[vec][score] update plda model, test=doc fix #1667

pull/1681/head
qingen 3 years ago
parent 6446f72cab
commit 44c6623448

@ -299,114 +299,6 @@ def _check_missing_model(enroll, test, ndx):
return clean_ndx return clean_ndx
def fast_PLDA_scoring(
enroll,
test,
ndx,
mu,
F,
Sigma,
test_uncertainty=None,
Vtrans=None,
p_known=0.0,
scaling_factor=1.0,
check_missing=True, ):
"""
Compute the PLDA scores between to sets of vectors. The list of
trials to perform is given in an Ndx object. PLDA matrices have to be
pre-computed. i-vectors/x-vectors are supposed to be whitened before.
Arguments
---------
enroll : speechbrain.utils.Xvector_PLDA_sp.StatObject_SB
A StatServer in which stat1 are xvectors.
test : speechbrain.utils.Xvector_PLDA_sp.StatObject_SB
A StatServer in which stat1 are xvectors.
ndx : speechbrain.utils.Xvector_PLDA_sp.Ndx
An Ndx object defining the list of trials to perform.
mu : double
The mean vector of the PLDA gaussian.
F : tensor
The between-class co-variance matrix of the PLDA.
Sigma: tensor
The residual covariance matrix.
p_known : float
Probability of having a known speaker for open-set
identification case (=1 for the verification task and =0 for the
closed-set case).
check_missing : bool
If True, check that all models and segments exist.
"""
enroll_ctr = copy.deepcopy(enroll)
test_ctr = copy.deepcopy(test)
# Remove missing models and test segments
if check_missing:
clean_ndx = _check_missing_model(enroll_ctr, test_ctr, ndx)
else:
clean_ndx = ndx
# Center the i-vectors around the PLDA mean
enroll_ctr.center_stats(mu)
test_ctr.center_stats(mu)
# Compute constant component of the PLDA distribution
invSigma = linalg.inv(Sigma)
I_spk = numpy.eye(F.shape[1], dtype="float")
K = F.T.dot(invSigma * scaling_factor).dot(F)
K1 = linalg.inv(K + I_spk)
K2 = linalg.inv(2 * K + I_spk)
# Compute the Gaussian distribution constant
alpha1 = numpy.linalg.slogdet(K1)[1]
alpha2 = numpy.linalg.slogdet(K2)[1]
plda_cst = alpha2 / 2.0 - alpha1
# Compute intermediate matrices
Sigma_ac = numpy.dot(F, F.T)
Sigma_tot = Sigma_ac + Sigma
Sigma_tot_inv = linalg.inv(Sigma_tot)
Tmp = linalg.inv(Sigma_tot - Sigma_ac.dot(Sigma_tot_inv).dot(Sigma_ac))
Phi = Sigma_tot_inv - Tmp
Psi = Sigma_tot_inv.dot(Sigma_ac).dot(Tmp)
# Compute the different parts of PLDA score
model_part = 0.5 * numpy.einsum("ij, ji->i",
enroll_ctr.stats.dot(Phi),
enroll_ctr.stats.T)
seg_part = 0.5 * numpy.einsum("ij, ji->i",
test_ctr.stats.dot(Phi), test_ctr.stats.T)
# Compute verification scores
score = Scores() # noqa F821
score.modelset = clean_ndx.modelset
score.segset = clean_ndx.segset
score.scoremask = clean_ndx.trialmask
score.scoremat = model_part[:, numpy.newaxis] + seg_part + plda_cst
score.scoremat += enroll_ctr.stats.dot(Psi).dot(test_ctr.stats.T)
score.scoremat *= scaling_factor
# Case of open-set identification, we compute the log-likelihood
# by taking into account the probability of having a known impostor
# or an out-of set class
if p_known != 0:
N = score.scoremat.shape[0]
open_set_scores = numpy.empty(score.scoremat.shape)
tmp = numpy.exp(score.scoremat)
for ii in range(N):
# open-set term
open_set_scores[ii, :] = score.scoremat[ii, :] - numpy.log(
p_known * tmp[~(numpy.arange(N) == ii)].sum(axis=0) / (
N - 1) + (1 - p_known))
score.scoremat = open_set_scores
return score
class PLDA: class PLDA:
""" """
A class to train PLDA model from embeddings. A class to train PLDA model from embeddings.
@ -547,6 +439,105 @@ class PLDA:
# Minimum Divergence step # Minimum Divergence step
self.F = self.F.dot(linalg.cholesky(_R)) self.F = self.F.dot(linalg.cholesky(_R))
