parent
fb6d1e2c11
commit
41eeed0450
@ -1,103 +1,99 @@
|
|||||||
# network architecture
|
############################################
|
||||||
model:
|
# Network Architecture #
|
||||||
cmvn_file:
|
############################################
|
||||||
cmvn_file_type: "json"
|
cmvn_file:
|
||||||
# encoder related
|
cmvn_file_type: "json"
|
||||||
encoder: conformer
|
# encoder related
|
||||||
encoder_conf:
|
encoder: conformer
|
||||||
output_size: 256 # dimension of attention
|
encoder_conf:
|
||||||
attention_heads: 4
|
output_size: 256 # dimension of attention
|
||||||
linear_units: 2048 # the number of units of position-wise feed forward
|
attention_heads: 4
|
||||||
num_blocks: 12 # the number of encoder blocks
|
linear_units: 2048 # the number of units of position-wise feed forward
|
||||||
dropout_rate: 0.1
|
num_blocks: 12 # the number of encoder blocks
|
||||||
positional_dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
attention_dropout_rate: 0.0
|
positional_dropout_rate: 0.1
|
||||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
attention_dropout_rate: 0.0
|
||||||
normalize_before: True
|
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||||
use_cnn_module: True
|
normalize_before: True
|
||||||
cnn_module_kernel: 15
|
use_cnn_module: True
|
||||||
activation_type: 'swish'
|
cnn_module_kernel: 15
|
||||||
pos_enc_layer_type: 'rel_pos'
|
activation_type: 'swish'
|
||||||
selfattention_layer_type: 'rel_selfattn'
|
pos_enc_layer_type: 'rel_pos'
|
||||||
causal: True
|
selfattention_layer_type: 'rel_selfattn'
|
||||||
use_dynamic_chunk: true
|
causal: True
|
||||||
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
|
use_dynamic_chunk: true
|
||||||
use_dynamic_left_chunk: false
|
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
|
||||||
|
use_dynamic_left_chunk: false
|
||||||
|
|
||||||
# decoder related
|
# decoder related
|
||||||
decoder: transformer
|
decoder: transformer
|
||||||
decoder_conf:
|
decoder_conf:
|
||||||
attention_heads: 4
|
attention_heads: 4
|
||||||
linear_units: 2048
|
linear_units: 2048
|
||||||
num_blocks: 6
|
num_blocks: 6
|
||||||
dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
positional_dropout_rate: 0.1
|
positional_dropout_rate: 0.1
|
||||||
self_attention_dropout_rate: 0.0
|
self_attention_dropout_rate: 0.0
|
||||||
src_attention_dropout_rate: 0.0
|
src_attention_dropout_rate: 0.0
|
||||||
|
|
||||||
# hybrid CTC/attention
|
# hybrid CTC/attention
|
||||||
model_conf:
|
model_conf:
|
||||||
ctc_weight: 0.3
|
ctc_weight: 0.3
|
||||||
lsm_weight: 0.1 # label smoothing option
|
lsm_weight: 0.1 # label smoothing option
|
||||||
length_normalized_loss: false
|
length_normalized_loss: false
|
||||||
|
|
||||||
|
|
||||||
data:
|
###########################################
|
||||||
train_manifest: data/manifest.train
|
# Data #
|
||||||
dev_manifest: data/manifest.dev
|
###########################################
|
||||||
test_manifest: data/manifest.test
|
train_manifest: data/manifest.train
|
||||||
|
dev_manifest: data/manifest.dev
|
||||||
|
test_manifest: data/manifest.test
|
||||||
|
|
||||||
collator:
|
###########################################
|
||||||
vocab_filepath: data/lang_char/vocab.txt
|
# Dataloader #
|
||||||
unit_type: 'spm'
|
###########################################
|
||||||
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
|
vocab_filepath: data/lang_char/vocab.txt
|
||||||
mean_std_filepath: ""
|
unit_type: 'spm'
|
||||||
augmentation_config: conf/preprocess.yaml
|
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
|
||||||
feat_dim: 80
|
mean_std_filepath: ""
|
||||||
stride_ms: 10.0
|
augmentation_config: conf/preprocess.yaml
|
||||||
window_ms: 25.0
|
feat_dim: 80
|
||||||
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
stride_ms: 10.0
|
||||||
batch_size: 16
|
window_ms: 25.0
|
||||||
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
||||||
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
batch_size: 16
|
||||||
minibatches: 0 # for debug
|
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
||||||
batch_count: auto
|
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
||||||
batch_bins: 0
|
minibatches: 0 # for debug
|
||||||
batch_frames_in: 0
|
batch_count: auto
|
||||||
batch_frames_out: 0
|
batch_bins: 0
|
||||||
batch_frames_inout: 0
|
batch_frames_in: 0
|
||||||
augmentation_config: conf/preprocess.yaml
|
batch_frames_out: 0
|
||||||
num_workers: 0
|
batch_frames_inout: 0
|
||||||
subsampling_factor: 1
|
augmentation_config: conf/preprocess.yaml
|
||||||
num_encs: 1
|
num_workers: 0
|
||||||
|
subsampling_factor: 1
|
||||||
|
num_encs: 1
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Training #
|
||||||
|
###########################################
|
||||||
|
n_epoch: 120
|
||||||
|
accum_grad: 8
|
||||||
|
global_grad_clip: 5.0
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.001
|
||||||
|
weight_decay: 1e-06
|
||||||
|
scheduler: warmuplr
|
||||||
|
scheduler_conf:
|
||||||
|
warmup_steps: 25000
|
||||||
|
log_interval: 100
|
||||||
|
checkpoint:
|
||||||
|
kbest_n: 50
|
||||||
|
latest_n: 5
|
||||||
|
|
||||||
training:
|
|
||||||
n_epoch: 120
|
|
||||||
accum_grad: 8
|
|
||||||
global_grad_clip: 5.0
|
|
||||||
optim: adam
|
|
||||||
optim_conf:
|
|
||||||
lr: 0.001
|
|
||||||
weight_decay: 1e-06
|
|
||||||
scheduler: warmuplr
|
|
||||||
scheduler_conf:
|
|
||||||
warmup_steps: 25000
|
|
||||||
log_interval: 100
|
|
||||||
checkpoint:
|
|
||||||
kbest_n: 50
|
|
||||||
latest_n: 5
|
|
||||||
|
|
||||||
decoding:
