||||
|
|
||||||
collator:
|
###########################################
|
||||||
batch_size: 64 # one gpu
|
# Dataloader #
|
||||||
mean_std_filepath: data/mean_std.npz
|
###########################################
|
||||||
unit_type: char
|
batch_size: 64 # one gpu
|
||||||
vocab_filepath: data/vocab.txt
|
mean_std_filepath: data/mean_std.npz
|
||||||
augmentation_config: conf/augmentation.json
|
unit_type: char
|
||||||
random_seed: 0
|
vocab_filepath: data/vocab.txt
|
||||||
spm_model_prefix:
|
augmentation_config: conf/augmentation.json
|
||||||
spectrum_type: linear
|
random_seed: 0
|
||||||
feat_dim:
|
spm_model_prefix:
|
||||||
delta_delta: False
|
spectrum_type: linear
|
||||||
stride_ms: 10.0
|
feat_dim:
|
||||||
window_ms: 20.0
|
delta_delta: False
|
||||||
n_fft: None
|
stride_ms: 10.0
|
||||||
max_freq: None
|
window_ms: 20.0
|
||||||
target_sample_rate: 16000
|
n_fft: None
|
||||||
use_dB_normalization: True
|
max_freq: None
|
||||||
target_dB: -20
|
target_sample_rate: 16000
|
||||||
dither: 1.0
|
use_dB_normalization: True
|
||||||
keep_transcription_text: False
|
target_dB: -20
|
||||||
sortagrad: True
|
dither: 1.0
|
||||||
shuffle_method: batch_shuffle
|
keep_transcription_text: False
|
||||||
num_workers: 2
|
sortagrad: True
|
||||||
|
shuffle_method: batch_shuffle
|
||||||
|
num_workers: 2
|
||||||
|
|
||||||
model:
|
############################################
|
||||||
num_conv_layers: 2
|
# Network Architecture #
|
||||||
num_rnn_layers: 3
|
############################################
|
||||||
rnn_layer_size: 1024
|
num_conv_layers: 2
|
||||||
use_gru: True
|
num_rnn_layers: 3
|
||||||
share_rnn_weights: False
|
rnn_layer_size: 1024
|
||||||
blank_id: 4333
|
use_gru: True
|
||||||
|
share_rnn_weights: False
|
||||||
|
blank_id: 4333
|
||||||
|
|
||||||
training:
|
###########################################
|
||||||
n_epoch: 80
|
# Training #
|
||||||
accum_grad: 1
|
###########################################
|
||||||
lr: 2e-3
|
n_epoch: 80
|
||||||
lr_decay: 0.83
|
accum_grad: 1
|
||||||
weight_decay: 1e-06
|
lr: 2e-3
|
||||||
global_grad_clip: 3.0
|
lr_decay: 0.83
|
||||||
log_interval: 100
|
weight_decay: 1e-06
|
||||||
checkpoint:
|
global_grad_clip: 3.0
|
||||||
|
log_interval: 100
|
||||||
|
checkpoint:
|
||||||
kbest_n: 50
|
kbest_n: 50
|
||||||
latest_n: 5
|
latest_n: 5
|
||||||
|
|
||||||
decoding:
|
|
||||||
batch_size: 32
|
|
||||||
error_rate_type: cer
|
|
||||||
decoding_method: ctc_beam_search
|
|
||||||
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
|
|
||||||
alpha: 2.6
|
|
||||||
beta: 5.0
|
|
||||||
beam_size: 300
|
|
||||||
cutoff_prob: 0.99
|
|
||||||
cutoff_top_n: 40
|
|
||||||
num_proc_bsearch: 8
|
|
||||||
|
@ -0,0 +1,10 @@
|
|||||||
|
decode_batch_size: 32
|
||||||
|
error_rate_type: cer
|
||||||
|
decoding_method: ctc_beam_search
|
||||||
|
lang_model_path: data/lm/zh_giga.no_cna_cmn.prune01244.klm
|
||||||
|
alpha: 2.6
|
||||||
|
beta: 5.0
|
||||||
|
beam_size: 300
|
||||||
|
cutoff_prob: 0.99
|
||||||
|
cutoff_top_n: 40
|
||||||
|
num_proc_bsearch: 8
|
@ -0,0 +1,10 @@
|
|||||||
|
decode_batch_size: 32
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: ctc_beam_search
|
||||||
|
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||||
|
alpha: 1.4
|
||||||
|
beta: 0.35
|
||||||
|
beam_size: 500
|
||||||
|
cutoff_prob: 1.0
|
||||||
|
cutoff_top_n: 40
|
||||||
|
