parent
f9761d532c
commit
43659b9882
@ -1,22 +1,8 @@
|
|||||||
# MDTC Keyword Spotting with HeySnips Dataset
|
|
||||||
|
|
||||||
## Dataset
|
## Metrics
|
||||||
|
|
||||||
Before running scripts, you **MUST** follow this instruction to download the dataset: https://github.com/sonos/keyword-spotting-research-datasets
|
We mesure FRRs with fixing false alarms in one hour:
|
||||||
|
|
||||||
After you download and decompress the dataset archive, you should **REPLACE** the value of `data_dir` in `conf/*.yaml` to complete dataset config.
|
|Model|False Alarm| False Reject Rate|
|
||||||
|
|--|--|--|
|
||||||
## Get Started
|
|MDTC| 1| 0.003559 |
|
||||||
|
|
||||||
In this section, we will train the [MDTC](https://arxiv.org/pdf/2102.13552.pdf) model and evaluate on "Hey Snips" dataset.
|
|
||||||
|
|
||||||
```sh
|
|
||||||
CUDA_VISIBLE_DEVICES=0,1 ./run.sh conf/mdtc.yaml
|
|
||||||
```
|
|
||||||
|
|
||||||
This script contains training and scoring steps. You can just set the `CUDA_VISIBLE_DEVICES` environment var to run on single gpu or multi-gpus.
|
|
||||||
|
|
||||||
The vars `stage` and `stop_stage` in `./run.sh` controls the running steps:
|
|
||||||
- stage 1: Training from scratch.
|
|
||||||
- stage 2: Evaluating model on test dataset and computing detection error tradeoff(DET) of all trigger thresholds.
|
|
||||||
- stage 3: Plotting the DET cruve for visualizaiton.
|
|
||||||
|
@ -1,8 +0,0 @@
|
|||||||
|
|
||||||
## Metrics
|
|
||||||
|
|
||||||
We mesure FRRs with fixing false alarms in one hour:
|
|
||||||
|
|
||||||
|Model|False Alarm| False Reject Rate|
|
|
||||||
|--|--|--|
|
|
||||||
|MDTC| 1| 0.003559 |
|
|
@ -0,0 +1,22 @@
|
|||||||
|
# MDTC Keyword Spotting with HeySnips Dataset
|
||||||
|
|
||||||
|
## Dataset
|
||||||
|
|
||||||
|
Before running scripts, you **MUST** follow this instruction to download the dataset: https://github.com/sonos/keyword-spotting-research-datasets
|
||||||
|
|
||||||
|
After you download and decompress the dataset archive, you should **REPLACE** the value of `data_dir` in `conf/*.yaml` to complete dataset config.
|
||||||
|
|
||||||
|
## Get Started
|
||||||
|
|
||||||
|
In this section, we will train the [MDTC](https://arxiv.org/pdf/2102.13552.pdf) model and evaluate on "Hey Snips" dataset.
|
||||||
|
|
||||||
|
```sh
|
||||||
|
CUDA_VISIBLE_DEVICES=0,1 ./run.sh conf/mdtc.yaml
|
||||||
|
```
|
||||||
|
|
||||||
|
This script contains training and scoring steps. You can just set the `CUDA_VISIBLE_DEVICES` environment var to run on single gpu or multi-gpus.
|
||||||
|
|
||||||
|
The vars `stage` and `stop_stage` in `./run.sh` controls the running steps:
|
||||||
|
- stage 1: Training from scratch.
|
||||||
|
- stage 2: Evaluating model on test dataset and computing detection error tradeoff(DET) of all trigger thresholds.
|
||||||
|
- stage 3: Plotting the DET cruve for visualizaiton.
|
Loading…
Reference in new issue