|
|
||||||
batch_size: 128
|
|
||||||
error_rate_type: wer
|
|
||||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
|
||||||
beam_size: 10
|
|
||||||
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
|
||||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
|
||||||
# <0: for decoding, use full chunk.
|
|
||||||
# >0: for decoding, use fixed chunk size as set.
|
|
||||||
# 0: used for training, it's prohibited here.
|
|
||||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
|
||||||
simulate_streaming: true # simulate streaming inference. Defaults to False.
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,103 +1,90 @@
|
|||||||
# network architecture
|
############################################
|
||||||
model:
|
# Network Architecture #
|
||||||
cmvn_file:
|
############################################
|
||||||
cmvn_file_type: "json"
|
cmvn_file:
|
||||||
# encoder related
|
cmvn_file_type: "json"
|
||||||
encoder: transformer
|
# encoder related
|
||||||
encoder_conf:
|
encoder: transformer
|
||||||
output_size: 256 # dimension of attention
|
encoder_conf:
|
||||||
attention_heads: 4
|
output_size: 256 # dimension of attention
|
||||||
linear_units: 2048 # the number of units of position-wise feed forward
|
attention_heads: 4
|
||||||
num_blocks: 12 # the number of encoder blocks
|
linear_units: 2048 # the number of units of position-wise feed forward
|
||||||
dropout_rate: 0.1
|
num_blocks: 12 # the number of encoder blocks
|
||||||
positional_dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
attention_dropout_rate: 0.0
|
positional_dropout_rate: 0.1
|
||||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
attention_dropout_rate: 0.0
|
||||||
normalize_before: true
|
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||||
use_dynamic_chunk: true
|
normalize_before: true
|
||||||
use_dynamic_left_chunk: false
|
use_dynamic_chunk: true
|
||||||
|
use_dynamic_left_chunk: false
|
||||||
|
|
||||||
# decoder related
|
# decoder related
|
||||||
decoder: transformer
|
decoder: transformer
|
||||||
decoder_conf:
|
decoder_conf:
|
||||||
attention_heads: 4
|
attention_heads: 4
|
||||||
linear_units: 2048
|
linear_units: 2048
|
||||||
num_blocks: 6
|
num_blocks: 6
|
||||||
dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
positional_dropout_rate: 0.1
|
positional_dropout_rate: 0.1
|
||||||
self_attention_dropout_rate: 0.0
|
self_attention_dropout_rate: 0.0
|
||||||
src_attention_dropout_rate: 0.0
|
src_attention_dropout_rate: 0.0
|
||||||
|
|
||||||
# hybrid CTC/attention
|
# hybrid CTC/attention
|
||||||
model_conf:
|
model_conf:
|
||||||
ctc_weight: 0.3
|
ctc_weight: 0.3
|
||||||
lsm_weight: 0.1 # label smoothing option
|
lsm_weight: 0.1 # label smoothing option
|
||||||
length_normalized_loss: false
|
length_normalized_loss: false
|
||||||
|
|
||||||
data:
|
###########################################
|
||||||
train_manifest: data/manifest.train
|
# Data #
|
||||||
dev_manifest: data/manifest.dev
|
###########################################
|
||||||
test_manifest: data/manifest.test
|
train_manifest: data/manifest.train
|
||||||
|
dev_manifest: data/manifest.dev
|
||||||
|
test_manifest: data/manifest.test
|
||||||
|
|
||||||
|
|
||||||
collator:
|
###########################################
|
||||||
vocab_filepath: data/lang_char/vocab.txt
|
# Dataloader #
|
||||||
unit_type: 'spm'
|
###########################################
|
||||||
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
|
vocab_filepath: data/lang_char/vocab.txt
|
||||||
mean_std_filepath: ""
|
unit_type: 'spm'
|
||||||
augmentation_config: conf/preprocess.yaml
|
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
|
||||||
feat_dim: 80
|
mean_std_filepath: ""
|
||||||
stride_ms: 10.0
|
augmentation_config: conf/preprocess.yaml
|
||||||
window_ms: 25.0
|
feat_dim: 80
|
||||||
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
stride_ms: 10.0
|
||||||
batch_size: 64
|
window_ms: 25.0
|
||||||
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
||||||
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
batch_size: 64
|
||||||
minibatches: 0 # for debug
|
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
||||||
batch_count: auto
|
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
||||||
batch_bins: 0
|
minibatches: 0 # for debug
|
||||||
batch_frames_in: 0
|
batch_count: auto
|
||||||
batch_frames_out: 0
|
batch_bins: 0
|
||||||
batch_frames_inout: 0
|
batch_frames_in: 0
|
||||||
augmentation_config: conf/preprocess.yaml
|
batch_frames_out: 0
|
||||||
num_workers: 0
|
batch_frames_inout: 0
|
||||||
subsampling_factor: 1
|
augmentation_config: conf/preprocess.yaml
|
||||||
num_encs: 1
|
num_workers: 0
|
||||||
|
subsampling_factor: 1
|
||||||
|
num_encs: 1
|
||||||
|
|
||||||
|
|
||||||
training:
|
###########################################
|
||||||
n_epoch: 120
|
# Training #
|
||||||
accum_grad: 1
|
###########################################
|
||||||
global_grad_clip: 5.0
|
n_epoch: 120
|
||||||
optim: adam
|
accum_grad: 1
|
||||||
optim_conf:
|
global_grad_clip: 5.0
|
||||||
lr: 0.001
|
optim: adam
|
||||||
weight_decay: 1e-06
|
optim_conf:
|
||||||
scheduler: warmuplr
|
lr: 0.001
|
||||||
scheduler_conf:
|
weight_decay: 1e-06
|
||||||
warmup_steps: 25000
|
scheduler: warmuplr
|
||||||
lr_decay: 1.0
|
scheduler_conf:
|
||||||
log_interval: 100
|
warmup_steps: 25000
|
||||||
checkpoint:
|
lr_decay: 1.0
|
||||||
kbest_n: 50
|
log_interval: 100
|
||||||
latest_n: 5
|
checkpoint:
|
||||||
|
kbest_n: 50
|
||||||
|
latest_n: 5
|
||||||
decoding:
|
|
||||||
batch_size: 64
|
|
||||||
error_rate_type: wer
|
|
||||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
|
||||||
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
|
||||||
alpha: 2.5
|
|
||||||
beta: 0.3
|
|
||||||
beam_size: 10
|
|
||||||
cutoff_prob: 1.0
|
|
||||||
cutoff_top_n: 0
|
|
||||||
num_proc_bsearch: 8
|
|
||||||
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
|
||||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
|
||||||
# <0: for decoding, use full chunk.
|
|
||||||
# >0: for decoding, use fixed chunk size as set.
|
|
||||||
# 0: used for training, it's prohibited here.
|
|
||||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
|
||||||
simulate_streaming: true # simulate streaming inference. Defaults to False.
|
|
@ -1,104 +1,97 @@
|
|||||||
# network architecture
|
############################################
|
||||||
model:
|
# Network Architecture #
|
||||||
cmvn_file:
|
############################################
|
||||||
cmvn_file_type: "json"
|
cmvn_file:
|
||||||
# encoder related
|
cmvn_file_type: "json"
|
||||||
encoder: conformer
|
# encoder related
|
||||||
encoder_conf:
|
encoder: conformer
|
||||||
output_size: 256 # dimension of attention
|
encoder_conf:
|
||||||
attention_heads: 4
|
output_size: 256 # dimension of attention
|
||||||
linear_units: 2048 # the number of units of position-wise feed forward
|
attention_heads: 4
|
||||||
num_blocks: 12 # the number of encoder blocks
|
linear_units: 2048 # the number of units of position-wise feed forward
|
||||||
dropout_rate: 0.1
|
num_blocks: 12 # the number of encoder blocks
|
||||||
positional_dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
attention_dropout_rate: 0.0
|
positional_dropout_rate: 0.1
|
||||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
attention_dropout_rate: 0.0
|
||||||
normalize_before: True
|
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||||
use_cnn_module: True
|
normalize_before: True
|
||||||
cnn_module_kernel: 15
|
use_cnn_module: True
|
||||||
activation_type: 'swish'
|
cnn_module_kernel: 15
|
||||||
pos_enc_layer_type: 'rel_pos'
|
activation_type: 'swish'
|
||||||
selfattention_layer_type: 'rel_selfattn'
|
pos_enc_layer_type: 'rel_pos'
|
||||||
|
selfattention_layer_type: 'rel_selfattn'
|
||||||
|
|
||||||
# decoder related
|
# decoder related
|
||||||
decoder: transformer
|
decoder: transformer
|
||||||
decoder_conf:
|
decoder_conf:
|
||||||
attention_heads: 4
|
attention_heads: 4
|
||||||
linear_units: 2048
|
linear_units: 2048
|
||||||
num_blocks: 6
|
num_blocks: 6
|
||||||
dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
positional_dropout_rate: 0.1
|
positional_dropout_rate: 0.1
|
||||||
self_attention_dropout_rate: 0.0
|
self_attention_dropout_rate: 0.0
|
||||||
src_attention_dropout_rate: 0.0
|
src_attention_dropout_rate: 0.0
|
||||||
|
|
||||||
# hybrid CTC/attention
|
# hybrid CTC/attention
|
||||||
model_conf:
|
model_conf:
|
||||||
ctc_weight: 0.3
|
ctc_weight: 0.3
|
||||||
ctc_grad_norm_type: null
|
ctc_grad_norm_type: null
|
||||||
lsm_weight: 0.1 # label smoothing option
|
lsm_weight: 0.1 # label smoothing option
|
||||||
length_normalized_loss: false
|
length_normalized_loss: false
|
||||||
|
|
||||||
|
|
||||||
data:
|
###########################################
|
||||||
train_manifest: data/manifest.train
|
# Data #
|
||||||
dev_manifest: data/manifest.dev
|
###########################################
|
||||||
test_manifest: data/manifest.test-clean
|
train_manifest: data/manifest.train
|
||||||
|
dev_manifest: data/manifest.dev
|
||||||
|
test_manifest: data/manifest.test-clean