num_proc_bsearch: 8
|
@ -0,0 +1,10 @@
|
|||||||
|
decode_batch_size: 32
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: ctc_beam_search
|
||||||
|
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||||
|
alpha: 2.5
|
||||||
|
beta: 0.3
|
||||||
|
beam_size: 500
|
||||||
|
cutoff_prob: 1.0
|
||||||
|
cutoff_top_n: 40
|
||||||
|
num_proc_bsearch: 8
|
@ -0,0 +1,25 @@
|
|||||||
|
process:
|
||||||
|
# extract kaldi fbank from PCM
|
||||||
|
- type: fbank_kaldi
|
||||||
|
fs: 16000
|
||||||
|
n_mels: 80
|
||||||
|
n_shift: 160
|
||||||
|
win_length: 400
|
||||||
|
dither: 0.1
|
||||||
|
- type: cmvn_json
|
||||||
|
cmvn_path: data/mean_std.json
|
||||||
|
# these three processes are a.k.a. SpecAugument
|
||||||
|
- type: time_warp
|
||||||
|
max_time_warp: 5
|
||||||
|
inplace: true
|
||||||
|
mode: PIL
|
||||||
|
- type: freq_mask
|
||||||
|
F: 30
|
||||||
|
n_mask: 2
|
||||||
|
inplace: true
|
||||||
|
replace_with_zero: false
|
||||||
|
- type: time_mask
|
||||||
|
T: 40
|
||||||
|
n_mask: 2
|
||||||
|
inplace: true
|
||||||
|
replace_with_zero: false
|
@ -0,0 +1,11 @@
|
|||||||
|
batch_size: 5
|
||||||
|
error_rate_type: char-bleu
|
||||||
|
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
|
||||||
|
beam_size: 10
|
||||||
|
word_reward: 0.7
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
@ -0,0 +1,16 @@
|
|||||||
|
process:
|
||||||
|
# these three processes are a.k.a. SpecAugument
|
||||||
|
- type: time_warp
|
||||||
|
max_time_warp: 5
|
||||||
|
inplace: true
|
||||||
|
mode: PIL
|
||||||
|
- type: freq_mask
|
||||||
|
F: 30
|
||||||
|
n_mask: 2
|
||||||
|
inplace: true
|
||||||
|
replace_with_zero: false
|
||||||
|
- type: time_mask
|
||||||
|
T: 40
|
||||||
|
n_mask: 2
|
||||||
|
inplace: true
|
||||||
|
replace_with_zero: false
|
@ -0,0 +1,12 @@
|
|||||||
|
|
||||||
|
batch_size: 5
|
||||||
|
error_rate_type: char-bleu
|
||||||
|
decoding_method: fullsentence # 'fullsentence', 'simultaneous'
|
||||||
|
beam_size: 10
|
||||||
|
word_reward: 0.7
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
@ -0,0 +1,11 @@
|
|||||||
|
decode_batch_size: 64
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
beam_size: 10
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
@ -0,0 +1,10 @@
|
|||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: ctc_beam_search
|
||||||
|
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||||
|
alpha: 2.5
|
||||||
|
beta: 0.3
|
||||||
|
beam_size: 500
|
||||||
|
cutoff_prob: 1.0
|
||||||
|
cutoff_top_n: 40
|
||||||
|
num_proc_bsearch: 8
|
@ -0,0 +1,10 @@
|
|||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: ctc_beam_search
|
||||||
|
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||||
|
alpha: 2.5
|
||||||
|
beta: 0.3
|
||||||
|
beam_size: 500
|
||||||
|
cutoff_prob: 1.0
|
||||||
|
cutoff_top_n: 40
|
||||||
|
num_proc_bsearch: 8
|
@ -0,0 +1,11 @@
|
|||||||
|
decode_batch_size: 8 #64
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
beam_size: 10
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
@ -0,0 +1,11 @@
|
|||||||
|
decode_batch_size: 8 #64
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
beam_size: 10
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
@ -0,0 +1,11 @@
|
|||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: cer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
beam_size: 10
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue