commit
41526ca1b8
@ -0,0 +1,13 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
@ -0,0 +1,262 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Any
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.nn as nn
|
||||
import paddle.nn.functional as F
|
||||
|
||||
from deepspeech.decoders.scorers.scorer_interface import BatchScorerInterface
|
||||
from deepspeech.models.lm_interface import LMInterface
|
||||
from deepspeech.modules.encoder import TransformerEncoder
|
||||
from deepspeech.modules.mask import subsequent_mask
|
||||
from deepspeech.utils.log import Log
|
||||
|
||||
logger = Log(__name__).getlog()
|
||||
|
||||
|
||||
class TransformerLM(nn.Layer, LMInterface, BatchScorerInterface):
|
||||
def __init__(self,
|
||||
n_vocab: int,
|
||||
pos_enc: str=None,
|
||||
embed_unit: int=128,
|
||||
att_unit: int=256,
|
||||
head: int=2,
|
||||
unit: int=1024,
|
||||
layer: int=4,
|
||||
dropout_rate: float=0.5,
|
||||
emb_dropout_rate: float=0.0,
|
||||
att_dropout_rate: float=0.0,
|
||||
tie_weights: bool=False,
|
||||
**kwargs):
|
||||
nn.Layer.__init__(self)
|
||||
|
||||
if pos_enc == "sinusoidal":
|
||||
pos_enc_layer_type = "abs_pos"
|
||||
elif pos_enc is None:
|
||||
pos_enc_layer_type = "no_pos"
|
||||
else:
|
||||
raise ValueError(f"unknown pos-enc option: {pos_enc}")
|
||||
|
||||
self.embed = nn.Embedding(n_vocab, embed_unit)
|
||||
|
||||
if emb_dropout_rate == 0.0:
|
||||
self.embed_drop = None
|
||||
else:
|
||||
self.embed_drop = nn.Dropout(emb_dropout_rate)
|
||||
|
||||
self.encoder = TransformerEncoder(
|
||||
input_size=embed_unit,
|
||||
output_size=att_unit,
|
||||
attention_heads=head,
|
||||
linear_units=unit,
|
||||
num_blocks=layer,
|
||||
dropout_rate=dropout_rate,
|
||||
attention_dropout_rate=att_dropout_rate,
|
||||
input_layer="linear",
|
||||
pos_enc_layer_type=pos_enc_layer_type,
|
||||
concat_after=False,
|
||||
static_chunk_size=1,
|
||||
use_dynamic_chunk=False,
|
||||
use_dynamic_left_chunk=False)
|
||||
|
||||
self.decoder = nn.Linear(att_unit, n_vocab)
|
||||
|
||||
logger.info("Tie weights set to {}".format(tie_weights))
|
||||
logger.info("Dropout set to {}".format(dropout_rate))
|
||||
logger.info("Emb Dropout set to {}".format(emb_dropout_rate))
|
||||
logger.info("Att Dropout set to {}".format(att_dropout_rate))
|
||||
|
||||
if tie_weights:
|
||||
assert (
|
||||
att_unit == embed_unit
|
||||
), "Tie Weights: True need embedding and final dimensions to match"
|
||||
self.decoder.weight = self.embed.weight
|
||||
|
||||
def _target_mask(self, ys_in_pad):
|
||||
ys_mask = ys_in_pad != 0
|
||||
m = subsequent_mask(ys_mask.size(-1)).unsqueeze(0)
|
||||
return ys_mask.unsqueeze(-2) & m
|
||||
|
||||
def forward(self, x: paddle.Tensor, t: paddle.Tensor
|
||||
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
||||
"""Compute LM loss value from buffer sequences.
|
||||
|
||||
Args:
|
||||
x (paddle.Tensor): Input ids. (batch, len)
|
||||
t (paddle.Tensor): Target ids. (batch, len)
|
||||
|
||||
Returns:
|
||||
tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]: Tuple of
|
||||
loss to backward (scalar),
|
||||
negative log-likelihood of t: -log p(t) (scalar) and
|
||||
the number of elements in x (scalar)
|
||||
|
||||
Notes:
|
||||
The last two return values are used
|
||||
in perplexity: p(t)^{-n} = exp(-log p(t) / n)
|
||||
|
||||
"""
|
||||
xm = x != 0
|
||||
xlen = xm.sum(axis=1)
|
||||
if self.embed_drop is not None:
|
||||
emb = self.embed_drop(self.embed(x))
|
||||
else:
|
||||
emb = self.embed(x)
|
||||
h, _ = self.encoder(emb, xlen)
|
||||
y = self.decoder(h)
|
||||
loss = F.cross_entropy(
|
||||
y.view(-1, y.shape[-1]), t.view(-1), reduction="none")
|
||||
mask = xm.to(dtype=loss.dtype)
|
||||
logp = loss * mask.view(-1)
|
||||
logp = logp.sum()
|
||||
count = mask.sum()
|
||||
return logp / count, logp, count
|
||||
|
||||
# beam search API (see ScorerInterface)
|
||||
def score(self, y: paddle.Tensor, state: Any,
|
||||
x: paddle.Tensor) -> Tuple[paddle.Tensor, Any]:
|
||||
"""Score new token.
|
||||
|
||||
Args:
|
||||
y (paddle.Tensor): 1D paddle.int64 prefix tokens.
|
||||
state: Scorer state for prefix tokens
|
||||
x (paddle.Tensor): encoder feature that generates ys.
|
||||
|
||||
Returns:
|
||||
tuple[paddle.Tensor, Any]: Tuple of
|
||||
paddle.float32 scores for next token (n_vocab)
|
||||
and next state for ys
|
||||
|
||||
"""
|
||||
y = y.unsqueeze(0)
|
||||
|
||||
if self.embed_drop is not None:
|
||||
emb = self.embed_drop(self.embed(y))
|
||||
else:
|
||||
emb = self.embed(y)
|
||||
|
||||
h, _, cache = self.encoder.forward_one_step(
|
||||
emb, self._target_mask(y), cache=state)
|
||||
h = self.decoder(h[:, -1])
|
||||
logp = F.log_softmax(h).squeeze(0)
|
||||
return logp, cache
|
||||
|
||||
# batch beam search API (see BatchScorerInterface)
|
||||
def batch_score(self,
|
||||
ys: paddle.Tensor,
|
||||
states: List[Any],
|
||||
xs: paddle.Tensor) -> Tuple[paddle.Tensor, List[Any]]:
|
||||
"""Score new token batch (required).
|
||||
|
||||
Args:
|
||||
ys (paddle.Tensor): paddle.int64 prefix tokens (n_batch, ylen).
|
||||
states (List[Any]): Scorer states for prefix tokens.
|
||||
xs (paddle.Tensor):
|
||||
The encoder feature that generates ys (n_batch, xlen, n_feat).
|
||||
|
||||
Returns:
|
||||
tuple[paddle.Tensor, List[Any]]: Tuple of
|
||||
batchfied scores for next token with shape of `(n_batch, n_vocab)`
|
||||
and next state list for ys.
|
||||
|
||||
"""
|
||||
# merge states
|
||||
n_batch = len(ys)
|
||||
n_layers = len(self.encoder.encoders)
|
||||
if states[0] is None:
|
||||
batch_state = None
|
||||
else:
|
||||
# transpose state of [batch, layer] into [layer, batch]
|
||||
batch_state = [
|
||||
paddle.stack([states[b][i] for b in range(n_batch)])
|
||||
for i in range(n_layers)
|
||||
]
|
||||
|
||||
if self.embed_drop is not None:
|
||||
emb = self.embed_drop(self.embed(ys))
|
||||
else:
|
||||
emb = self.embed(ys)
|
||||
|
||||
# batch decoding
|
||||
h, _, states = self.encoder.forward_one_step(
|
||||
emb, self._target_mask(ys), cache=batch_state)
|
||||
h = self.decoder(h[:, -1])
|
||||
logp = F.log_softmax(h)
|
||||
|
||||
# transpose state of [layer, batch] into [batch, layer]
|
||||
state_list = [[states[i][b] for i in range(n_layers)]
|
||||
for b in range(n_batch)]
|
||||
return logp, state_list
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
tlm = TransformerLM(
|
||||
n_vocab=5002,
|
||||
pos_enc=None,
|
||||
embed_unit=128,
|
||||
att_unit=512,
|
||||
head=8,
|
||||
unit=2048,
|
||||
layer=16,
|
||||
dropout_rate=0.5, )
|
||||
|
||||
# n_vocab: int,
|
||||
# pos_enc: str=None,
|
||||
# embed_unit: int=128,
|
||||
# att_unit: int=256,
|
||||
# head: int=2,
|
||||
# unit: int=1024,
|
||||
# layer: int=4,
|
||||
# dropout_rate: float=0.5,
|
||||
# emb_dropout_rate: float = 0.0,
|
||||
# att_dropout_rate: float = 0.0,
|
||||
# tie_weights: bool = False,):
|
||||
paddle.set_device("cpu")
|
||||
model_dict = paddle.load("transformerLM.pdparams")
|
||||
tlm.set_state_dict(model_dict)
|
||||
|
||||
tlm.eval()
|
||||
#Test the score
|
||||
input2 = np.array([5])
|
||||
input2 = paddle.to_tensor(input2)
|
||||
state = None
|
||||
output, state = tlm.score(input2, state, None)
|
||||
|
||||
input3 = np.array([5, 10])
|
||||
input3 = paddle.to_tensor(input3)
|
||||
output, state = tlm.score(input3, state, None)
|
||||
|
||||
input4 = np.array([5, 10, 0])
|
||||
input4 = paddle.to_tensor(input4)
|
||||
output, state = tlm.score(input4, state, None)
|
||||
print("output", output)
|
||||
"""
|
||||
#Test the batch score
|
||||
batch_size = 2
|
||||
inp2 = np.array([[5], [10]])
|
||||
inp2 = paddle.to_tensor(inp2)
|
||||
output, states = tlm.batch_score(
|
||||
inp2, [(None,None,0)] * batch_size)
|
||||
inp3 = np.array([[100], [30]])
|
||||
inp3 = paddle.to_tensor(inp3)
|
||||
output, states = tlm.batch_score(
|
||||
inp3, states)
|
||||
print("output", output)
|
||||
#print("cache", cache)
|
||||
#np.save("output_pd.npy", output)
|
||||
"""
|
@ -0,0 +1,82 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Language model interface."""
|
||||
import argparse
|
||||
|
||||
from deepspeech.decoders.scorers.scorer_interface import ScorerInterface
|
||||
from deepspeech.utils.dynamic_import import dynamic_import
|
||||
|
||||
|
||||
class LMInterface(ScorerInterface):
|
||||
"""LM Interface model implementation."""
|
||||
|
||||
@staticmethod
|
||||
def add_arguments(parser):
|
||||
"""Add arguments to command line argument parser."""
|
||||
return parser
|
||||
|
||||
@classmethod
|
||||
def build(cls, n_vocab: int, **kwargs):
|
||||
"""Initialize this class with python-level args.
|
||||
|
||||
Args:
|
||||
idim (int): The number of vocabulary.
|
||||
|
||||
Returns:
|
||||
LMinterface: A new instance of LMInterface.
|
||||
|
||||
"""
|
||||
args = argparse.Namespace(**kwargs)
|
||||
return cls(n_vocab, args)
|
||||
|
||||
def forward(self, x, t):
|
||||
"""Compute LM loss value from buffer sequences.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input ids. (batch, len)
|
||||
t (torch.Tensor): Target ids. (batch, len)
|
||||
|
||||
Returns:
|
||||
tuple[torch.Tensor, torch.Tensor, torch.Tensor]: Tuple of
|
||||
loss to backward (scalar),
|
||||
negative log-likelihood of t: -log p(t) (scalar) and
|
||||
the number of elements in x (scalar)
|
||||
|
||||
Notes:
|
||||
The last two return values are used
|
||||
in perplexity: p(t)^{-n} = exp(-log p(t) / n)
|
||||
|
||||
"""
|
||||
raise NotImplementedError("forward method is not implemented")
|
||||
|
||||
|
||||
predefined_lms = {
|
||||
"transformer": "deepspeech.models.lm.transformer:TransformerLM",
|
||||
}
|
||||
|
||||
|
||||
def dynamic_import_lm(module):
|
||||
"""Import LM class dynamically.
|
||||
|
||||
Args:
|
||||
module (str): module_name:class_name or alias in `predefined_lms`
|
||||
|
||||
Returns:
|
||||
type: LM class
|
||||
|
||||
"""
|
||||
model_class = dynamic_import(module, predefined_lms)
|
||||
assert issubclass(model_class,
|
||||
LMInterface), f"{module} does not implement LMInterface"
|
||||
return model_class
|
@ -0,0 +1,75 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""ST Interface module."""
|
||||
from .asr_interface import ASRInterface
|
||||
from deepspeech.utils.dynamic_import import dynamic_import
|
||||
|
||||
|
||||
class STInterface(ASRInterface):
|
||||
"""ST Interface model implementation.
|
||||
|
||||
NOTE: This class is inherited from ASRInterface to enable joint translation
|
||||
and recognition when performing multi-task learning with the ASR task.
|
||||
|
||||
"""
|
||||
|
||||
def translate(self,
|
||||
x,
|
||||
trans_args,
|
||||
char_list=None,
|
||||
rnnlm=None,
|
||||
ensemble_models=[]):
|
||||
"""Recognize x for evaluation.
|
||||
|
||||
:param ndarray x: input acouctic feature (B, T, D) or (T, D)
|
||||
:param namespace trans_args: argment namespace contraining options
|
||||
:param list char_list: list of characters
|
||||
:param paddle.nn.Layer rnnlm: language model module
|
||||
:return: N-best decoding results
|
||||
:rtype: list
|
||||
"""
|
||||
raise NotImplementedError("translate method is not implemented")
|
||||
|
||||
def translate_batch(self, x, trans_args, char_list=None, rnnlm=None):
|
||||
"""Beam search implementation for batch.
|
||||
|
||||
:param paddle.Tensor x: encoder hidden state sequences (B, Tmax, Henc)
|
||||
:param namespace trans_args: argument namespace containing options
|
||||
:param list char_list: list of characters
|
||||
:param paddle.nn.Layer rnnlm: language model module
|
||||
:return: N-best decoding results
|
||||
:rtype: list
|
||||
"""
|
||||
raise NotImplementedError("Batch decoding is not supported yet.")
|
||||
|
||||
|
||||
predefined_st = {
|
||||
"transformer": "deepspeech.models.u2_st:U2STModel",
|
||||
}
|
||||
|
||||
|
||||
def dynamic_import_st(module):
|
||||
"""Import ST models dynamically.
|
||||
|
||||
Args:
|
||||
module (str): module_name:class_name or alias in `predefined_st`
|
||||
|
||||
Returns:
|
||||
type: ST class
|
||||
|
||||
"""
|
||||
model_class = dynamic_import(module, predefined_st)
|
||||
assert issubclass(model_class,
|
||||
STInterface), f"{module} does not implement STInterface"
|
||||
return model_class
|
@ -0,0 +1,15 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .u2_st import U2STInferModel
|
||||
from .u2_st import U2STModel
|
@ -0,0 +1,418 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import copy
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
from . import extension
|
||||
|
||||
|
||||
class PlotAttentionReport(extension.Extension):
|
||||
"""Plot attention reporter.
|
||||
|
||||
Args:
|
||||
att_vis_fn (espnet.nets.*_backend.e2e_asr.E2E.calculate_all_attentions):
|
||||
Function of attention visualization.
|
||||
data (list[tuple(str, dict[str, list[Any]])]): List json utt key items.
|
||||
outdir (str): Directory to save figures.
|
||||
converter (espnet.asr.*_backend.asr.CustomConverter):
|
||||
Function to convert data.
|
||||
device (int | torch.device): Device.
|
||||
reverse (bool): If True, input and output length are reversed.
|
||||
ikey (str): Key to access input
|
||||
(for ASR/ST ikey="input", for MT ikey="output".)
|
||||
iaxis (int): Dimension to access input
|
||||
(for ASR/ST iaxis=0, for MT iaxis=1.)
|
||||
okey (str): Key to access output
|
||||
(for ASR/ST okey="input", MT okay="output".)
|
||||
oaxis (int): Dimension to access output
|
||||
(for ASR/ST oaxis=0, for MT oaxis=0.)
|
||||
subsampling_factor (int): subsampling factor in encoder
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
att_vis_fn,
|
||||
data,
|
||||
outdir,
|
||||
converter,
|
||||
transform,
|
||||
device,
|
||||
reverse=False,
|
||||
ikey="input",
|
||||
iaxis=0,
|
||||
okey="output",
|
||||
oaxis=0,
|
||||
subsampling_factor=1, ):
|
||||
self.att_vis_fn = att_vis_fn
|
||||
self.data = copy.deepcopy(data)
|
||||
self.data_dict = {k: v for k, v in copy.deepcopy(data)}
|
||||
# key is utterance ID
|
||||
self.outdir = outdir
|
||||
self.converter = converter
|
||||
self.transform = transform
|
||||
self.device = device
|
||||
self.reverse = reverse
|
||||
self.ikey = ikey
|
||||
self.iaxis = iaxis
|
||||
self.okey = okey
|
||||
self.oaxis = oaxis
|
||||
self.factor = subsampling_factor
|
||||
if not os.path.exists(self.outdir):
|
||||
os.makedirs(self.outdir)
|
||||
|
||||
def __call__(self, trainer):
|
||||
"""Plot and save image file of att_ws matrix."""
|
||||
att_ws, uttid_list = self.get_attention_weights()
|
||||
if isinstance(att_ws, list): # multi-encoder case
|
||||
num_encs = len(att_ws) - 1
|
||||
# atts
|
||||
for i in range(num_encs):
|
||||
for idx, att_w in enumerate(att_ws[i]):
|
||||
filename = "%s/%s.ep.{.updater.epoch}.att%d.png" % (
|
||||
self.outdir, uttid_list[idx], i + 1, )
|
||||
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
|
||||
np_filename = "%s/%s.ep.{.updater.epoch}.att%d.npy" % (
|
||||
self.outdir, uttid_list[idx], i + 1, )
|
||||
np.save(np_filename.format(trainer), att_w)
|
||||
self._plot_and_save_attention(att_w,
|
||||
filename.format(trainer))
|
||||
# han
|
||||
for idx, att_w in enumerate(att_ws[num_encs]):
|
||||
filename = "%s/%s.ep.{.updater.epoch}.han.png" % (
|
||||
self.outdir, uttid_list[idx], )
|
||||
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
|
||||
np_filename = "%s/%s.ep.{.updater.epoch}.han.npy" % (
|
||||
self.outdir, uttid_list[idx], )
|
||||
np.save(np_filename.format(trainer), att_w)
|
||||
self._plot_and_save_attention(
|
||||
att_w, filename.format(trainer), han_mode=True)
|
||||
else:
|
||||
for idx, att_w in enumerate(att_ws):
|
||||
filename = "%s/%s.ep.{.updater.epoch}.png" % (self.outdir,
|
||||
uttid_list[idx], )
|
||||
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
|
||||
np_filename = "%s/%s.ep.{.updater.epoch}.npy" % (
|
||||
self.outdir, uttid_list[idx], )
|
||||
np.save(np_filename.format(trainer), att_w)
|
||||
self._plot_and_save_attention(att_w, filename.format(trainer))
|
||||
|
||||
def log_attentions(self, logger, step):
|
||||
"""Add image files of att_ws matrix to the tensorboard."""
|
||||
att_ws, uttid_list = self.get_attention_weights()
|
||||
if isinstance(att_ws, list): # multi-encoder case
|
||||
num_encs = len(att_ws) - 1
|
||||
# atts
|
||||
for i in range(num_encs):
|
||||
for idx, att_w in enumerate(att_ws[i]):
|
||||
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
|
||||
plot = self.draw_attention_plot(att_w)
|
||||
logger.add_figure(
|
||||
"%s_att%d" % (uttid_list[idx], i + 1),
|
||||
plot.gcf(),
|
||||
step, )
|
||||
# han
|
||||
for idx, att_w in enumerate(att_ws[num_encs]):
|
||||
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
|
||||
plot = self.draw_han_plot(att_w)
|
||||
logger.add_figure(
|
||||
"%s_han" % (uttid_list[idx]),
|
||||
plot.gcf(),
|
||||
step, )
|
||||
else:
|
||||
for idx, att_w in enumerate(att_ws):
|
||||
att_w = self.trim_attention_weight(uttid_list[idx], att_w)
|
||||
plot = self.draw_attention_plot(att_w)
|
||||
logger.add_figure("%s" % (uttid_list[idx]), plot.gcf(), step)
|
||||
|
||||
def get_attention_weights(self):
|
||||
"""Return attention weights.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: attention weights. float. Its shape would be
|
||||
differ from backend.
|
||||
* pytorch-> 1) multi-head case => (B, H, Lmax, Tmax), 2)
|
||||
other case => (B, Lmax, Tmax).
|
||||
* chainer-> (B, Lmax, Tmax)
|
||||
|
||||
"""
|
||||
return_batch, uttid_list = self.transform(self.data, return_uttid=True)
|
||||
batch = self.converter([return_batch], self.device)
|
||||
if isinstance(batch, tuple):
|
||||
att_ws = self.att_vis_fn(*batch)
|
||||
else:
|
||||
att_ws = self.att_vis_fn(**batch)
|
||||
return att_ws, uttid_list
|
||||
|
||||
def trim_attention_weight(self, uttid, att_w):
|
||||
"""Transform attention matrix with regard to self.reverse."""
|
||||
if self.reverse:
|
||||
enc_key, enc_axis = self.okey, self.oaxis
|
||||
dec_key, dec_axis = self.ikey, self.iaxis
|
||||
else:
|
||||
enc_key, enc_axis = self.ikey, self.iaxis
|
||||
dec_key, dec_axis = self.okey, self.oaxis
|
||||
dec_len = int(self.data_dict[uttid][dec_key][dec_axis]["shape"][0])
|
||||
enc_len = int(self.data_dict[uttid][enc_key][enc_axis]["shape"][0])
|
||||
if self.factor > 1:
|
||||
enc_len //= self.factor
|
||||
if len(att_w.shape) == 3:
|
||||
att_w = att_w[:, :dec_len, :enc_len]
|
||||
else:
|
||||
att_w = att_w[:dec_len, :enc_len]
|
||||
return att_w
|
||||
|
||||
def draw_attention_plot(self, att_w):
|
||||
"""Plot the att_w matrix.
|
||||
|
||||
Returns:
|
||||
matplotlib.pyplot: pyplot object with attention matrix image.
|
||||
|
||||
"""
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.clf()
|
||||
att_w = att_w.astype(np.float32)
|
||||
if len(att_w.shape) == 3:
|
||||
for h, aw in enumerate(att_w, 1):
|
||||
plt.subplot(1, len(att_w), h)
|
||||
plt.imshow(aw, aspect="auto")
|
||||
plt.xlabel("Encoder Index")
|
||||
plt.ylabel("Decoder Index")
|
||||
else:
|
||||
plt.imshow(att_w, aspect="auto")
|
||||
plt.xlabel("Encoder Index")
|
||||
plt.ylabel("Decoder Index")
|
||||
plt.tight_layout()
|
||||
return plt
|
||||
|
||||
def draw_han_plot(self, att_w):
|
||||
"""Plot the att_w matrix for hierarchical attention.
|
||||
|
||||
Returns:
|
||||
matplotlib.pyplot: pyplot object with attention matrix image.
|
||||
|
||||
"""
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
plt.clf()
|
||||
if len(att_w.shape) == 3:
|
||||
for h, aw in enumerate(att_w, 1):
|
||||
legends = []
|
||||
plt.subplot(1, len(att_w), h)
|
||||
for i in range(aw.shape[1]):
|
||||
plt.plot(aw[:, i])
|
||||
legends.append("Att{}".format(i))
|
||||
plt.ylim([0, 1.0])
|
||||
plt.xlim([0, aw.shape[0]])
|
||||
plt.grid(True)
|
||||
plt.ylabel("Attention Weight")
|
||||
plt.xlabel("Decoder Index")
|
||||
plt.legend(legends)
|
||||
else:
|
||||
legends = []
|
||||
for i in range(att_w.shape[1]):
|
||||
plt.plot(att_w[:, i])
|
||||
legends.append("Att{}".format(i))
|
||||
plt.ylim([0, 1.0])
|
||||
plt.xlim([0, att_w.shape[0]])
|
||||
plt.grid(True)
|
||||
plt.ylabel("Attention Weight")
|
||||
plt.xlabel("Decoder Index")
|
||||
plt.legend(legends)
|
||||
plt.tight_layout()
|
||||
return plt
|
||||
|
||||
def _plot_and_save_attention(self, att_w, filename, han_mode=False):
|
||||
if han_mode:
|
||||
plt = self.draw_han_plot(att_w)
|
||||
else:
|
||||
plt = self.draw_attention_plot(att_w)
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
||||
|
||||
|
||||
class PlotCTCReport(extension.Extension):
|
||||
"""Plot CTC reporter.
|
||||
|
||||
Args:
|
||||
ctc_vis_fn (espnet.nets.*_backend.e2e_asr.E2E.calculate_all_ctc_probs):
|
||||
Function of CTC visualization.
|
||||
data (list[tuple(str, dict[str, list[Any]])]): List json utt key items.
|
||||
outdir (str): Directory to save figures.
|
||||
converter (espnet.asr.*_backend.asr.CustomConverter):
|
||||
Function to convert data.
|
||||
device (int | torch.device): Device.
|
||||
reverse (bool): If True, input and output length are reversed.
|
||||
ikey (str): Key to access input
|
||||
(for ASR/ST ikey="input", for MT ikey="output".)
|
||||
iaxis (int): Dimension to access input
|
||||
(for ASR/ST iaxis=0, for MT iaxis=1.)
|
||||
okey (str): Key to access output
|
||||
(for ASR/ST okey="input", MT okay="output".)
|
||||
oaxis (int): Dimension to access output
|
||||
(for ASR/ST oaxis=0, for MT oaxis=0.)
|
||||
subsampling_factor (int): subsampling factor in encoder
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
ctc_vis_fn,
|
||||
data,
|
||||
outdir,
|
||||
converter,
|
||||
transform,
|
||||
device,
|
||||
reverse=False,
|
||||
ikey="input",
|
||||
iaxis=0,
|
||||
okey="output",
|
||||
oaxis=0,
|
||||
subsampling_factor=1, ):
|
||||
self.ctc_vis_fn = ctc_vis_fn
|
||||
self.data = copy.deepcopy(data)
|
||||
self.data_dict = {k: v for k, v in copy.deepcopy(data)}
|
||||
# key is utterance ID
|
||||
self.outdir = outdir
|
||||
self.converter = converter
|
||||
self.transform = transform
|
||||
self.device = device
|
||||
self.reverse = reverse
|
||||
self.ikey = ikey
|
||||
self.iaxis = iaxis
|
||||
self.okey = okey
|
||||
self.oaxis = oaxis
|
||||
self.factor = subsampling_factor
|
||||
if not os.path.exists(self.outdir):
|
||||
os.makedirs(self.outdir)
|
||||
|
||||
def __call__(self, trainer):
|
||||
"""Plot and save image file of ctc prob."""
|
||||
ctc_probs, uttid_list = self.get_ctc_probs()
|
||||
if isinstance(ctc_probs, list): # multi-encoder case
|
||||
num_encs = len(ctc_probs) - 1
|
||||
for i in range(num_encs):
|
||||
for idx, ctc_prob in enumerate(ctc_probs[i]):
|
||||
filename = "%s/%s.ep.{.updater.epoch}.ctc%d.png" % (
|
||||
self.outdir, uttid_list[idx], i + 1, )
|
||||
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
|
||||
np_filename = "%s/%s.ep.{.updater.epoch}.ctc%d.npy" % (
|
||||
self.outdir, uttid_list[idx], i + 1, )
|
||||
np.save(np_filename.format(trainer), ctc_prob)
|
||||
self._plot_and_save_ctc(ctc_prob, filename.format(trainer))
|
||||
else:
|
||||
for idx, ctc_prob in enumerate(ctc_probs):
|
||||
filename = "%s/%s.ep.{.updater.epoch}.png" % (self.outdir,
|
||||
uttid_list[idx], )
|
||||
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
|
||||
np_filename = "%s/%s.ep.{.updater.epoch}.npy" % (
|
||||
self.outdir, uttid_list[idx], )
|
||||
np.save(np_filename.format(trainer), ctc_prob)
|
||||
self._plot_and_save_ctc(ctc_prob, filename.format(trainer))
|
||||
|
||||
def log_ctc_probs(self, logger, step):
|
||||
"""Add image files of ctc probs to the tensorboard."""
|
||||
ctc_probs, uttid_list = self.get_ctc_probs()
|
||||
if isinstance(ctc_probs, list): # multi-encoder case
|
||||
num_encs = len(ctc_probs) - 1
|
||||
for i in range(num_encs):
|
||||
for idx, ctc_prob in enumerate(ctc_probs[i]):
|
||||
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
|
||||
plot = self.draw_ctc_plot(ctc_prob)
|
||||
logger.add_figure(
|
||||
"%s_ctc%d" % (uttid_list[idx], i + 1),
|
||||
plot.gcf(),
|
||||
step, )
|
||||
else:
|
||||
for idx, ctc_prob in enumerate(ctc_probs):
|
||||
ctc_prob = self.trim_ctc_prob(uttid_list[idx], ctc_prob)
|
||||
plot = self.draw_ctc_plot(ctc_prob)
|
||||
logger.add_figure("%s" % (uttid_list[idx]), plot.gcf(), step)
|
||||
|
||||
def get_ctc_probs(self):
|
||||
"""Return CTC probs.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: CTC probs. float. Its shape would be
|
||||
differ from backend. (B, Tmax, vocab).
|
||||
|
||||
"""
|
||||
return_batch, uttid_list = self.transform(self.data, return_uttid=True)
|
||||
batch = self.converter([return_batch], self.device)
|
||||
if isinstance(batch, tuple):
|
||||
probs = self.ctc_vis_fn(*batch)
|
||||
else:
|
||||
probs = self.ctc_vis_fn(**batch)
|
||||
return probs, uttid_list
|
||||
|
||||
def trim_ctc_prob(self, uttid, prob):
|
||||
"""Trim CTC posteriors accoding to input lengths."""
|
||||
enc_len = int(self.data_dict[uttid][self.ikey][self.iaxis]["shape"][0])
|
||||
if self.factor > 1:
|
||||
enc_len //= self.factor
|
||||
prob = prob[:enc_len]
|
||||
return prob
|
||||
|
||||
def draw_ctc_plot(self, ctc_prob):
|
||||
"""Plot the ctc_prob matrix.
|
||||
|
||||
Returns:
|
||||
matplotlib.pyplot: pyplot object with CTC prob matrix image.
|
||||
|
||||
"""
|
||||
import matplotlib
|
||||
|
||||
matplotlib.use("Agg")
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
ctc_prob = ctc_prob.astype(np.float32)
|
||||
|
||||
plt.clf()
|
||||
topk_ids = np.argsort(ctc_prob, axis=1)
|
||||
n_frames, vocab = ctc_prob.shape
|
||||
times_probs = np.arange(n_frames)
|
||||
|
||||
plt.figure(figsize=(20, 8))
|
||||
|
||||
# NOTE: index 0 is reserved for blank
|
||||
for idx in set(topk_ids.reshape(-1).tolist()):
|
||||
if idx == 0:
|
||||
plt.plot(
|
||||
times_probs,
|
||||
ctc_prob[:, 0],
|
||||
":",
|
||||
label="<blank>",
|
||||
color="grey")
|
||||
else:
|
||||
plt.plot(times_probs, ctc_prob[:, idx])
|
||||
plt.xlabel(u"Input [frame]", fontsize=12)
|
||||
plt.ylabel("Posteriors", fontsize=12)
|
||||
plt.xticks(list(range(0, int(n_frames) + 1, 10)))
|
||||
plt.yticks(list(range(0, 2, 1)))
|
||||
plt.tight_layout()
|
||||
return plt
|
||||
|
||||
def _plot_and_save_ctc(self, ctc_prob, filename):
|
||||
plt = self.draw_ctc_plot(ctc_prob)
|
||||
plt.savefig(filename)
|
||||
plt.close()
|
@ -0,0 +1,61 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from ..reporter import DictSummary
|
||||
from .utils import get_trigger
|
||||
|
||||
|
||||
class CompareValueTrigger():
|
||||
"""Trigger invoked when key value getting bigger or lower than before.
|
||||
|
||||
Args:
|
||||
key (str) : Key of value.
|
||||
compare_fn ((float, float) -> bool) : Function to compare the values.
|
||||
trigger (tuple(int, str)) : Trigger that decide the comparison interval.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, key, compare_fn, trigger=(1, "epoch")):
|
||||
self._key = key
|
||||
self._best_value = None
|
||||
self._interval_trigger = get_trigger(trigger)
|
||||
self._init_summary()
|
||||
self._compare_fn = compare_fn
|
||||
|
||||
def __call__(self, trainer):
|
||||
"""Get value related to the key and compare with current value."""
|
||||
observation = trainer.observation
|
||||
summary = self._summary
|
||||
key = self._key
|
||||
if key in observation:
|
||||
summary.add({key: observation[key]})
|
||||
|
||||
if not self._interval_trigger(trainer):
|
||||
return False
|
||||
|
||||
stats = summary.compute_mean()
|
||||
value = float(stats[key]) # copy to CPU
|
||||
self._init_summary()
|
||||
|
||||
if self._best_value is None:
|
||||
# initialize best value
|
||||
self._best_value = value
|
||||
return False
|
||||
elif self._compare_fn(self._best_value, value):
|
||||
return True
|
||||
else:
|
||||
self._best_value = value
|
||||
return False
|
||||
|
||||
def _init_summary(self):
|
||||
self._summary = DictSummary()
|
@ -0,0 +1,28 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .interval_trigger import IntervalTrigger
|
||||
|
||||
|
||||
def never_fail_trigger(trainer):
|
||||
return False
|
||||
|
||||
|
||||
def get_trigger(trigger):
|
||||
if trigger is None:
|
||||
return never_fail_trigger
|
||||
if callable(trigger):
|
||||
return trigger
|
||||
else:
|
||||
trigger = IntervalTrigger(*trigger)
|
||||
return trigger
|
@ -0,0 +1,13 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
@ -0,0 +1,53 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import numpy as np
|
||||
|
||||
|
||||
def delta(feat, window):
|
||||
assert window > 0
|
||||
delta_feat = np.zeros_like(feat)
|
||||
for i in range(1, window + 1):
|
||||
delta_feat[:-i] += i * feat[i:]
|
||||
delta_feat[i:] += -i * feat[:-i]
|
||||
delta_feat[-i:] += i * feat[-1]
|
||||
delta_feat[:i] += -i * feat[0]
|
||||
delta_feat /= 2 * sum(i**2 for i in range(1, window + 1))
|
||||
return delta_feat
|
||||
|
||||
|
||||
def add_deltas(x, window=2, order=2):
|
||||
"""
|
||||
Args:
|
||||
x (np.ndarray): speech feat, (T, D).
|
||||
|
||||
Return:
|
||||
np.ndarray: (T, (1+order)*D)
|
||||
"""
|
||||
feats = [x]
|
||||
for _ in range(order):
|
||||
feats.append(delta(feats[-1], window))
|
||||
return np.concatenate(feats, axis=1)
|
||||
|
||||
|
||||
class AddDeltas():
|
||||
def __init__(self, window=2, order=2):
|
||||
self.window = window
|
||||
self.order = order
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(window={window}, order={order}".format(
|
||||
name=self.__class__.__name__, window=self.window, order=self.order)
|
||||
|
||||
def __call__(self, x):
|
||||
return add_deltas(x, window=self.window, order=self.order)
|
@ -0,0 +1,56 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import numpy
|
||||
|
||||
|
||||
class ChannelSelector():
|
||||
"""Select 1ch from multi-channel signal"""
|
||||
|
||||
def __init__(self, train_channel="random", eval_channel=0, axis=1):
|
||||
self.train_channel = train_channel
|
||||
self.eval_channel = eval_channel
|
||||
self.axis = axis
|
||||
|
||||
def __repr__(self):
|
||||
return ("{name}(train_channel={train_channel}, "
|
||||
"eval_channel={eval_channel}, axis={axis})".format(
|
||||
name=self.__class__.__name__,
|
||||
train_channel=self.train_channel,
|
||||
eval_channel=self.eval_channel,
|
||||
axis=self.axis, ))
|
||||
|
||||
def __call__(self, x, train=True):
|
||||
# Assuming x: [Time, Channel] by default
|
||||
|
||||
if x.ndim <= self.axis:
|
||||
# If the dimension is insufficient, then unsqueeze
|
||||
# (e.g [Time] -> [Time, 1])
|
||||
ind = tuple(
|
||||
slice(None) if i < x.ndim else None
|
||||
for i in range(self.axis + 1))
|
||||
x = x[ind]
|
||||
|
||||
if train:
|
||||
channel = self.train_channel
|
||||
else:
|
||||
channel = self.eval_channel
|
||||
|
||||
if channel == "random":
|
||||
ch = numpy.random.randint(0, x.shape[self.axis])
|
||||
else:
|
||||
ch = channel
|
||||
|
||||
ind = tuple(
|
||||
slice(None) if i != self.axis else ch for i in range(x.ndim))
|
||||
return x[ind]
|
@ -0,0 +1,158 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import io
|
||||
|
||||
import h5py
|
||||
import kaldiio
|
||||
import numpy as np
|
||||
|
||||
|
||||
class CMVN():
|
||||
"Apply Global/Spk CMVN/iverserCMVN."
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
stats,
|
||||
norm_means=True,
|
||||
norm_vars=False,
|
||||
filetype="mat",
|
||||
utt2spk=None,
|
||||
spk2utt=None,
|
||||
reverse=False,
|
||||
std_floor=1.0e-20, ):
|
||||
self.stats_file = stats
|
||||
self.norm_means = norm_means
|
||||
self.norm_vars = norm_vars
|
||||
self.reverse = reverse
|
||||
|
||||
if isinstance(stats, dict):
|
||||
stats_dict = dict(stats)
|
||||
else:
|
||||
# Use for global CMVN
|
||||
if filetype == "mat":
|
||||
stats_dict = {None: kaldiio.load_mat(stats)}
|
||||
# Use for global CMVN
|
||||
elif filetype == "npy":
|
||||
stats_dict = {None: np.load(stats)}
|
||||
# Use for speaker CMVN
|
||||
elif filetype == "ark":
|
||||
self.accept_uttid = True
|
||||
stats_dict = dict(kaldiio.load_ark(stats))
|
||||
# Use for speaker CMVN
|
||||
elif filetype == "hdf5":
|
||||
self.accept_uttid = True
|
||||
stats_dict = h5py.File(stats)
|
||||
else:
|
||||
raise ValueError("Not supporting filetype={}".format(filetype))
|
||||
|
||||
if utt2spk is not None:
|
||||
self.utt2spk = {}
|
||||
with io.open(utt2spk, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
utt, spk = line.rstrip().split(None, 1)
|
||||
self.utt2spk[utt] = spk
|
||||
elif spk2utt is not None:
|
||||
self.utt2spk = {}
|
||||
with io.open(spk2utt, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
spk, utts = line.rstrip().split(None, 1)
|
||||
for utt in utts.split():
|
||||
self.utt2spk[utt] = spk
|
||||
else:
|
||||
self.utt2spk = None
|
||||
|
||||
# Kaldi makes a matrix for CMVN which has a shape of (2, feat_dim + 1),
|
||||
# and the first vector contains the sum of feats and the second is
|
||||
# the sum of squares. The last value of the first, i.e. stats[0,-1],
|
||||
# is the number of samples for this statistics.
|
||||
self.bias = {}
|
||||
self.scale = {}
|
||||
for spk, stats in stats_dict.items():
|
||||
assert len(stats) == 2, stats.shape
|
||||
|
||||
count = stats[0, -1]
|
||||
|
||||
# If the feature has two or more dimensions
|
||||
if not (np.isscalar(count) or isinstance(count, (int, float))):
|
||||
# The first is only used
|
||||
count = count.flatten()[0]
|
||||
|
||||
mean = stats[0, :-1] / count
|
||||
# V(x) = E(x^2) - (E(x))^2
|
||||
var = stats[1, :-1] / count - mean * mean
|
||||
std = np.maximum(np.sqrt(var), std_floor)
|
||||
self.bias[spk] = -mean
|
||||
self.scale[spk] = 1 / std
|
||||
|
||||
def __repr__(self):
|
||||
return ("{name}(stats_file={stats_file}, "
|
||||
"norm_means={norm_means}, norm_vars={norm_vars}, "
|
||||
"reverse={reverse})".format(
|
||||
name=self.__class__.__name__,
|
||||
stats_file=self.stats_file,
|
||||
norm_means=self.norm_means,
|
||||
norm_vars=self.norm_vars,
|
||||
reverse=self.reverse, ))
|
||||
|
||||
def __call__(self, x, uttid=None):
|
||||
if self.utt2spk is not None:
|
||||
spk = self.utt2spk[uttid]
|
||||
else:
|
||||
spk = uttid
|
||||
|
||||
if not self.reverse:
|
||||
# apply cmvn
|
||||
if self.norm_means:
|
||||
x = np.add(x, self.bias[spk])
|
||||
if self.norm_vars:
|
||||
x = np.multiply(x, self.scale[spk])
|
||||
|
||||
else:
|
||||
# apply reverse cmvn
|
||||
if self.norm_vars:
|
||||
x = np.divide(x, self.scale[spk])
|
||||
if self.norm_means:
|
||||
x = np.subtract(x, self.bias[spk])
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class UtteranceCMVN():
|
||||
"Apply Utterance CMVN"
|
||||
|
||||
def __init__(self, norm_means=True, norm_vars=False, std_floor=1.0e-20):
|
||||
self.norm_means = norm_means
|
||||
self.norm_vars = norm_vars
|
||||
self.std_floor = std_floor
|
||||
|
||||
def __repr__(self):
|
||||
return "{name}(norm_means={norm_means}, norm_vars={norm_vars})".format(
|
||||
name=self.__class__.__name__,
|
||||
norm_means=self.norm_means,
|
||||
norm_vars=self.norm_vars, )
|
||||
|
||||
def __call__(self, x, uttid=None):
|
||||
# x: [Time, Dim]
|
||||
square_sums = (x**2).sum(axis=0)
|
||||
mean = x.mean(axis=0)
|
||||
|
||||
if self.norm_means:
|
||||
x = np.subtract(x, mean)
|
||||
|
||||
if self.norm_vars:
|
||||
var = square_sums / x.shape[0] - mean**2
|
||||
std = np.maximum(np.sqrt(var), self.std_floor)
|
||||
x = np.divide(x, std)
|
||||
|
||||
return x
|
@ -0,0 +1,85 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import inspect
|
||||
|
||||
from deepspeech.transform.transform_interface import TransformInterface
|
||||
from deepspeech.utils.check_kwargs import check_kwargs
|
||||
|
||||
|
||||
class FuncTrans(TransformInterface):
|
||||
"""Functional Transformation
|
||||
|
||||
WARNING:
|
||||
Builtin or C/C++ functions may not work properly
|
||||
because this class heavily depends on the `inspect` module.
|
||||
|
||||
Usage:
|
||||
|
||||
>>> def foo_bar(x, a=1, b=2):
|
||||
... '''Foo bar
|
||||
... :param x: input
|
||||
... :param int a: default 1
|
||||
... :param int b: default 2
|
||||
... '''
|
||||
... return x + a - b
|
||||
|
||||
|
||||
>>> class FooBar(FuncTrans):
|
||||
... _func = foo_bar
|
||||
... __doc__ = foo_bar.__doc__
|
||||
"""
|
||||
|
||||
_func = None
|
||||
|
||||
def __init__(self, **kwargs):
|
||||
self.kwargs = kwargs
|
||||
check_kwargs(self.func, kwargs)
|
||||
|
||||
def __call__(self, x):
|
||||
return self.func(x, **self.kwargs)
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser):
|
||||
fname = cls._func.__name__.replace("_", "-")
|
||||
group = parser.add_argument_group(fname + " transformation setting")
|
||||
for k, v in cls.default_params().items():
|
||||
# TODO(karita): get help and choices from docstring?
|
||||
attr = k.replace("_", "-")
|
||||
group.add_argument(f"--{fname}-{attr}", default=v, type=type(v))
|
||||
return parser
|
||||
|
||||
@property
|
||||
def func(self):
|
||||
return type(self)._func
|
||||
|
||||
@classmethod
|
||||
def default_params(cls):
|
||||
try:
|
||||
d = dict(inspect.signature(cls._func).parameters)
|
||||
except ValueError:
|
||||
d = dict()
|
||||
return {
|
||||
k: v.default
|
||||
for k, v in d.items() if v.default != inspect.Parameter.empty
|
||||
}
|
||||
|
||||
def __repr__(self):
|
||||
params = self.default_params()
|
||||
params.update(**self.kwargs)
|
||||
ret = self.__class__.__name__ + "("
|
||||
if len(params) == 0:
|
||||
return ret + ")"
|
||||
for k, v in params.items():
|
||||
ret += "{}={}, ".format(k, v)
|
||||
return ret[:-2] + ")"
|
@ -0,0 +1,350 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import librosa
|
||||
import numpy
|
||||
import scipy
|
||||
import soundfile
|
||||
|
||||
from deepspeech.io.reader import SoundHDF5File
|
||||
|
||||
|
||||
class SpeedPerturbation():
|
||||
"""SpeedPerturbation
|
||||
|
||||
The speed perturbation in kaldi uses sox-speed instead of sox-tempo,
|
||||
and sox-speed just to resample the input,
|
||||
i.e pitch and tempo are changed both.
|
||||
|
||||
"Why use speed option instead of tempo -s in SoX for speed perturbation"
|
||||
https://groups.google.com/forum/#!topic/kaldi-help/8OOG7eE4sZ8
|
||||
|
||||
Warning:
|
||||
This function is very slow because of resampling.
|
||||
I recommmend to apply speed-perturb outside the training using sox.
|
||||
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lower=0.9,
|
||||
upper=1.1,
|
||||
utt2ratio=None,
|
||||
keep_length=True,
|
||||
res_type="kaiser_best",
|
||||
seed=None, ):
|
||||
self.res_type = res_type
|
||||
self.keep_length = keep_length
|
||||
self.state = numpy.random.RandomState(seed)
|
||||
|
||||
if utt2ratio is not None:
|
||||
self.utt2ratio = {}
|
||||
# Use the scheduled ratio for each utterances
|
||||
self.utt2ratio_file = utt2ratio
|
||||
self.lower = None
|
||||
self.upper = None
|
||||
self.accept_uttid = True
|
||||
|
||||
with open(utt2ratio, "r") as f:
|
||||
for line in f:
|
||||
utt, ratio = line.rstrip().split(None, 1)
|
||||
ratio = float(ratio)
|
||||
self.utt2ratio[utt] = ratio
|
||||
else:
|
||||
self.utt2ratio = None
|
||||
# The ratio is given on runtime randomly
|
||||
self.lower = lower
|
||||
self.upper = upper
|
||||
|
||||
def __repr__(self):
|
||||
if self.utt2ratio is None:
|
||||
return "{}(lower={}, upper={}, " "keep_length={}, res_type={})".format(
|
||||
self.__class__.__name__,
|
||||
self.lower,
|
||||
self.upper,
|
||||
self.keep_length,
|
||||
self.res_type, )
|
||||
else:
|
||||
return "{}({}, res_type={})".format(
|
||||
self.__class__.__name__, self.utt2ratio_file, self.res_type)
|
||||
|
||||
def __call__(self, x, uttid=None, train=True):
|
||||
if not train:
|
||||
return x
|
||||
|
||||
x = x.astype(numpy.float32)
|
||||
if self.accept_uttid:
|
||||
ratio = self.utt2ratio[uttid]
|
||||
else:
|
||||
ratio = self.state.uniform(self.lower, self.upper)
|
||||
|
||||
# Note1: resample requires the sampling-rate of input and output,
|
||||
# but actually only the ratio is used.
|
||||
y = librosa.resample(x, ratio, 1, res_type=self.res_type)
|
||||
|
||||
if self.keep_length:
|
||||
diff = abs(len(x) - len(y))
|
||||
if len(y) > len(x):
|
||||
# Truncate noise
|
||||
y = y[diff // 2:-((diff + 1) // 2)]
|
||||
elif len(y) < len(x):
|
||||
# Assume the time-axis is the first: (Time, Channel)
|
||||
pad_width = [(diff // 2, (diff + 1) // 2)] + [
|
||||
(0, 0) for _ in range(y.ndim - 1)
|
||||
]
|
||||
y = numpy.pad(
|
||||
y, pad_width=pad_width, constant_values=0, mode="constant")
|
||||
return y
|
||||
|
||||
|
||||
class BandpassPerturbation():
|
||||
"""BandpassPerturbation
|
||||
|
||||
Randomly dropout along the frequency axis.
|
||||
|
||||
The original idea comes from the following:
|
||||
"randomly-selected frequency band was cut off under the constraint of
|
||||
leaving at least 1,000 Hz band within the range of less than 4,000Hz."
|
||||
(The Hitachi/JHU CHiME-5 system: Advances in speech recognition for
|
||||
everyday home environments using multiple microphone arrays;
|
||||
http://spandh.dcs.shef.ac.uk/chime_workshop/papers/CHiME_2018_paper_kanda.pdf)
|
||||
|
||||
"""
|
||||
|
||||
def __init__(self, lower=0.0, upper=0.75, seed=None, axes=(-1, )):
|
||||
self.lower = lower
|
||||
self.upper = upper
|
||||
self.state = numpy.random.RandomState(seed)
|
||||
# x_stft: (Time, Channel, Freq)
|
||||
self.axes = axes
|
||||
|
||||
def __repr__(self):
|
||||
return "{}(lower={}, upper={})".format(self.__class__.__name__,
|
||||
self.lower, self.upper)
|
||||
|
||||
def __call__(self, x_stft, uttid=None, train=True):
|
||||
if not train:
|
||||
return x_stft
|
||||
|
||||
if x_stft.ndim == 1:
|
||||
raise RuntimeError("Input in time-freq domain: "
|
||||
"(Time, Channel, Freq) or (Time, Freq)")
|
||||
|
||||
ratio = self.state.uniform(self.lower, self.upper)
|
||||
axes = [i if i >= 0 else x_stft.ndim - i for i in self.axes]
|
||||
shape = [s if i in axes else 1 for i, s in enumerate(x_stft.shape)]
|
||||
|
||||
mask = self.state.randn(*shape) > ratio
|
||||
x_stft *= mask
|
||||
return x_stft
|
||||
|
||||
|
||||
class VolumePerturbation():
|
||||
def __init__(self,
|
||||
lower=-1.6,
|
||||
upper=1.6,
|
||||
utt2ratio=None,
|
||||
dbunit=True,
|
||||
seed=None):
|
||||
self.dbunit = dbunit
|
||||
self.utt2ratio_file = utt2ratio
|
||||
self.lower = lower
|
||||
self.upper = upper
|
||||
self.state = numpy.random.RandomState(seed)
|
||||
|
||||
if utt2ratio is not None:
|
||||
# Use the scheduled ratio for each utterances
|
||||
self.utt2ratio = {}
|
||||
self.lower = None
|
||||
self.upper = None
|
||||
self.accept_uttid = True
|
||||
|
||||
with open(utt2ratio, "r") as f:
|
||||
for line in f:
|
||||
utt, ratio = line.rstrip().split(None, 1)
|
||||
ratio = float(ratio)
|
||||
self.utt2ratio[utt] = ratio
|
||||
else:
|
||||
# The ratio is given on runtime randomly
|
||||
self.utt2ratio = None
|
||||
|
||||
def __repr__(self):
|
||||
if self.utt2ratio is None:
|
||||
return "{}(lower={}, upper={}, dbunit={})".format(
|
||||
self.__class__.__name__, self.lower, self.upper, self.dbunit)
|
||||
else:
|
||||
return '{}("{}", dbunit={})'.format(
|
||||
self.__class__.__name__, self.utt2ratio_file, self.dbunit)
|
||||
|
||||
def __call__(self, x, uttid=None, train=True):
|
||||
if not train:
|
||||
return x
|
||||
|
||||
x = x.astype(numpy.float32)
|
||||
|
||||
if self.accept_uttid:
|
||||
ratio = self.utt2ratio[uttid]
|
||||
else:
|
||||
ratio = self.state.uniform(self.lower, self.upper)
|
||||
if self.dbunit:
|
||||
ratio = 10**(ratio / 20)
|
||||
return x * ratio
|
||||
|
||||
|
||||
class NoiseInjection():
|
||||
"""Add isotropic noise"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
utt2noise=None,
|
||||
lower=-20,
|
||||
upper=-5,
|
||||
utt2ratio=None,
|
||||
filetype="list",
|
||||
dbunit=True,
|
||||
seed=None, ):
|
||||
self.utt2noise_file = utt2noise
|
||||
self.utt2ratio_file = utt2ratio
|
||||
self.filetype = filetype
|
||||
self.dbunit = dbunit
|
||||
self.lower = lower
|
||||
self.upper = upper
|
||||
self.state = numpy.random.RandomState(seed)
|
||||
|
||||
if utt2ratio is not None:
|
||||
# Use the scheduled ratio for each utterances
|
||||
self.utt2ratio = {}
|
||||
with open(utt2noise, "r") as f:
|
||||
for line in f:
|
||||
utt, snr = line.rstrip().split(None, 1)
|
||||
snr = float(snr)
|
||||
self.utt2ratio[utt] = snr
|
||||
else:
|
||||
# The ratio is given on runtime randomly
|
||||
self.utt2ratio = None
|
||||
|
||||
if utt2noise is not None:
|
||||
self.utt2noise = {}
|
||||
if filetype == "list":
|
||||
with open(utt2noise, "r") as f:
|
||||
for line in f:
|
||||
utt, filename = line.rstrip().split(None, 1)
|
||||
signal, rate = soundfile.read(filename, dtype="int16")
|
||||
# Load all files in memory
|
||||
self.utt2noise[utt] = (signal, rate)
|
||||
|
||||
elif filetype == "sound.hdf5":
|
||||
self.utt2noise = SoundHDF5File(utt2noise, "r")
|
||||
else:
|
||||
raise ValueError(filetype)
|
||||
else:
|
||||
self.utt2noise = None
|
||||
|
||||
if utt2noise is not None and utt2ratio is not None:
|
||||
if set(self.utt2ratio) != set(self.utt2noise):
|
||||
raise RuntimeError("The uttids mismatch between {} and {}".
|
||||
format(utt2ratio, utt2noise))
|
||||
|
||||
def __repr__(self):
|
||||
if self.utt2ratio is None:
|
||||
return "{}(lower={}, upper={}, dbunit={})".format(
|
||||
self.__class__.__name__, self.lower, self.upper, self.dbunit)
|
||||
else:
|
||||
return '{}("{}", dbunit={})'.format(
|
||||
self.__class__.__name__, self.utt2ratio_file, self.dbunit)
|
||||
|
||||
def __call__(self, x, uttid=None, train=True):
|
||||
if not train:
|
||||
return x
|
||||
x = x.astype(numpy.float32)
|
||||
|
||||
# 1. Get ratio of noise to signal in sound pressure level
|
||||
if uttid is not None and self.utt2ratio is not None:
|
||||
ratio = self.utt2ratio[uttid]
|
||||
else:
|
||||
ratio = self.state.uniform(self.lower, self.upper)
|
||||
|
||||
if self.dbunit:
|
||||
ratio = 10**(ratio / 20)
|
||||
scale = ratio * numpy.sqrt((x**2).mean())
|
||||
|
||||
# 2. Get noise
|
||||
if self.utt2noise is not None:
|
||||
# Get noise from the external source
|
||||
if uttid is not None:
|
||||
noise, rate = self.utt2noise[uttid]
|
||||
else:
|
||||
# Randomly select the noise source
|
||||
noise = self.state.choice(list(self.utt2noise.values()))
|
||||
# Normalize the level
|
||||
noise /= numpy.sqrt((noise**2).mean())
|
||||
|
||||
# Adjust the noise length
|
||||
diff = abs(len(x) - len(noise))
|
||||
offset = self.state.randint(0, diff)
|
||||
if len(noise) > len(x):
|
||||
# Truncate noise
|
||||
noise = noise[offset:-(diff - offset)]
|
||||
else:
|
||||
noise = numpy.pad(
|
||||
noise, pad_width=[offset, diff - offset], mode="wrap")
|
||||
|
||||
else:
|
||||
# Generate white noise
|
||||
noise = self.state.normal(0, 1, x.shape)
|
||||
|
||||
# 3. Add noise to signal
|
||||
return x + noise * scale
|
||||
|
||||
|
||||
class RIRConvolve():
|
||||
def __init__(self, utt2rir, filetype="list"):
|
||||
self.utt2rir_file = utt2rir
|
||||
self.filetype = filetype
|
||||
|
||||
self.utt2rir = {}
|
||||
if filetype == "list":
|
||||
with open(utt2rir, "r") as f:
|
||||
for line in f:
|
||||
utt, filename = line.rstrip().split(None, 1)
|
||||
signal, rate = soundfile.read(filename, dtype="int16")
|
||||
self.utt2rir[utt] = (signal, rate)
|
||||
|
||||
elif filetype == "sound.hdf5":
|
||||
self.utt2rir = SoundHDF5File(utt2rir, "r")
|
||||
else:
|
||||
raise NotImplementedError(filetype)
|
||||
|
||||
def __repr__(self):
|
||||
return '{}("{}")'.format(self.__class__.__name__, self.utt2rir_file)
|
||||
|
||||
def __call__(self, x, uttid=None, train=True):
|
||||
if not train:
|
||||
return x
|
||||
|
||||
x = x.astype(numpy.float32)
|
||||
|
||||
if x.ndim != 1:
|
||||
# Must be single channel
|
||||
raise RuntimeError(
|
||||
"Input x must be one dimensional array, but got {}".format(
|
||||
x.shape))
|
||||
|
||||
rir, rate = self.utt2rir[uttid]
|
||||
if rir.ndim == 2:
|
||||
# FIXME(kamo): Use chainer.convolution_1d?
|
||||
# return [Time, Channel]
|
||||
return numpy.stack(
|
||||
[scipy.convolve(x, r, mode="same") for r in rir], axis=-1)
|
||||
else:
|
||||
return scipy.convolve(x, rir, mode="same")
|
@ -0,0 +1,210 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Spec Augment module for preprocessing i.e., data augmentation"""
|
||||
import random
|
||||
|
||||
import numpy
|
||||
from PIL import Image
|
||||
from PIL.Image import BICUBIC
|
||||
|
||||
from deepspeech.transform.functional import FuncTrans
|
||||
|
||||
|
||||
def time_warp(x, max_time_warp=80, inplace=False, mode="PIL"):
|
||||
"""time warp for spec augment
|
||||
|
||||
move random center frame by the random width ~ uniform(-window, window)
|
||||
:param numpy.ndarray x: spectrogram (time, freq)
|
||||
:param int max_time_warp: maximum time frames to warp
|
||||
:param bool inplace: overwrite x with the result
|
||||
:param str mode: "PIL" (default, fast, not differentiable) or "sparse_image_warp"
|
||||
(slow, differentiable)
|
||||
:returns numpy.ndarray: time warped spectrogram (time, freq)
|
||||
"""
|
||||
window = max_time_warp
|
||||
if mode == "PIL":
|
||||
t = x.shape[0]
|
||||
if t - window <= window:
|
||||
return x
|
||||
# NOTE: randrange(a, b) emits a, a + 1, ..., b - 1
|
||||
center = random.randrange(window, t - window)
|
||||
warped = random.randrange(center - window, center +
|
||||
window) + 1 # 1 ... t - 1
|
||||
|
||||
left = Image.fromarray(x[:center]).resize((x.shape[1], warped), BICUBIC)
|
||||
right = Image.fromarray(x[center:]).resize((x.shape[1], t - warped),
|
||||
BICUBIC)
|
||||
if inplace:
|
||||
x[:warped] = left
|
||||
x[warped:] = right
|
||||
return x
|
||||
return numpy.concatenate((left, right), 0)
|
||||
elif mode == "sparse_image_warp":
|
||||
import paddle
|
||||
|
||||
from espnet.utils import spec_augment
|
||||
|
||||
# TODO(karita): make this differentiable again
|
||||
return spec_augment.time_warp(paddle.to_tensor(x), window).numpy()
|
||||
else:
|
||||
raise NotImplementedError("unknown resize mode: " + mode +
|
||||
", choose one from (PIL, sparse_image_warp).")
|
||||
|
||||
|
||||
class TimeWarp(FuncTrans):
|
||||
_func = time_warp
|
||||
__doc__ = time_warp.__doc__
|
||||
|
||||
def __call__(self, x, train):
|
||||
if not train:
|
||||
return x
|
||||
return super().__call__(x)
|
||||
|
||||
|
||||
def freq_mask(x, F=30, n_mask=2, replace_with_zero=True, inplace=False):
|
||||
"""freq mask for spec agument
|
||||
|
||||
:param numpy.ndarray x: (time, freq)
|
||||
:param int n_mask: the number of masks
|
||||
:param bool inplace: overwrite
|
||||
:param bool replace_with_zero: pad zero on mask if true else use mean
|
||||
"""
|
||||
if inplace:
|
||||
cloned = x
|
||||
else:
|
||||
cloned = x.copy()
|
||||
|
||||
num_mel_channels = cloned.shape[1]
|
||||
fs = numpy.random.randint(0, F, size=(n_mask, 2))
|
||||
|
||||
for f, mask_end in fs:
|
||||
f_zero = random.randrange(0, num_mel_channels - f)
|
||||
mask_end += f_zero
|
||||
|
||||
# avoids randrange error if values are equal and range is empty
|
||||
if f_zero == f_zero + f:
|
||||
continue
|
||||
|
||||
if replace_with_zero:
|
||||
cloned[:, f_zero:mask_end] = 0
|
||||
else:
|
||||
cloned[:, f_zero:mask_end] = cloned.mean()
|
||||
return cloned
|
||||
|
||||
|
||||
class FreqMask(FuncTrans):
|
||||
_func = freq_mask
|
||||
__doc__ = freq_mask.__doc__
|
||||
|
||||
def __call__(self, x, train):
|
||||
if not train:
|
||||
return x
|
||||
return super().__call__(x)
|
||||
|
||||
|
||||
def time_mask(spec, T=40, n_mask=2, replace_with_zero=True, inplace=False):
|
||||
"""freq mask for spec agument
|
||||
|
||||
:param numpy.ndarray spec: (time, freq)
|
||||
:param int n_mask: the number of masks
|
||||
:param bool inplace: overwrite
|
||||
:param bool replace_with_zero: pad zero on mask if true else use mean
|
||||
"""
|
||||
if inplace:
|
||||
cloned = spec
|
||||
else:
|
||||
cloned = spec.copy()
|
||||
len_spectro = cloned.shape[0]
|
||||
ts = numpy.random.randint(0, T, size=(n_mask, 2))
|
||||
for t, mask_end in ts:
|
||||
# avoid randint range error
|
||||
if len_spectro - t <= 0:
|
||||
continue
|
||||
t_zero = random.randrange(0, len_spectro - t)
|
||||
|
||||
# avoids randrange error if values are equal and range is empty
|
||||
if t_zero == t_zero + t:
|
||||
continue
|
||||
|
||||
mask_end += t_zero
|
||||
if replace_with_zero:
|
||||
cloned[t_zero:mask_end] = 0
|
||||
else:
|
||||
cloned[t_zero:mask_end] = cloned.mean()
|
||||
return cloned
|
||||
|
||||
|
||||
class TimeMask(FuncTrans):
|
||||
_func = time_mask
|
||||
__doc__ = time_mask.__doc__
|
||||
|
||||
def __call__(self, x, train):
|
||||
if not train:
|
||||
return x
|
||||
return super().__call__(x)
|
||||
|
||||
|
||||
def spec_augment(
|
||||
x,
|
||||
resize_mode="PIL",
|
||||
max_time_warp=80,
|
||||
max_freq_width=27,
|
||||
n_freq_mask=2,
|
||||
max_time_width=100,
|
||||
n_time_mask=2,
|
||||
inplace=True,
|
||||
replace_with_zero=True, ):
|
||||
"""spec agument
|
||||
|
||||
apply random time warping and time/freq masking
|
||||
default setting is based on LD (Librispeech double) in Table 2
|
||||
https://arxiv.org/pdf/1904.08779.pdf
|
||||
|
||||
:param numpy.ndarray x: (time, freq)
|
||||
:param str resize_mode: "PIL" (fast, nondifferentiable) or "sparse_image_warp"
|
||||
(slow, differentiable)
|
||||
:param int max_time_warp: maximum frames to warp the center frame in spectrogram (W)
|
||||
:param int freq_mask_width: maximum width of the random freq mask (F)
|
||||
:param int n_freq_mask: the number of the random freq mask (m_F)
|
||||
:param int time_mask_width: maximum width of the random time mask (T)
|
||||
:param int n_time_mask: the number of the random time mask (m_T)
|
||||
:param bool inplace: overwrite intermediate array
|
||||
:param bool replace_with_zero: pad zero on mask if true else use mean
|
||||
"""
|
||||
assert isinstance(x, numpy.ndarray)
|
||||
assert x.ndim == 2
|
||||
x = time_warp(x, max_time_warp, inplace=inplace, mode=resize_mode)
|
||||
x = freq_mask(
|
||||
x,
|
||||
max_freq_width,
|
||||
n_freq_mask,
|
||||
inplace=inplace,
|
||||
replace_with_zero=replace_with_zero, )
|
||||
x = time_mask(
|
||||
x,
|
||||
max_time_width,
|
||||
n_time_mask,
|
||||
inplace=inplace,
|
||||
replace_with_zero=replace_with_zero, )
|
||||
return x
|
||||
|
||||
|
||||
class SpecAugment(FuncTrans):
|
||||
_func = spec_augment
|
||||
__doc__ = spec_augment.__doc__
|
||||
|
||||
def __call__(self, x, train):
|
||||
if not train:
|
||||
return x
|
||||
return super().__call__(x)
|
@ -0,0 +1,305 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import librosa
|
||||
import numpy as np
|
||||
|
||||
|
||||
def stft(x,
|
||||
n_fft,
|
||||
n_shift,
|
||||
win_length=None,
|
||||
window="hann",
|
||||
center=True,
|
||||
pad_mode="reflect"):
|
||||
# x: [Time, Channel]
|
||||
if x.ndim == 1:
|
||||
single_channel = True
|
||||
# x: [Time] -> [Time, Channel]
|
||||
x = x[:, None]
|
||||
else:
|
||||
single_channel = False
|
||||
x = x.astype(np.float32)