|
||||||
|
|
||||||
|
|
||||||
collator:
|
###########################################
|
||||||
vocab_filepath: data/lang_char/vocab.txt
|
# Dataloader #
|
||||||
unit_type: 'spm'
|
###########################################
|
||||||
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
|
vocab_filepath: data/lang_char/vocab.txt
|
||||||
mean_std_filepath: ""
|
unit_type: 'spm'
|
||||||
augmentation_config: conf/preprocess.yaml
|
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
|
||||||
feat_dim: 80
|
mean_std_filepath: ""
|
||||||
stride_ms: 10.0
|
augmentation_config: conf/preprocess.yaml
|
||||||
window_ms: 25.0
|
feat_dim: 80
|
||||||
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
stride_ms: 10.0
|
||||||
batch_size: 16
|
window_ms: 25.0
|
||||||
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
||||||
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
batch_size: 16
|
||||||
minibatches: 0 # for debug
|
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
||||||
batch_count: auto
|
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
||||||
batch_bins: 0
|
minibatches: 0 # for debug
|
||||||
batch_frames_in: 0
|
batch_count: auto
|
||||||
batch_frames_out: 0
|
batch_bins: 0
|
||||||
batch_frames_inout: 0
|
batch_frames_in: 0
|
||||||
augmentation_config: conf/preprocess.yaml
|
batch_frames_out: 0
|
||||||
num_workers: 0
|
batch_frames_inout: 0
|
||||||
subsampling_factor: 1
|
augmentation_config: conf/preprocess.yaml
|
||||||
num_encs: 1
|
num_workers: 0
|
||||||
|
subsampling_factor: 1
|
||||||
|
num_encs: 1
|
||||||
|
|
||||||
|
|
||||||
training:
|
###########################################
|
||||||
n_epoch: 70
|
# Training #
|
||||||
accum_grad: 8
|
###########################################
|
||||||
global_grad_clip: 3.0
|
n_epoch: 70
|
||||||
optim: adam
|
accum_grad: 8
|
||||||
optim_conf:
|
global_grad_clip: 3.0
|
||||||
lr: 0.004
|
optim: adam
|
||||||
weight_decay: 1e-06
|
optim_conf:
|
||||||
scheduler: warmuplr
|
lr: 0.004
|
||||||
scheduler_conf:
|
weight_decay: 1e-06
|
||||||
warmup_steps: 25000
|
scheduler: warmuplr
|
||||||
lr_decay: 1.0
|
scheduler_conf:
|
||||||
log_interval: 100
|
warmup_steps: 25000
|
||||||
checkpoint:
|
lr_decay: 1.0
|
||||||
kbest_n: 50
|
log_interval: 100
|
||||||
latest_n: 5
|
checkpoint:
|
||||||
|
kbest_n: 50
|
||||||
|
latest_n: 5
|
||||||
decoding:
|
|
||||||
batch_size: 64
|
|
||||||
error_rate_type: wer
|
|
||||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
|
||||||
beam_size: 10
|
|
||||||
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
|
||||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
|
||||||
# <0: for decoding, use full chunk.
|
|
||||||
# >0: for decoding, use fixed chunk size as set.
|
|
||||||
# 0: used for training, it's prohibited here.
|
|
||||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
|
||||||
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,110 +1,89 @@
|
|||||||
# network architecture
|
############################################
|
||||||
model:
|
# Network Architecture #
|
||||||
cmvn_file:
|
############################################
|
||||||
cmvn_file_type: "json"
|
cmvn_file:
|
||||||
# encoder related
|
cmvn_file_type: "json"
|
||||||
encoder: transformer
|
# encoder related
|
||||||
encoder_conf:
|
encoder: transformer
|
||||||
output_size: 256 # dimension of attention
|
encoder_conf:
|
||||||
attention_heads: 4
|
output_size: 256 # dimension of attention
|
||||||
linear_units: 2048 # the number of units of position-wise feed forward
|
attention_heads: 4
|
||||||
num_blocks: 12 # the number of encoder blocks
|
linear_units: 2048 # the number of units of position-wise feed forward
|
||||||
dropout_rate: 0.1
|
num_blocks: 12 # the number of encoder blocks
|
||||||
positional_dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
attention_dropout_rate: 0.0
|
positional_dropout_rate: 0.1
|
||||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
attention_dropout_rate: 0.0
|
||||||
normalize_before: true
|
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||||
|
normalize_before: true
|
||||||
|
|
||||||
# decoder related
|
# decoder related
|
||||||
decoder: transformer
|
decoder: transformer
|
||||||
decoder_conf:
|
decoder_conf:
|
||||||
attention_heads: 4
|
attention_heads: 4
|
||||||
linear_units: 2048
|
linear_units: 2048
|
||||||
num_blocks: 6
|
num_blocks: 6
|
||||||
dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
positional_dropout_rate: 0.1
|
positional_dropout_rate: 0.1
|
||||||
self_attention_dropout_rate: 0.0
|
self_attention_dropout_rate: 0.0
|
