parent
91fde20dd7
commit
430c125b22
@ -0,0 +1,106 @@
|
|||||||
|
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import logging
|
||||||
|
import random
|
||||||
|
from typing import Dict, Optional
|
||||||
|
import paddle
|
||||||
|
|
||||||
|
from omegaconf import DictConfig
|
||||||
|
from paddlespeech.t2s.utils.common import make_pad_mask
|
||||||
|
|
||||||
|
class CausalMaskedDiffWithXvec(paddle.nn.Layer):
|
||||||
|
def __init__(self,
|
||||||
|
input_size: int = 512,
|
||||||
|
output_size: int = 80,
|
||||||
|
spk_embed_dim: int = 192,
|
||||||
|
output_type: str = "mel",
|
||||||
|
vocab_size: int = 4096,
|
||||||
|
input_frame_rate: int = 50,
|
||||||
|
only_mask_loss: bool = True,
|
||||||
|
token_mel_ratio: int = 2,
|
||||||
|
pre_lookahead_len: int = 3,
|
||||||
|
encoder: paddle.nn.Layer = None,
|
||||||
|
decoder: paddle.nn.Layer = None,
|
||||||
|
decoder_conf: Dict = {'in_channels': 240, 'out_channel': 80, 'spk_emb_dim': 80, 'n_spks': 1,
|
||||||
|
'cfm_params': DictConfig({'sigma_min': 1e-06, 'solver': 'euler', 't_scheduler': 'cosine',
|
||||||
|
'training_cfg_rate': 0.2, 'inference_cfg_rate': 0.7, 'reg_loss_type': 'l1'}),
|
||||||
|
'decoder_params': {'channels': [256, 256], 'dropout': 0.0, 'attention_head_dim': 64,
|
||||||
|
'n_blocks': 4, 'num_mid_blocks': 12, 'num_heads': 8, 'act_fn': 'gelu'}},
|
||||||
|
mel_feat_conf: Dict = {'n_fft': 1024, 'num_mels': 80, 'sampling_rate': 22050,
|
||||||
|
'hop_size': 256, 'win_size': 1024, 'fmin': 0, 'fmax': 8000}):
|
||||||
|
super().__init__()
|
||||||
|
self.input_size = input_size
|
||||||
|
self.output_size = output_size
|
||||||
|
self.decoder_conf = decoder_conf
|
||||||
|
self.mel_feat_conf = mel_feat_conf
|
||||||
|
self.vocab_size = vocab_size
|
||||||
|
self.output_type = output_type
|
||||||
|
self.input_frame_rate = input_frame_rate
|
||||||
|
logging.info(f"input frame rate={self.input_frame_rate}")
|
||||||
|
self.input_embedding = paddle.nn.Embedding(vocab_size, input_size)
|
||||||
|
self.spk_embed_affine_layer = paddle.nn.Linear(spk_embed_dim, output_size)
|
||||||
|
self.encoder = encoder
|
||||||
|
self.encoder_proj = paddle.nn.Linear(self.encoder.output_size(), output_size)
|
||||||
|
self.decoder = decoder
|
||||||
|
self.only_mask_loss = only_mask_loss
|
||||||
|
self.token_mel_ratio = token_mel_ratio
|
||||||
|
self.pre_lookahead_len = pre_lookahead_len
|
||||||
|
|
||||||
|
def inference(self,
|
||||||
|
token,
|
||||||
|
token_len,
|
||||||
|
prompt_token,
|
||||||
|
prompt_token_len,
|
||||||
|
prompt_feat,
|
||||||
|
prompt_feat_len,
|
||||||
|
embedding,
|
||||||
|
finalize):
|
||||||
|
if self.fp16 is True:
|
||||||
|
prompt_feat = prompt_feat.half()
|
||||||
|
embedding = embedding.half()
|
||||||
|
|
||||||
|
assert token.shape[0] == 1
|
||||||
|
# xvec projection
|
||||||
|
embedding = paddle.nn.functional.normalize(embedding, dim=1)
|
||||||
|
embedding = self.spk_embed_affine_layer(embedding)
|
||||||
|
|
||||||
|
# concat text and prompt_text
|
||||||
|
token, token_len = paddle.concat([prompt_token, token], dim=1), prompt_token_len + token_len
|
||||||
|
mask = (~make_pad_mask(token_len)).unsqueeze(-1).to(embedding)
|
||||||
|
token = self.input_embedding(paddle.clamp(token, min=0)) * mask
|
||||||
|
|
||||||
|
# text encode
|
||||||
|
h, h_lengths = self.encoder(token, token_len)
|
||||||
|
if finalize is False:
|
||||||
|
h = h[:, :-self.pre_lookahead_len * self.token_mel_ratio]
|
||||||
|
mel_len1, mel_len2 = prompt_feat.shape[1], h.shape[1] - prompt_feat.shape[1]
|
||||||
|
h = self.encoder_proj(h)
|
||||||
|
|
||||||
|
# get conditions
|
||||||
|
conds = paddle.zeros([1, mel_len1 + mel_len2, self.output_size], device=token.device).to(h.dtype)
|
||||||
|
conds[:, :mel_len1] = prompt_feat
|
||||||
|
conds = conds.transpose(1, 2)
|
||||||
|
|
||||||
|
mask = (~make_pad_mask(paddle.tensor([mel_len1 + mel_len2]))).to(h)
|
||||||
|
feat, _ = self.decoder(
|
||||||
|
mu=h.transpose(1, 2).contiguous(),
|
||||||
|
mask=mask.unsqueeze(1),
|
||||||
|
spks=embedding,
|
||||||
|
cond=conds,
|
||||||
|
n_timesteps=10
|
||||||
|
)
|
||||||
|
feat = feat[:, :, mel_len1:]
|
||||||
|
assert feat.shape[2] == mel_len2
|
||||||
|
return feat.float(), None
|
@ -0,0 +1,43 @@
|
|||||||
|
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
|
||||||
|
def make_pad_mask(lengths: paddle.Tensor, max_len: int = 0) -> paddle.Tensor:
|
||||||
|
"""Make mask tensor containing indices of padded part.
|
||||||
|
|
||||||
|
See description of make_non_pad_mask.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
lengths (torch.Tensor): Batch of lengths (B,).
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: Mask tensor containing indices of padded part.
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> lengths = [5, 3, 2]
|
||||||
|
>>> make_pad_mask(lengths)
|
||||||
|
masks = [[0, 0, 0, 0 ,0],
|
||||||
|
[0, 0, 0, 1, 1],
|
||||||
|
[0, 0, 1, 1, 1]]
|
||||||
|
"""
|
||||||
|
batch_size = lengths.size(0)
|
||||||
|
max_len = max_len if max_len > 0 else lengths.max().item()
|
||||||
|
seq_range = paddle.arange(0,
|
||||||
|
max_len,
|
||||||
|
dtype=paddle.int64,
|
||||||
|
device=lengths.device)
|
||||||
|
seq_range_expand = seq_range.unsqueeze(0).expand(batch_size, max_len)
|
||||||
|
seq_length_expand = lengths.unsqueeze(-1)
|
||||||
|
mask = seq_range_expand >= seq_length_expand
|
||||||
|
return mask
|
Loading…
Reference in new issue