|
||||
|
||||
# FIXME(kamo): librosa.stft can't use multi-channel?
|
||||
# x: [Time, Channel, Freq]
|
||||
x = np.stack(
|
||||
[
|
||||
librosa.stft(
|
||||
x[:, ch],
|
||||
n_fft=n_fft,
|
||||
hop_length=n_shift,
|
||||
win_length=win_length,
|
||||
window=window,
|
||||
center=center,
|
||||
pad_mode=pad_mode, ).T for ch in range(x.shape[1])
|
||||
],
|
||||
axis=1, )
|
||||
|
||||
if single_channel:
|
||||
# x: [Time, Channel, Freq] -> [Time, Freq]
|
||||
x = x[:, 0]
|
||||
return x
|
||||
|
||||
|
||||
def istft(x, n_shift, win_length=None, window="hann", center=True):
|
||||
# x: [Time, Channel, Freq]
|
||||
if x.ndim == 2:
|
||||
single_channel = True
|
||||
# x: [Time, Freq] -> [Time, Channel, Freq]
|
||||
x = x[:, None, :]
|
||||
else:
|
||||
single_channel = False
|
||||
|
||||
# x: [Time, Channel]
|
||||
x = np.stack(
|
||||
[
|
||||
librosa.istft(
|
||||
x[:, ch].T, # [Time, Freq] -> [Freq, Time]
|
||||
hop_length=n_shift,
|
||||
win_length=win_length,
|
||||
window=window,
|
||||
center=center, ) for ch in range(x.shape[1])
|
||||
],
|
||||
axis=1, )
|
||||
|
||||
if single_channel:
|
||||
# x: [Time, Channel] -> [Time]
|
||||
x = x[:, 0]
|
||||
return x
|
||||
|
||||
|
||||
def stft2logmelspectrogram(x_stft,
|
||||
fs,
|
||||
n_mels,
|
||||
n_fft,
|
||||
fmin=None,
|
||||
fmax=None,
|
||||
eps=1e-10):
|
||||
# x_stft: (Time, Channel, Freq) or (Time, Freq)
|
||||
fmin = 0 if fmin is None else fmin
|
||||
fmax = fs / 2 if fmax is None else fmax
|
||||
|
||||
# spc: (Time, Channel, Freq) or (Time, Freq)
|
||||
spc = np.abs(x_stft)
|
||||
# mel_basis: (Mel_freq, Freq)
|
||||
mel_basis = librosa.filters.mel(fs, n_fft, n_mels, fmin, fmax)
|
||||
# lmspc: (Time, Channel, Mel_freq) or (Time, Mel_freq)
|
||||
lmspc = np.log10(np.maximum(eps, np.dot(spc, mel_basis.T)))
|
||||
|
||||
return lmspc
|
||||
|
||||
|
||||
def spectrogram(x, n_fft, n_shift, win_length=None, window="hann"):
|
||||
# x: (Time, Channel) -> spc: (Time, Channel, Freq)
|
||||
spc = np.abs(stft(x, n_fft, n_shift, win_length, window=window))
|
||||
return spc
|
||||
|
||||
|
||||
def logmelspectrogram(
|
||||
x,
|
||||
fs,
|
||||
n_mels,
|
||||
n_fft,
|
||||
n_shift,
|
||||
win_length=None,
|
||||
window="hann",
|
||||
fmin=None,
|
||||
fmax=None,
|
||||
eps=1e-10,
|
||||
pad_mode="reflect", ):
|
||||
# stft: (Time, Channel, Freq) or (Time, Freq)
|
||||
x_stft = stft(
|
||||
x,
|
||||
n_fft=n_fft,
|
||||
n_shift=n_shift,
|
||||
win_length=win_length,
|
||||
window=window,
|
||||
pad_mode=pad_mode, )
|
||||
|
||||
return stft2logmelspectrogram(
|
||||
x_stft,
|
||||
fs=fs,
|
||||
n_mels=n_mels,
|
||||
n_fft=n_fft,
|
||||
fmin=fmin,
|
||||
fmax=fmax,
|
||||
eps=eps)
|
||||
|
||||
|
||||
class Spectrogram():
|
||||
def __init__(self, n_fft, n_shift, win_length=None, window="hann"):
|
||||
self.n_fft = n_fft
|
||||
self.n_shift = n_shift
|
||||
self.win_length = win_length
|
||||
self.window = window
|
||||
|
||||
def __repr__(self):
|
||||
return ("{name}(n_fft={n_fft}, n_shift={n_shift}, "
|
||||
"win_length={win_length}, window={window})".format(
|
||||
name=self.__class__.__name__,
|
||||
n_fft=self.n_fft,
|
||||
n_shift=self.n_shift,
|
||||
win_length=self.win_length,
|
||||
window=self.window, ))
|
||||
|
||||
def __call__(self, x):
|
||||
return spectrogram(
|
||||
x,
|
||||
n_fft=self.n_fft,
|
||||
n_shift=self.n_shift,
|
||||
win_length=self.win_length,
|
||||
window=self.window, )
|
||||
|
||||
|
||||
class LogMelSpectrogram():
|
||||
def __init__(
|
||||
self,
|
||||
fs,
|
||||
n_mels,
|
||||
n_fft,
|
||||
n_shift,
|
||||
win_length=None,
|
||||
window="hann",
|
||||
fmin=None,
|
||||
fmax=None,
|
||||
eps=1e-10, ):
|
||||
self.fs = fs
|
||||
self.n_mels = n_mels
|
||||
self.n_fft = n_fft
|
||||
self.n_shift = n_shift
|
||||
self.win_length = win_length
|
||||
self.window = window
|
||||
self.fmin = fmin
|
||||
self.fmax = fmax
|
||||
self.eps = eps
|
||||
|
||||
def __repr__(self):
|
||||
return ("{name}(fs={fs}, n_mels={n_mels}, n_fft={n_fft}, "
|
||||
"n_shift={n_shift}, win_length={win_length}, window={window}, "
|
||||
"fmin={fmin}, fmax={fmax}, eps={eps}))".format(
|
||||
name=self.__class__.__name__,
|
||||
fs=self.fs,
|
||||
n_mels=self.n_mels,
|
||||
n_fft=self.n_fft,
|
||||
n_shift=self.n_shift,
|
||||
win_length=self.win_length,
|
||||
window=self.window,
|
||||
fmin=self.fmin,
|
||||
fmax=self.fmax,
|
||||
eps=self.eps, ))
|
||||
|
||||
def __call__(self, x):
|
||||
return logmelspectrogram(
|
||||
x,
|
||||
fs=self.fs,
|
||||
n_mels=self.n_mels,
|
||||
n_fft=self.n_fft,
|
||||
n_shift=self.n_shift,
|
||||
win_length=self.win_length,
|
||||
window=self.window, )
|
||||
|
||||
|
||||
class Stft2LogMelSpectrogram():
|
||||
def __init__(self, fs, n_mels, n_fft, fmin=None, fmax=None, eps=1e-10):
|
||||
self.fs = fs
|
||||
self.n_mels = n_mels
|
||||
self.n_fft = n_fft
|
||||
self.fmin = fmin
|
||||
self.fmax = fmax
|
||||
self.eps = eps
|
||||
|
||||
def __repr__(self):
|
||||
return ("{name}(fs={fs}, n_mels={n_mels}, n_fft={n_fft}, "
|
||||
"fmin={fmin}, fmax={fmax}, eps={eps}))".format(
|
||||
name=self.__class__.__name__,
|
||||
fs=self.fs,
|
||||
n_mels=self.n_mels,
|
||||
n_fft=self.n_fft,
|
||||
fmin=self.fmin,
|
||||
fmax=self.fmax,
|
||||
eps=self.eps, ))
|
||||
|
||||
def __call__(self, x):
|
||||
return stft2logmelspectrogram(
|
||||
x,
|
||||
fs=self.fs,
|
||||
n_mels=self.n_mels,
|
||||
n_fft=self.n_fft,
|
||||
fmin=self.fmin,
|
||||
fmax=self.fmax, )
|
||||
|
||||
|
||||
class Stft():
|
||||
def __init__(
|
||||
self,
|
||||
n_fft,
|
||||
n_shift,
|
||||
win_length=None,
|
||||
window="hann",
|
||||
center=True,
|
||||
pad_mode="reflect", ):
|
||||
self.n_fft = n_fft
|
||||
self.n_shift = n_shift
|
||||
self.win_length = win_length
|
||||
self.window = window
|
||||
self.center = center
|
||||
self.pad_mode = pad_mode
|
||||
|
||||
def __repr__(self):
|
||||
return ("{name}(n_fft={n_fft}, n_shift={n_shift}, "
|
||||
"win_length={win_length}, window={window},"
|
||||
"center={center}, pad_mode={pad_mode})".format(
|
||||
name=self.__class__.__name__,
|
||||
n_fft=self.n_fft,
|
||||
n_shift=self.n_shift,
|
||||
win_length=self.win_length,
|
||||
window=self.window,
|
||||
center=self.center,
|
||||
pad_mode=self.pad_mode, ))
|
||||
|
||||
def __call__(self, x):
|
||||
return stft(
|
||||
x,
|
||||
self.n_fft,
|
||||
self.n_shift,
|
||||
win_length=self.win_length,
|
||||
window=self.window,
|
||||
center=self.center,
|
||||
pad_mode=self.pad_mode, )
|
||||
|
||||
|
||||
class IStft():
|
||||
def __init__(self, n_shift, win_length=None, window="hann", center=True):
|
||||
self.n_shift = n_shift
|
||||
self.win_length = win_length
|
||||
self.window = window
|
||||
self.center = center
|
||||
|
||||
def __repr__(self):
|
||||
return ("{name}(n_shift={n_shift}, "
|
||||
"win_length={win_length}, window={window},"
|
||||
"center={center})".format(
|
||||
name=self.__class__.__name__,
|
||||
n_shift=self.n_shift,
|
||||
win_length=self.win_length,
|
||||
window=self.window,
|
||||
center=self.center, ))
|
||||
|
||||
def __call__(self, x):
|
||||
return istft(
|
||||
x,
|
||||
self.n_shift,
|
||||
win_length=self.win_length,
|
||||
window=self.window,
|
||||
center=self.center, )
|
@ -0,0 +1,33 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
# TODO(karita): add this to all the transform impl.
|
||||
class TransformInterface:
|
||||
"""Transform Interface"""
|
||||
|
||||
def __call__(self, x):
|
||||
raise NotImplementedError("__call__ method is not implemented")
|
||||
|
||||
@classmethod
|
||||
def add_arguments(cls, parser):
|
||||
return parser
|
||||
|
||||
def __repr__(self):
|
||||
return self.__class__.__name__ + "()"
|
||||
|
||||
|
||||
class Identity(TransformInterface):
|
||||
"""Identity Function"""
|
||||
|
||||
def __call__(self, x):
|
||||
return x
|
@ -0,0 +1,156 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""Transformation module."""