||||||
src_attention_dropout_rate: 0.0
|
src_attention_dropout_rate: 0.0
|
||||||
|
|
||||||
# hybrid CTC/attention
|
# hybrid CTC/attention
|
||||||
model_conf:
|
model_conf:
|
||||||
ctc_weight: 0.3
|
ctc_weight: 0.3
|
||||||
lsm_weight: 0.1 # label smoothing option
|
lsm_weight: 0.1 # label smoothing option
|
||||||
length_normalized_loss: false
|
length_normalized_loss: false
|
||||||
|
|
||||||
|
|
||||||
# https://yaml.org/type/float.html
|
# https://yaml.org/type/float.html
|
||||||
data:
|
###########################################
|
||||||
train_manifest: data/manifest.train
|
# Data #
|
||||||
dev_manifest: data/manifest.dev
|
###########################################
|
||||||
test_manifest: data/manifest.test-clean
|
train_manifest: data/manifest.train
|
||||||
min_input_len: 0.5 # second
|
dev_manifest: data/manifest.dev
|
||||||
max_input_len: 30.0 # second
|
test_manifest: data/manifest.test-clean
|
||||||
min_output_len: 0.0 # tokens
|
|
||||||
max_output_len: 400.0 # tokens
|
|
||||||
min_output_input_ratio: 0.05
|
|
||||||
max_output_input_ratio: 100.0
|
|
||||||
|
|
||||||
collator:
|
###########################################
|
||||||
vocab_filepath: data/lang_char/vocab.txt
|
# Dataloader #
|
||||||
unit_type: 'spm'
|
###########################################
|
||||||
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
|
vocab_filepath: data/lang_char/vocab.txt
|
||||||
mean_std_filepath: ""
|
unit_type: 'spm'
|
||||||
augmentation_config: conf/preprocess.yaml
|
spm_model_prefix: 'data/lang_char/bpe_unigram_5000'
|
||||||
feat_dim: 80
|
mean_std_filepath: ""
|
||||||
stride_ms: 10.0
|
augmentation_config: conf/preprocess.yaml
|
||||||
window_ms: 25.0
|
feat_dim: 80
|
||||||
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
stride_ms: 10.0
|
||||||
batch_size: 32
|
window_ms: 25.0
|
||||||
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
||||||
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
batch_size: 32
|
||||||
minibatches: 0 # for debug
|
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
||||||
batch_count: auto
|
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
||||||
batch_bins: 0
|
minibatches: 0 # for debug
|
||||||
batch_frames_in: 0
|
batch_count: auto
|
||||||
batch_frames_out: 0
|
batch_bins: 0
|
||||||
batch_frames_inout: 0
|
batch_frames_in: 0
|
||||||
augmentation_config: conf/preprocess.yaml
|
batch_frames_out: 0
|
||||||
num_workers: 0
|
batch_frames_inout: 0
|
||||||
subsampling_factor: 1
|
augmentation_config: conf/preprocess.yaml
|
||||||
num_encs: 1
|
num_workers: 0
|
||||||
|
subsampling_factor: 1
|
||||||
|
num_encs: 1
|
||||||
training:
|
|
||||||
n_epoch: 120
|
|
||||||
accum_grad: 4
|
|
||||||
global_grad_clip: 5.0
|
|
||||||
optim: adam
|
|
||||||
optim_conf:
|
|
||||||
lr: 0.004
|
|
||||||
weight_decay: 1e-06
|
|
||||||
scheduler: warmuplr
|
|
||||||
scheduler_conf:
|
|
||||||
warmup_steps: 25000
|
|
||||||
lr_decay: 1.0
|
|
||||||
log_interval: 100
|
|
||||||
checkpoint:
|
|
||||||
kbest_n: 50
|
|
||||||
latest_n: 5
|
|
||||||
|
|
||||||
|
|
||||||
decoding:
|
|
||||||
batch_size: 64
|
|
||||||
error_rate_type: wer
|
|
||||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
|
||||||
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
|
||||||
alpha: 2.5
|
|
||||||
beta: 0.3
|
|
||||||
beam_size: 10
|
|
||||||
cutoff_prob: 1.0
|
|
||||||
cutoff_top_n: 0
|
|
||||||
num_proc_bsearch: 8
|
|
||||||
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
|
||||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
|
||||||
# <0: for decoding, use full chunk.
|
|
||||||
# >0: for decoding, use fixed chunk size as set.
|
|
||||||
# 0: used for training, it's prohibited here.
|
|
||||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
|
||||||
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
|
||||||
|
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Training #
|
||||||
|
###########################################
|
||||||
|
n_epoch: 120
|
||||||
|
accum_grad: 4
|
||||||
|
global_grad_clip: 5.0
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.004
|
||||||
|
weight_decay: 1e-06
|
||||||
|
scheduler: warmuplr
|
||||||
|
scheduler_conf:
|
||||||
|
warmup_steps: 25000
|
||||||
|
lr_decay: 1.0
|
||||||
|
log_interval: 100
|
||||||
|
checkpoint:
|
||||||
|
kbest_n: 50
|
||||||
|
latest_n: 5
|
||||||
|
@ -0,0 +1,11 @@
|
|||||||
|
decode_batch_size: 128
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
beam_size: 10
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: true # simulate streaming inference. Defaults to False.