def scoring(
self,
enroll,
test,
ndx,
test_uncertainty=None,
Vtrans=None,
p_known=0.0,
scaling_factor=1.0,
check_missing=True, ):
"""
Compute the PLDA scores between to sets of vectors. The list of
trials to perform is given in an Ndx object. PLDA matrices have to be
pre-computed. i-vectors/x-vectors are supposed to be whitened before.
Arguments
---------
enroll : paddlespeech.vector.cluster.diarization.EmbeddingMeta
A EmbeddingMeta in which stats are xvectors.
test : paddlespeech.vector.cluster.diarization.EmbeddingMeta
A EmbeddingMeta in which stats are xvectors.
ndx : paddlespeech.vector.cluster.plda.Ndx
An Ndx object defining the list of trials to perform.
p_known : float
Probability of having a known speaker for open-set
identification case (=1 for the verification task and =0 for the
closed-set case).
check_missing : bool
If True, check that all models and segments exist.
"""
enroll_ctr = copy.deepcopy(enroll)
test_ctr = copy.deepcopy(test)
# Remove missing models and test segments
if check_missing:
clean_ndx = _check_missing_model(enroll_ctr, test_ctr, ndx)
else:
clean_ndx = ndx
# Center the i-vectors around the PLDA mean
enroll_ctr.center_stats(self.mean)
test_ctr.center_stats(self.mean)
# Compute constant component of the PLDA distribution
invSigma = linalg.inv(self.Sigma)
I_spk = numpy.eye(self.F.shape[1], dtype="float")
K = self.F.T.dot(invSigma * scaling_factor).dot(self.F)
K1 = linalg.inv(K + I_spk)
K2 = linalg.inv(2 * K + I_spk)
# Compute the Gaussian distribution constant
alpha1 = numpy.linalg.slogdet(K1)[1]
alpha2 = numpy.linalg.slogdet(K2)[1]
plda_cst = alpha2 / 2.0 - alpha1
# Compute intermediate matrices
Sigma_ac = numpy.dot(self.F, self.F.T)
Sigma_tot = Sigma_ac + self.Sigma
Sigma_tot_inv = linalg.inv(Sigma_tot)
Tmp = linalg.inv(Sigma_tot - Sigma_ac.dot(Sigma_tot_inv).dot(Sigma_ac))
Phi = Sigma_tot_inv - Tmp
Psi = Sigma_tot_inv.dot(Sigma_ac).dot(Tmp)
# Compute the different parts of PLDA score
model_part = 0.5 * numpy.einsum("ij, ji->i",
enroll_ctr.stats.dot(Phi),
enroll_ctr.stats.T)
seg_part = 0.5 * numpy.einsum("ij, ji->i",
test_ctr.stats.dot(Phi), test_ctr.stats.T)
# Compute verification scores
score = Scores() # noqa F821
score.modelset = clean_ndx.modelset
score.segset = clean_ndx.segset
score.scoremask = clean_ndx.trialmask
score.scoremat = model_part[:, numpy.newaxis] + seg_part + plda_cst
score.scoremat += enroll_ctr.stats.dot(Psi).dot(test_ctr.stats.T)
score.scoremat *= scaling_factor
# Case of open-set identification, we compute the log-likelihood
# by taking into account the probability of having a known impostor
# or an out-of set class
if p_known != 0:
N = score.scoremat.shape[0]
open_set_scores = numpy.empty(score.scoremat.shape)
tmp = numpy.exp(score.scoremat)
for ii in range(N):
# open-set term
open_set_scores[ii, :] = score.scoremat[ii, :] - numpy.log(
p_known * tmp[~(numpy.arange(N) == ii)].sum(axis=0) / (
N - 1) + (1 - p_known))
score.scoremat = open_set_scores
return score
if __name__ == '__main__': if __name__ == '__main__':
import random import random
@ -580,6 +571,5 @@ if __name__ == '__main__':
te_stat = EmbeddingMeta(modelset=te_sets, segset=te_sets, stats=te_xv) te_stat = EmbeddingMeta(modelset=te_sets, segset=te_sets, stats=te_xv)
ndx = Ndx(models=en_sets, testsegs=te_sets) ndx = Ndx(models=en_sets, testsegs=te_sets)
# PLDA Scoring # PLDA Scoring
scores_plda = fast_PLDA_scoring(en_stat, te_stat, ndx, plda.mean, plda.F, scores_plda = plda.scoring(en_stat, te_stat, ndx)
plda.Sigma)
print(scores_plda.scoremat.shape) #(20, 30) print(scores_plda.scoremat.shape) #(20, 30)

Loading…
Cancel
Save