|
||||
import copy
|
||||
import io
|
||||
import logging
|
||||
from collections import OrderedDict
|
||||
from collections.abc import Sequence
|
||||
from inspect import signature
|
||||
|
||||
import yaml
|
||||
|
||||
from deepspeech.utils.dynamic_import import dynamic_import
|
||||
|
||||
# TODO(karita): inherit TransformInterface
|
||||
# TODO(karita): register cmd arguments in asr_train.py
|
||||
import_alias = dict(
|
||||
identity="deepspeech.transform.transform_interface:Identity",
|
||||
time_warp="deepspeech.transform.spec_augment:TimeWarp",
|
||||
time_mask="deepspeech.transform.spec_augment:TimeMask",
|
||||
freq_mask="deepspeech.transform.spec_augment:FreqMask",
|
||||
spec_augment="deepspeech.transform.spec_augment:SpecAugment",
|
||||
speed_perturbation="deepspeech.transform.perturb:SpeedPerturbation",
|
||||
volume_perturbation="deepspeech.transform.perturb:VolumePerturbation",
|
||||
noise_injection="deepspeech.transform.perturb:NoiseInjection",
|
||||
bandpass_perturbation="deepspeech.transform.perturb:BandpassPerturbation",
|
||||
rir_convolve="deepspeech.transform.perturb:RIRConvolve",
|
||||
delta="deepspeech.transform.add_deltas:AddDeltas",
|
||||
cmvn="deepspeech.transform.cmvn:CMVN",
|
||||
utterance_cmvn="deepspeech.transform.cmvn:UtteranceCMVN",
|
||||
fbank="deepspeech.transform.spectrogram:LogMelSpectrogram",
|
||||
spectrogram="deepspeech.transform.spectrogram:Spectrogram",
|
||||
stft="deepspeech.transform.spectrogram:Stft",
|
||||
istft="deepspeech.transform.spectrogram:IStft",
|
||||
stft2fbank="deepspeech.transform.spectrogram:Stft2LogMelSpectrogram",
|
||||
wpe="deepspeech.transform.wpe:WPE",
|
||||
channel_selector="deepspeech.transform.channel_selector:ChannelSelector", )
|
||||
|
||||
|
||||
class Transformation():
|
||||
"""Apply some functions to the mini-batch
|
||||
|
||||
Examples:
|
||||
>>> kwargs = {"process": [{"type": "fbank",
|
||||
... "n_mels": 80,
|
||||
... "fs": 16000},
|
||||
... {"type": "cmvn",
|
||||
... "stats": "data/train/cmvn.ark",
|
||||
... "norm_vars": True},
|
||||
... {"type": "delta", "window": 2, "order": 2}]}
|
||||
>>> transform = Transformation(kwargs)
|
||||
>>> bs = 10
|
||||
>>> xs = [np.random.randn(100, 80).astype(np.float32)
|
||||
... for _ in range(bs)]
|
||||
>>> xs = transform(xs)
|
||||
"""
|
||||
|
||||
def __init__(self, conffile=None):
|
||||
if conffile is not None:
|
||||
if isinstance(conffile, dict):
|
||||
self.conf = copy.deepcopy(conffile)
|
||||
else:
|
||||
with io.open(conffile, encoding="utf-8") as f:
|
||||
self.conf = yaml.safe_load(f)
|
||||
assert isinstance(self.conf, dict), type(self.conf)
|
||||
else:
|
||||
self.conf = {"mode": "sequential", "process": []}
|
||||
|
||||
self.functions = OrderedDict()
|
||||
if self.conf.get("mode", "sequential") == "sequential":
|
||||
for idx, process in enumerate(self.conf["process"]):
|
||||
assert isinstance(process, dict), type(process)
|
||||
opts = dict(process)
|
||||
process_type = opts.pop("type")
|
||||
class_obj = dynamic_import(process_type, import_alias)
|
||||
# TODO(karita): assert issubclass(class_obj, TransformInterface)
|
||||
try:
|
||||
self.functions[idx] = class_obj(**opts)
|
||||
except TypeError:
|
||||
try:
|
||||
signa = signature(class_obj)
|
||||
except ValueError:
|
||||
# Some function, e.g. built-in function, are failed
|
||||
pass
|
||||
else:
|
||||
logging.error("Expected signature: {}({})".format(
|
||||
class_obj.__name__, signa))
|
||||
raise
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Not supporting mode={}".format(self.conf["mode"]))
|
||||
|
||||
def __repr__(self):
|
||||
rep = "\n" + "\n".join(" {}: {}".format(k, v)
|
||||
for k, v in self.functions.items())
|
||||
return "{}({})".format(self.__class__.__name__, rep)
|
||||
|
||||
def __call__(self, xs, uttid_list=None, **kwargs):
|
||||
"""Return new mini-batch
|
||||
|
||||
:param Union[Sequence[np.ndarray], np.ndarray] xs:
|
||||
:param Union[Sequence[str], str] uttid_list:
|
||||
:return: batch:
|
||||
:rtype: List[np.ndarray]
|
||||
"""
|
||||
if not isinstance(xs, Sequence):
|
||||
is_batch = False
|
||||
xs = [xs]
|
||||
else:
|
||||
is_batch = True
|
||||
|
||||
if isinstance(uttid_list, str):
|
||||
uttid_list = [uttid_list for _ in range(len(xs))]
|
||||
|
||||
if self.conf.get("mode", "sequential") == "sequential":
|
||||
for idx in range(len(self.conf["process"])):
|
||||
func = self.functions[idx]
|
||||
# TODO(karita): use TrainingTrans and UttTrans to check __call__ args
|
||||
# Derive only the args which the func has
|
||||
try:
|
||||
param = signature(func).parameters
|
||||
except ValueError:
|
||||
# Some function, e.g. built-in function, are failed
|
||||
param = {}
|
||||
_kwargs = {k: v for k, v in kwargs.items() if k in param}
|
||||
try:
|
||||
if uttid_list is not None and "uttid" in param:
|
||||
xs = [
|
||||
func(x, u, **_kwargs)
|
||||
for x, u in zip(xs, uttid_list)
|
||||
]
|
||||
else:
|
||||
xs = [func(x, **_kwargs) for x in xs]
|
||||
except Exception:
|
||||
logging.fatal("Catch a exception from {}th func: {}".format(
|
||||
idx, func))
|
||||
raise
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
"Not supporting mode={}".format(self.conf["mode"]))
|
||||
|
||||
if is_batch:
|
||||
return xs
|
||||
else:
|
||||
return xs[0]
|
@ -0,0 +1,57 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from nara_wpe.wpe import wpe
|
||||
|
||||
|
||||
class WPE(object):
|
||||
def __init__(self,
|
||||
taps=10,
|
||||
delay=3,
|
||||
iterations=3,
|
||||
psd_context=0,
|
||||
statistics_mode="full"):
|
||||
self.taps = taps
|
||||
self.delay = delay
|
||||
self.iterations = iterations
|
||||
self.psd_context = psd_context
|
||||
self.statistics_mode = statistics_mode
|
||||
|
||||
def __repr__(self):
|
||||
return ("{name}(taps={taps}, delay={delay}"
|
||||
"iterations={iterations}, psd_context={psd_context}, "
|
||||
"statistics_mode={statistics_mode})".format(
|
||||
name=self.__class__.__name__,
|
||||
taps=self.taps,
|
||||
delay=self.delay,
|
||||
iterations=self.iterations,
|
||||
psd_context=self.psd_context,
|
||||
statistics_mode=self.statistics_mode, ))
|
||||
|
||||
def __call__(self, xs):
|
||||
"""Return enhanced
|
||||
|
||||
:param np.ndarray xs: (Time, Channel, Frequency)
|
||||
:return: enhanced_xs
|
||||
:rtype: np.ndarray
|
||||
|
||||
"""
|
||||
# nara_wpe.wpe: (F, C, T)
|
||||
xs = wpe(
|
||||
xs.transpose((2, 1, 0)),
|
||||
taps=self.taps,
|
||||
delay=self.delay,
|
||||
iterations=self.iterations,
|
||||
psd_context=self.psd_context,
|
||||
statistics_mode=self.statistics_mode, )
|
||||
return xs.transpose(2, 1, 0)
|
@ -0,0 +1,52 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import json
|
||||
|
||||
import numpy as np
|
||||
|
||||
__all__ = ["label_smoothing_dist"]
|
||||
|
||||
|
||||
# TODO(takaaki-hori): add different smoothing methods
|
||||
def label_smoothing_dist(odim, lsm_type, transcript=None, blank=0):
|
||||
"""Obtain label distribution for loss smoothing.
|
||||
|
||||
:param odim:
|
||||
:param lsm_type:
|
||||
:param blank:
|
||||
:param transcript:
|
||||
:return:
|
||||
"""
|
||||
if transcript is not None:
|
||||
with open(transcript, "rb") as f:
|
||||
trans_json = json.load(f)["utts"]
|
||||
|
||||
if lsm_type == "unigram":
|
||||
assert transcript is not None, (
|
||||
"transcript is required for %s label smoothing" % lsm_type)
|
||||
labelcount = np.zeros(odim)
|
||||
for k, v in trans_json.items():
|
||||
ids = np.array([int(n) for n in v["output"][0]["tokenid"].split()])
|
||||
# to avoid an error when there is no text in an uttrance
|
||||
if len(ids) > 0:
|
||||
labelcount[ids] += 1
|
||||
labelcount[odim - 1] = len(transcript) # count <eos>
|
||||
labelcount[labelcount == 0] = 1 # flooring
|
||||
labelcount[blank] = 0 # remove counts for blank
|
||||
labeldist = labelcount.astype(np.float32) / np.sum(labelcount)
|
||||
else:
|
||||
logging.error("Error: unexpected label smoothing type: %s" % lsm_type)
|
||||
sys.exit()
|
||||
|
||||
return labeldist
|
@ -0,0 +1,34 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import inspect
|
||||
|
||||
|
||||
def check_kwargs(func, kwargs, name=None):
|
||||
"""check kwargs are valid for func
|
||||
|
||||
If kwargs are invalid, raise TypeError as same as python default
|
||||
:param function func: function to be validated
|
||||
:param dict kwargs: keyword arguments for func
|
||||
:param str name: name used in TypeError (default is func name)
|
||||
"""
|
||||
try:
|
||||
params = inspect.signature(func).parameters
|
||||
except ValueError:
|
||||
return
|
||||
if name is None:
|
||||
name = func.__name__
|
||||
for k in kwargs.keys():
|
||||
if k not in params:
|
||||
raise TypeError(
|
||||
f"{name}() got an unexpected keyword argument '{k}'")
|
@ -0,0 +1,241 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import io
|
||||
import logging
|
||||
import sys
|
||||
|
||||
import h5py
|
||||
import kaldiio
|
||||
import soundfile
|
||||
|
||||
from deepspeech.io.reader import SoundHDF5File
|
||||
|
||||
|
||||
def file_reader_helper(
|
||||
rspecifier: str,
|
||||
filetype: str="mat",
|
||||
return_shape: bool=False,
|
||||
segments: str=None, ):
|
||||
"""Read uttid and array in kaldi style
|
||||
|
||||
This function might be a bit confusing as "ark" is used
|
||||
for HDF5 to imitate "kaldi-rspecifier".
|
||||
|
||||
Args:
|
||||
rspecifier: Give as "ark:feats.ark" or "scp:feats.scp"
|
||||
filetype: "mat" is kaldi-martix, "hdf5": HDF5
|
||||
return_shape: Return the shape of the matrix,
|
||||
instead of the matrix. This can reduce IO cost for HDF5.
|
||||
segments (str): The file format is
|
||||
"<segment-id> <recording-id> <start-time> <end-time>\n"
|
||||
"e.g. call-861225-A-0050-0065 call-861225-A 5.0 6.5\n"
|
||||
Returns:
|
||||
Generator[Tuple[str, np.ndarray], None, None]:
|
||||
|
||||
Examples:
|
||||
Read from kaldi-matrix ark file:
|
||||
|
||||
>>> for u, array in file_reader_helper('ark:feats.ark', 'mat'):
|
||||
... array
|
||||
|
||||
Read from HDF5 file:
|
||||
|
||||
>>> for u, array in file_reader_helper('ark:feats.h5', 'hdf5'):
|
||||
... array
|
||||
|
||||
"""
|
||||
if filetype == "mat":
|
||||
return KaldiReader(
|
||||
rspecifier, return_shape=return_shape, segments=segments)
|
||||
elif filetype == "hdf5":
|
||||
return HDF5Reader(rspecifier, return_shape=return_shape)
|
||||
elif filetype == "sound.hdf5":
|
||||
return SoundHDF5Reader(rspecifier, return_shape=return_shape)
|
||||
elif filetype == "sound":
|
||||
return SoundReader(rspecifier, return_shape=return_shape)
|
||||
else:
|
||||
raise NotImplementedError(f"filetype={filetype}")
|
||||
|
||||
|
||||
class KaldiReader:
|
||||
def __init__(self, rspecifier, return_shape=False, segments=None):
|
||||
self.rspecifier = rspecifier
|
||||
self.return_shape = return_shape
|
||||
self.segments = segments
|
||||
|
||||
def __iter__(self):
|
||||
with kaldiio.ReadHelper(
|
||||
self.rspecifier, segments=self.segments) as reader:
|
||||
for key, array in reader:
|
||||
if self.return_shape:
|
||||
array = array.shape
|
||||
yield key, array
|
||||
|
||||
|
||||
class HDF5Reader:
|
||||
def __init__(self, rspecifier, return_shape=False):
|
||||
if ":" not in rspecifier:
|
||||
raise ValueError('Give "rspecifier" such as "ark:some.ark: {}"'.
|
||||
format(self.rspecifier))
|
||||
self.rspecifier = rspecifier
|
||||
self.ark_or_scp, self.filepath = self.rspecifier.split(":", 1)
|
||||
if self.ark_or_scp not in ["ark", "scp"]:
|
||||
raise ValueError(f"Must be scp or ark: {self.ark_or_scp}")
|
||||
|
||||
self.return_shape = return_shape
|
||||
|
||||
def __iter__(self):
|
||||
if self.ark_or_scp == "scp":
|
||||
hdf5_dict = {}
|
||||
with open(self.filepath, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
key, value = line.rstrip().split(None, 1)
|
||||
|
||||
if ":" not in value:
|
||||
raise RuntimeError(
|
||||
"scp file for hdf5 should be like: "
|
||||
'"uttid filepath.h5:key": {}({})'.format(
|
||||
line, self.filepath))
|
||||
path, h5_key = value.split(":", 1)
|
||||
|
||||
hdf5_file = hdf5_dict.get(path)
|
||||
if hdf5_file is None:
|
||||
try:
|
||||
hdf5_file = h5py.File(path, "r")
|
||||
except Exception:
|
||||
logging.error("Error when loading {}".format(path))
|
||||
raise
|
||||
hdf5_dict[path] = hdf5_file
|
||||
|
||||
try:
|
||||
data = hdf5_file[h5_key]
|
||||
except Exception:
|
||||
logging.error("Error when loading {} with key={}".
|
||||
format(path, h5_key))
|
||||
raise
|
||||
|
||||
if self.return_shape:
|
||||
yield key, data.shape
|
||||
else:
|
||||
yield key, data[()]
|
||||
|
||||
# Closing all files
|
||||
for k in hdf5_dict:
|
||||
try:
|
||||
hdf5_dict[k].close()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
else:
|
||||
if self.filepath == "-":
|
||||
# Required h5py>=2.9
|
||||
filepath = io.BytesIO(sys.stdin.buffer.read())
|
||||
else:
|
||||
filepath = self.filepath
|
||||
with h5py.File(filepath, "r") as f:
|
||||
for key in f:
|
||||
if self.return_shape:
|
||||
yield key, f[key].shape
|
||||
else:
|
||||
yield key, f[key][()]
|
||||
|
||||
|
||||
class SoundHDF5Reader:
|
||||
def __init__(self, rspecifier, return_shape=False):
|
||||
if ":" not in rspecifier:
|
||||
raise ValueError('Give "rspecifier" such as "ark:some.ark: {}"'.
|
||||
format(rspecifier))
|
||||
self.ark_or_scp, self.filepath = rspecifier.split(":", 1)
|
||||
if self.ark_or_scp not in ["ark", "scp"]:
|
||||
raise ValueError(f"Must be scp or ark: {self.ark_or_scp}")
|
||||
self.return_shape = return_shape
|
||||
|
||||
def __iter__(self):
|
||||
if self.ark_or_scp == "scp":
|
||||
hdf5_dict = {}
|
||||
with open(self.filepath, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
key, value = line.rstrip().split(None, 1)
|
||||
|
||||
if ":" not in value:
|
||||
raise RuntimeError(
|
||||
"scp file for hdf5 should be like: "
|
||||
'"uttid filepath.h5:key": {}({})'.format(
|
||||
line, self.filepath))
|
||||
path, h5_key = value.split(":", 1)
|
||||
|
||||
hdf5_file = hdf5_dict.get(path)
|
||||
if hdf5_file is None:
|
||||
try:
|
||||
hdf5_file = SoundHDF5File(path, "r")
|
||||
except Exception:
|
||||
logging.error("Error when loading {}".format(path))
|
||||
raise
|
||||
hdf5_dict[path] = hdf5_file
|
||||
|
||||
try:
|
||||
data = hdf5_file[h5_key]
|
||||
except Exception:
|
||||
logging.error("Error when loading {} with key={}".