|
@ -0,0 +1,11 @@
|
|||||||
|
decode_batch_size: 64
|
||||||
|
error_rate_type: wer
|
||||||
|
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||||
|
beam_size: 10
|
||||||
|
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||||
|
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||||
|
# <0: for decoding, use full chunk.
|
||||||
|
# >0: for decoding, use fixed chunk size as set.
|
||||||
|
# 0: used for training, it's prohibited here.
|
||||||
|
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||||
|
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
@ -1,116 +1,105 @@
|
|||||||
# https://yaml.org/type/float.html
|
# https://yaml.org/type/float.html
|
||||||
data:
|
###########################################
|
||||||
train_manifest: data/manifest.tiny
|
# Data #
|
||||||
dev_manifest: data/manifest.tiny
|
###########################################
|
||||||
test_manifest: data/manifest.tiny
|
train_manifest: data/manifest.tiny
|
||||||
min_input_len: 0.5 # second
|
dev_manifest: data/manifest.tiny
|
||||||
max_input_len: 20.0 # second
|
test_manifest: data/manifest.tiny
|
||||||
min_output_len: 0.0 # tokens
|
min_input_len: 0.5 # second
|
||||||
max_output_len: 400.0 # tokens
|
max_input_len: 20.0 # second
|
||||||
min_output_input_ratio: 0.05
|
min_output_len: 0.0 # tokens
|
||||||
max_output_input_ratio: 10.0
|
max_output_len: 400.0 # tokens
|
||||||
|
min_output_input_ratio: 0.05
|
||||||
|
max_output_input_ratio: 10.0
|
||||||
|
|
||||||
collator:
|
|
||||||
mean_std_filepath: ""
|
|
||||||
vocab_filepath: data/lang_char/vocab.txt
|
|
||||||
unit_type: 'spm'
|
|
||||||
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
|
|
||||||
augmentation_config: conf/preprocess.yaml
|
|
||||||
batch_size: 4
|
|
||||||
raw_wav: True # use raw_wav or kaldi feature
|
|
||||||
spectrum_type: fbank #linear, mfcc, fbank
|
|
||||||
feat_dim: 80
|
|
||||||
delta_delta: False
|
|
||||||
dither: 1.0
|
|
||||||
target_sample_rate: 16000
|
|
||||||
max_freq: None
|
|
||||||
n_fft: None
|
|
||||||
stride_ms: 10.0
|
|
||||||
window_ms: 25.0
|
|
||||||
use_dB_normalization: True
|
|
||||||
target_dB: -20
|
|
||||||
random_seed: 0
|
|
||||||
keep_transcription_text: False
|
|
||||||
sortagrad: True
|
|
||||||
shuffle_method: batch_shuffle
|
|
||||||
num_workers: 2
|
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Dataloader #
|
||||||
|
###########################################
|
||||||
|
mean_std_filepath: ""
|
||||||
|
vocab_filepath: data/lang_char/vocab.txt
|
||||||
|
unit_type: 'spm'
|
||||||
|
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
|
||||||
|
augmentation_config: conf/preprocess.yaml
|
||||||
|
batch_size: 4
|
||||||
|
raw_wav: True # use raw_wav or kaldi feature
|
||||||
|
spectrum_type: fbank #linear, mfcc, fbank
|
||||||
|
feat_dim: 80
|
||||||
|
delta_delta: False
|
||||||
|
dither: 1.0
|
||||||
|
target_sample_rate: 16000
|
||||||
|
max_freq: None
|
||||||
|
n_fft: None
|
||||||
|
stride_ms: 10.0
|
||||||
|
window_ms: 25.0
|
||||||
|
use_dB_normalization: True
|
||||||
|
target_dB: -20
|
||||||
|
random_seed: 0
|
||||||
|
keep_transcription_text: False
|
||||||
|
sortagrad: True
|
||||||
|
shuffle_method: batch_shuffle
|
||||||
|
num_workers: 2
|
||||||
|
|
||||||
# network architecture
|
|
||||||
model:
|
|
||||||
cmvn_file: "data/mean_std.json"
|
|
||||||
cmvn_file_type: "json"
|
|
||||||
# encoder related
|
|
||||||
encoder: conformer
|
|
||||||
encoder_conf:
|
|
||||||
output_size: 256 # dimension of attention
|
|
||||||
attention_heads: 4
|
|
||||||
linear_units: 2048 # the number of units of position-wise feed forward
|
|
||||||
num_blocks: 12 # the number of encoder blocks
|
|
||||||
dropout_rate: 0.1
|
|
||||||
positional_dropout_rate: 0.1
|
|
||||||
attention_dropout_rate: 0.0
|
|
||||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
|
||||||
normalize_before: true
|
|
||||||
use_cnn_module: True
|
|
||||||
cnn_module_kernel: 15
|
|
||||||
activation_type: 'swish'
|
|
||||||
pos_enc_layer_type: 'rel_pos'
|
|
||||||
selfattention_layer_type: 'rel_selfattn'
|
|
||||||
|
|
||||||
# decoder related
|
############################################
|
||||||
decoder: transformer
|
# Network Architecture #
|
||||||
decoder_conf:
|
############################################
|
||||||
attention_heads: 4
|
cmvn_file: "data/mean_std.json"
|
||||||
linear_units: 2048
|
cmvn_file_type: "json"
|
||||||
num_blocks: 6
|
# encoder related
|
||||||
dropout_rate: 0.1
|
encoder: conformer
|
||||||
positional_dropout_rate: 0.1
|
encoder_conf:
|
||||||
self_attention_dropout_rate: 0.0
|
output_size: 256 # dimension of attention
|
||||||
src_attention_dropout_rate: 0.0
|
attention_heads: 4
|
||||||
|
linear_units: 2048 # the number of units of position-wise feed forward
|
||||||
|
num_blocks: 12 # the number of encoder blocks
|
||||||
|
dropout_rate: 0.1
|
||||||
|
positional_dropout_rate: 0.1
|
||||||
|
attention_dropout_rate: 0.0
|
||||||
|
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||||
|
normalize_before: true
|
||||||
|
use_cnn_module: True
|
||||||
|
cnn_module_kernel: 15
|
||||||
|
activation_type: 'swish'
|
||||||
|
pos_enc_layer_type: 'rel_pos'
|
||||||
|
selfattention_layer_type: 'rel_selfattn'
|
||||||
|
|
||||||
# hybrid CTC/attention
|
# decoder related
|
||||||
model_conf:
|
decoder: transformer
|
||||||
ctc_weight: 0.3
|
decoder_conf:
|
||||||
lsm_weight: 0.1 # label smoothing option
|
attention_heads: 4
|
||||||
length_normalized_loss: false
|
linear_units: 2048
|
||||||
|
num_blocks: 6
|
||||||
|
dropout_rate: 0.1
|
||||||
|
positional_dropout_rate: 0.1
|
||||||
|
self_attention_dropout_rate: 0.0
|
||||||
|
src_attention_dropout_rate: 0.0
|
||||||
|
|
||||||
|
# hybrid CTC/attention
|
||||||
|
model_conf:
|
||||||
|
ctc_weight: 0.3
|
||||||
|
lsm_weight: 0.1 # label smoothing option
|
||||||
|
length_normalized_loss: false
|
||||||
|
|
||||||
training:
|
|
||||||
n_epoch: 5
|
|
||||||
accum_grad: 4
|
|
||||||
global_grad_clip: 5.0
|
|
||||||
optim: adam
|
|
||||||
optim_conf:
|
|
||||||
lr: 0.002
|
|
||||||
weight_decay: 1e-06
|
|
||||||
scheduler: warmuplr
|
|
||||||
scheduler_conf:
|
|
||||||
warmup_steps: 25000
|
|
||||||
lr_decay: 1.0
|
|
||||||
log_interval: 1
|
|
||||||
checkpoint:
|
|
||||||
kbest_n: 10
|
|
||||||
latest_n: 1
|
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# training #
|
||||||
|
###########################################
|
||||||
|
n_epoch: 5
|
||||||
|
accum_grad: 4
|
||||||
|
global_grad_clip: 5.0
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.002
|
||||||
|
weight_decay: 1e-06
|
||||||
|
scheduler: warmuplr
|
||||||
|
scheduler_conf:
|
||||||
|
warmup_steps: 25000
|
||||||
|
lr_decay: 1.0
|
||||||
|
log_interval: 1
|
||||||
|
checkpoint:
|
||||||
|
kbest_n: 10
|
||||||
|
latest_n: 1
|
||||||
|
|
||||||
decoding:
|
|
||||||
batch_size: 64
|
|
||||||
error_rate_type: wer
|
|
||||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
|
||||||
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
|
||||||
alpha: 2.5
|
|
||||||
beta: 0.3
|
|
||||||
beam_size: 10
|
|
||||||
cutoff_prob: 1.0
|
|
||||||
cutoff_top_n: 0
|
|
||||||
num_proc_bsearch: 8
|
|
||||||
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
|
||||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
|
||||||
# <0: for decoding, use full chunk.
|
|
||||||
# >0: for decoding, use fixed chunk size as set.
|
|
||||||
# 0: used for training, it's prohibited here.
|
|
||||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
|
||||||
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -1,110 +1,98 @@
|
|||||||
# https://yaml.org/type/float.html
|
# https://yaml.org/type/float.html
|
||||||
data:
|
###########################################
|
||||||
train_manifest: data/manifest.tiny
|
# Data #
|
||||||
dev_manifest: data/manifest.tiny
|
###########################################
|
||||||
test_manifest: data/manifest.tiny
|
train_manifest: data/manifest.tiny
|
||||||
min_input_len: 0.5 # second
|
dev_manifest: data/manifest.tiny
|
||||||
max_input_len: 20.0 # second
|
test_manifest: data/manifest.tiny
|
||||||
min_output_len: 0.0 # tokens
|
min_input_len: 0.5 # second
|
||||||
max_output_len: 400.0 # tokens
|
max_input_len: 20.0 # second
|
||||||
min_output_input_ratio: 0.05
|
min_output_len: 0.0 # tokens
|
||||||
max_output_input_ratio: 10.0
|
max_output_len: 400.0 # tokens
|
||||||
|
min_output_input_ratio: 0.05
|
||||||
|
max_output_input_ratio: 10.0
|
||||||
|
|
||||||
collator:
|
###########################################
|
||||||
mean_std_filepath: data/mean_std.json
|
# Dataloader #
|
||||||
vocab_filepath: data/lang_char/vocab.txt
|
###########################################
|
||||||
unit_type: 'spm'
|
mean_std_filepath: data/mean_std.json
|
||||||
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
|
vocab_filepath: data/lang_char/vocab.txt
|
||||||
augmentation_config: conf/preprocess.yaml
|
unit_type: 'spm'
|
||||||
batch_size: 4
|
spm_model_prefix: 'data/lang_char/bpe_unigram_200'
|
||||||
raw_wav: True # use raw_wav or kaldi feature
|
augmentation_config: conf/preprocess.yaml
|
||||||
spectrum_type: fbank #linear, mfcc, fbank
|
batch_size: 4
|
||||||
feat_dim: 80
|
raw_wav: True # use raw_wav or kaldi feature
|
||||||
delta_delta: False
|
spectrum_type: fbank #linear, mfcc, fbank
|
||||||
dither: 1.0
|
feat_dim: 80
|
||||||
target_sample_rate: 16000
|
delta_delta: False
|
||||||
max_freq: None
|
dither: 1.0
|
||||||
n_fft: None
|
target_sample_rate: 16000
|
||||||
stride_ms: 10.0
|
max_freq: None
|
||||||
window_ms: 25.0
|
n_fft: None
|
||||||
use_dB_normalization: True
|
stride_ms: 10.0
|
||||||
target_dB: -20
|
window_ms: 25.0
|
||||||
random_seed: 0
|
use_dB_normalization: True
|
||||||
keep_transcription_text: False
|
target_dB: -20
|
||||||
sortagrad: True
|
random_seed: 0
|
||||||
shuffle_method: batch_shuffle
|
keep_transcription_text: False
|
||||||
num_workers: 2
|
sortagrad: True
|
||||||
|
shuffle_method: batch_shuffle
|
||||||
|
num_workers: 2
|
||||||
|
|
||||||
# network architecture
|
############################################
|
||||||
model:
|
# Network Architecture #
|
||||||
cmvn_file:
|
############################################
|
||||||
cmvn_file_type: "json"
|
cmvn_file:
|
||||||
# encoder related
|
cmvn_file_type: "json"
|
||||||
encoder: transformer
|
# encoder related
|
||||||
encoder_conf:
|
encoder: transformer
|
||||||
output_size: 256 # dimension of attention
|
encoder_conf:
|
||||||
attention_heads: 4
|
output_size: 256 # dimension of attention
|
||||||
linear_units: 2048 # the number of units of position-wise feed forward
|
attention_heads: 4
|
||||||
num_blocks: 12 # the number of encoder blocks
|
linear_units: 2048 # the number of units of position-wise feed forward
|
||||||
dropout_rate: 0.1
|
num_blocks: 12 # the number of encoder blocks
|
||||||
positional_dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
attention_dropout_rate: 0.0
|
positional_dropout_rate: 0.1
|
||||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
attention_dropout_rate: 0.0
|
||||||
normalize_before: true
|
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||||
|
normalize_before: true
|
||||||
|
|
||||||
# decoder related
|
# decoder related
|
||||||
decoder: transformer
|
decoder: transformer
|
||||||
decoder_conf:
|
decoder_conf:
|
||||||
attention_heads: 4
|
attention_heads: 4
|
||||||
linear_units: 2048
|
linear_units: 2048
|
||||||
num_blocks: 6
|
num_blocks: 6
|
||||||
dropout_rate: 0.1
|
dropout_rate: 0.1
|
||||||
positional_dropout_rate: 0.1
|
positional_dropout_rate: 0.1
|
||||||
self_attention_dropout_rate: 0.0
|
self_attention_dropout_rate: 0.0
|
||||||
src_attention_dropout_rate: 0.0
|
src_attention_dropout_rate: 0.0
|
||||||
|
|
||||||
# hybrid CTC/attention
|
# hybrid CTC/attention
|
||||||
model_conf:
|
model_conf:
|
||||||
ctc_weight: 0.3
|
ctc_weight: 0.3
|
||||||
lsm_weight: 0.1 # label smoothing option
|
lsm_weight: 0.1 # label smoothing option
|
||||||
length_normalized_loss: false
|
length_normalized_loss: false
|
||||||
|
|
||||||
|
|
||||||
training:
|
###########################################
|
||||||
n_epoch: 5
|
# training #
|
||||||
accum_grad: 1
|
###########################################
|
||||||
global_grad_clip: 5.0
|
n_epoch: 5
|
||||||
optim: adam
|
accum_grad: 1
|
||||||
optim_conf:
|
global_grad_clip: 5.0
|
||||||
lr: 0.002
|
optim: adam
|
||||||
weight_decay: 1e-06
|
optim_conf:
|
||||||
scheduler: warmuplr
|
lr: 0.002
|
||||||
scheduler_conf:
|
weight_decay: 1e-06
|
||||||
warmup_steps: 25000
|
scheduler: warmuplr
|
||||||
lr_decay: 1.0
|
scheduler_conf:
|
||||||
log_interval: 1
|
warmup_steps: 25000
|
||||||
checkpoint:
|
lr_decay: 1.0
|
||||||
kbest_n: 2
|
log_interval: 1
|
||||||
latest_n: 1
|
checkpoint:
|
||||||
|
kbest_n: 2
|
||||||
|
latest_n: 1
|
||||||
|
|
||||||
|
|
||||||
decoding:
|
|
||||||
batch_size: 8 #64
|
|
||||||
error_rate_type: wer
|
|
||||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
|
||||||
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
|
||||||
alpha: 2.5
|
|
||||||
beta: 0.3
|
|
||||||
beam_size: 10
|
|
||||||
cutoff_prob: 1.0
|
|
||||||
cutoff_top_n: 0
|
|
||||||
num_proc_bsearch: 8
|
|
||||||
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
|
||||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
|
||||||
# <0: for decoding, use full chunk.
|
|
||||||
# >0: for decoding, use fixed chunk size as set.
|
|
||||||
# 0: used for training, it's prohibited here.
|
|
||||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
|
||||||
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in new issue