|
||||
format(path, h5_key))
|
||||
raise
|
||||
|
||||
# Change Tuple[ndarray, int] -> Tuple[int, ndarray]
|
||||
# (soundfile style -> scipy style)
|
||||
array, rate = data
|
||||
if self.return_shape:
|
||||
array = array.shape
|
||||
yield key, (rate, array)
|
||||
|
||||
# Closing all files
|
||||
for k in hdf5_dict:
|
||||
try:
|
||||
hdf5_dict[k].close()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
else:
|
||||
if self.filepath == "-":
|
||||
# Required h5py>=2.9
|
||||
filepath = io.BytesIO(sys.stdin.buffer.read())
|
||||
else:
|
||||
filepath = self.filepath
|
||||
for key, (a, r) in SoundHDF5File(filepath, "r").items():
|
||||
if self.return_shape:
|
||||
a = a.shape
|
||||
yield key, (r, a)
|
||||
|
||||
|
||||
class SoundReader:
|
||||
def __init__(self, rspecifier, return_shape=False):
|
||||
if ":" not in rspecifier:
|
||||
raise ValueError('Give "rspecifier" such as "scp:some.scp: {}"'.
|
||||
format(rspecifier))
|
||||
self.ark_or_scp, self.filepath = rspecifier.split(":", 1)
|
||||
if self.ark_or_scp != "scp":
|
||||
raise ValueError('Only supporting "scp" for sound file: {}'.format(
|
||||
self.ark_or_scp))
|
||||
self.return_shape = return_shape
|
||||
|
||||
def __iter__(self):
|
||||
with open(self.filepath, "r", encoding="utf-8") as f:
|
||||
for line in f:
|
||||
key, sound_file_path = line.rstrip().split(None, 1)
|
||||
# Assume PCM16
|
||||
array, rate = soundfile.read(sound_file_path, dtype="int16")
|
||||
# Change Tuple[ndarray, int] -> Tuple[int, ndarray]
|
||||
# (soundfile style -> scipy style)
|
||||
if self.return_shape:
|
||||
array = array.shape
|
||||
yield key, (rate, array)
|
@ -0,0 +1,70 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import sys
|
||||
from collections.abc import Sequence
|
||||
from distutils.util import strtobool as dist_strtobool
|
||||
|
||||
import numpy
|
||||
|
||||
|
||||
def strtobool(x):
|
||||
# distutils.util.strtobool returns integer, but it's confusing,
|
||||
return bool(dist_strtobool(x))
|
||||
|
||||
|
||||
def get_commandline_args():
|
||||
extra_chars = [
|
||||
" ",
|
||||
";",
|
||||
"&",
|
||||
"(",
|
||||
")",
|
||||
"|",
|
||||
"^",
|
||||
"<",
|
||||
">",
|
||||
"?",
|
||||
"*",
|
||||
"[",
|
||||
"]",
|
||||
"$",
|
||||
"`",
|
||||
'"',
|
||||
"\\",
|
||||
"!",
|
||||
"{",
|
||||
"}",
|
||||
]
|
||||
|
||||
# Escape the extra characters for shell
|
||||
argv = [
|
||||
arg.replace("'", "'\\''") if all(char not in arg
|
||||
for char in extra_chars) else
|
||||
"'" + arg.replace("'", "'\\''") + "'" for arg in sys.argv
|
||||
]
|
||||
|
||||
return sys.executable + " " + " ".join(argv)
|
||||
|
||||
|
||||
def is_scipy_wav_style(value):
|
||||
# If Tuple[int, numpy.ndarray] or not
|
||||
return (isinstance(value, Sequence) and len(value) == 2 and
|
||||
isinstance(value[0], int) and isinstance(value[1], numpy.ndarray))
|
||||
|
||||
|
||||
def assert_scipy_wav_style(value):
|
||||
assert is_scipy_wav_style(
|
||||
value), "Must be Tuple[int, numpy.ndarray], but got {}".format(
|
||||
type(value) if not isinstance(value, Sequence) else "{}[{}]".format(
|
||||
type(value), ", ".join(str(type(v)) for v in value)))
|
@ -0,0 +1,293 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from pathlib import Path
|
||||
from typing import Dict
|
||||
|
||||
import h5py
|
||||
import kaldiio
|
||||
import numpy
|
||||
import soundfile
|
||||
|
||||
from deepspeech.io.reader import SoundHDF5File
|
||||
from deepspeech.utils.cli_utils import assert_scipy_wav_style
|
||||
|
||||
|
||||
def file_writer_helper(
|
||||
wspecifier: str,
|
||||
filetype: str="mat",
|
||||
write_num_frames: str=None,
|
||||
compress: bool=False,
|
||||
compression_method: int=2,
|
||||
pcm_format: str="wav", ):
|
||||
"""Write matrices in kaldi style
|
||||
|
||||
Args:
|
||||
wspecifier: e.g. ark,scp:out.ark,out.scp
|
||||
filetype: "mat" is kaldi-martix, "hdf5": HDF5
|
||||
write_num_frames: e.g. 'ark,t:num_frames.txt'
|
||||
compress: Compress or not
|
||||
compression_method: Specify compression level
|
||||
|
||||
Write in kaldi-matrix-ark with "kaldi-scp" file:
|
||||
|
||||
>>> with file_writer_helper('ark,scp:out.ark,out.scp') as f:
|
||||
>>> f['uttid'] = array
|
||||
|
||||
This "scp" has the following format:
|
||||
|
||||
uttidA out.ark:1234
|
||||
uttidB out.ark:2222
|
||||
|
||||
where, 1234 and 2222 points the strating byte address of the matrix.
|
||||
(For detail, see official documentation of Kaldi)
|
||||
|
||||
Write in HDF5 with "scp" file:
|
||||
|
||||
>>> with file_writer_helper('ark,scp:out.h5,out.scp', 'hdf5') as f:
|
||||
>>> f['uttid'] = array
|
||||
|
||||
This "scp" file is created as:
|
||||
|
||||
uttidA out.h5:uttidA
|
||||
uttidB out.h5:uttidB
|
||||
|
||||
HDF5 can be, unlike "kaldi-ark", accessed to any keys,
|
||||
so originally "scp" is not required for random-reading.
|
||||
Nevertheless we create "scp" for HDF5 because it is useful
|
||||
for some use-case. e.g. Concatenation, Splitting.
|
||||
|
||||
"""
|
||||
if filetype == "mat":
|
||||
return KaldiWriter(
|
||||
wspecifier,
|
||||
write_num_frames=write_num_frames,
|
||||
compress=compress,
|
||||
compression_method=compression_method, )
|
||||
elif filetype == "hdf5":
|
||||
return HDF5Writer(
|
||||
wspecifier, write_num_frames=write_num_frames, compress=compress)
|
||||
elif filetype == "sound.hdf5":
|
||||
return SoundHDF5Writer(
|
||||
wspecifier,
|
||||
write_num_frames=write_num_frames,
|
||||
pcm_format=pcm_format)
|
||||
elif filetype == "sound":
|
||||
return SoundWriter(
|
||||
wspecifier,
|
||||
write_num_frames=write_num_frames,
|
||||
pcm_format=pcm_format)
|
||||
else:
|
||||
raise NotImplementedError(f"filetype={filetype}")
|
||||
|
||||
|
||||
class BaseWriter:
|
||||
def __setitem__(self, key, value):
|
||||
raise NotImplementedError
|
||||
|
||||
def __enter__(self):
|
||||
return self
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.close()
|
||||
|
||||
def close(self):
|
||||
try:
|
||||
self.writer.close()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if self.writer_scp is not None:
|
||||
try:
|
||||
self.writer_scp.close()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
if self.writer_nframe is not None:
|
||||
try:
|
||||
self.writer_nframe.close()
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
|
||||
def get_num_frames_writer(write_num_frames: str):
|
||||
"""get_num_frames_writer
|
||||
|
||||
Examples:
|
||||
>>> get_num_frames_writer('ark,t:num_frames.txt')
|
||||
"""
|
||||
if write_num_frames is not None:
|
||||
if ":" not in write_num_frames:
|
||||
raise ValueError('Must include ":", write_num_frames={}'.format(
|
||||
write_num_frames))
|
||||
|
||||
nframes_type, nframes_file = write_num_frames.split(":", 1)
|
||||
if nframes_type != "ark,t":
|
||||
raise ValueError("Only supporting text mode. "
|
||||
"e.g. --write-num-frames=ark,t:foo.txt :"
|
||||
"{}".format(nframes_type))
|
||||
|
||||
return open(nframes_file, "w", encoding="utf-8")
|
||||
|
||||
|
||||
class KaldiWriter(BaseWriter):
|
||||
def __init__(self,
|
||||
wspecifier,
|
||||
write_num_frames=None,
|
||||
compress=False,
|
||||
compression_method=2):
|
||||
if compress:
|
||||
self.writer = kaldiio.WriteHelper(
|
||||
wspecifier, compression_method=compression_method)
|
||||
else:
|
||||
self.writer = kaldiio.WriteHelper(wspecifier)
|
||||
self.writer_scp = None
|
||||
if write_num_frames is not None:
|
||||
self.writer_nframe = get_num_frames_writer(write_num_frames)
|
||||
else:
|
||||
self.writer_nframe = None
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
self.writer[key] = value
|
||||
if self.writer_nframe is not None:
|
||||
self.writer_nframe.write(f"{key} {len(value)}\n")
|
||||
|
||||
|
||||
def parse_wspecifier(wspecifier: str) -> Dict[str, str]:
|
||||
"""Parse wspecifier to dict
|
||||
|
||||
Examples:
|
||||
>>> parse_wspecifier('ark,scp:out.ark,out.scp')
|
||||
{'ark': 'out.ark', 'scp': 'out.scp'}
|
||||
|
||||
"""
|
||||
ark_scp, filepath = wspecifier.split(":", 1)
|
||||
if ark_scp not in ["ark", "scp,ark", "ark,scp"]:
|
||||
raise ValueError("{} is not allowed: {}".format(ark_scp, wspecifier))
|
||||
ark_scps = ark_scp.split(",")
|
||||
filepaths = filepath.split(",")
|
||||
if len(ark_scps) != len(filepaths):
|
||||
raise ValueError("Mismatch: {} and {}".format(ark_scp, filepath))
|
||||
spec_dict = dict(zip(ark_scps, filepaths))
|
||||
return spec_dict
|
||||
|
||||
|
||||
class HDF5Writer(BaseWriter):
|
||||
"""HDF5Writer
|
||||
|
||||
Examples:
|
||||
>>> with HDF5Writer('ark:out.h5', compress=True) as f:
|
||||
... f['key'] = array
|
||||
"""
|
||||
|
||||
def __init__(self, wspecifier, write_num_frames=None, compress=False):
|
||||
spec_dict = parse_wspecifier(wspecifier)
|
||||
self.filename = spec_dict["ark"]
|
||||
|
||||
if compress:
|
||||
self.kwargs = {"compression": "gzip"}
|
||||
else:
|
||||
self.kwargs = {}
|
||||
self.writer = h5py.File(spec_dict["ark"], "w")
|
||||
if "scp" in spec_dict:
|
||||
self.writer_scp = open(spec_dict["scp"], "w", encoding="utf-8")
|
||||
else:
|
||||
self.writer_scp = None
|
||||
if write_num_frames is not None:
|
||||
self.writer_nframe = get_num_frames_writer(write_num_frames)
|
||||
else:
|
||||
self.writer_nframe = None
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
self.writer.create_dataset(key, data=value, **self.kwargs)
|
||||
|
||||
if self.writer_scp is not None:
|
||||
self.writer_scp.write(f"{key} {self.filename}:{key}\n")
|
||||
if self.writer_nframe is not None:
|
||||
self.writer_nframe.write(f"{key} {len(value)}\n")
|
||||
|
||||
|
||||
class SoundHDF5Writer(BaseWriter):
|
||||
"""SoundHDF5Writer
|
||||
|
||||
Examples:
|
||||
>>> fs = 16000
|
||||
>>> with SoundHDF5Writer('ark:out.h5') as f:
|
||||
... f['key'] = fs, array
|
||||
"""
|
||||
|
||||
def __init__(self, wspecifier, write_num_frames=None, pcm_format="wav"):
|
||||
self.pcm_format = pcm_format
|
||||
spec_dict = parse_wspecifier(wspecifier)
|
||||
self.filename = spec_dict["ark"]
|
||||
self.writer = SoundHDF5File(
|
||||
spec_dict["ark"], "w", format=self.pcm_format)
|
||||
if "scp" in spec_dict:
|
||||
self.writer_scp = open(spec_dict["scp"], "w", encoding="utf-8")
|
||||
else:
|
||||
self.writer_scp = None
|
||||
if write_num_frames is not None:
|
||||
self.writer_nframe = get_num_frames_writer(write_num_frames)
|
||||
else:
|
||||
self.writer_nframe = None
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
assert_scipy_wav_style(value)
|
||||
# Change Tuple[int, ndarray] -> Tuple[ndarray, int]
|
||||
# (scipy style -> soundfile style)
|
||||
value = (value[1], value[0])
|
||||
self.writer.create_dataset(key, data=value)
|
||||
|
||||
if self.writer_scp is not None:
|
||||
self.writer_scp.write(f"{key} {self.filename}:{key}\n")
|
||||
if self.writer_nframe is not None:
|
||||
self.writer_nframe.write(f"{key} {len(value[0])}\n")
|
||||
|
||||
|
||||
class SoundWriter(BaseWriter):
|
||||
"""SoundWriter
|
||||
|
||||
Examples:
|
||||
>>> fs = 16000
|
||||
>>> with SoundWriter('ark,scp:outdir,out.scp') as f:
|
||||
... f['key'] = fs, array
|
||||
"""
|
||||
|
||||
def __init__(self, wspecifier, write_num_frames=None, pcm_format="wav"):
|
||||
self.pcm_format = pcm_format
|
||||
spec_dict = parse_wspecifier(wspecifier)
|
||||
# e.g. ark,scp:dirname,wav.scp
|
||||
# -> The wave files are found in dirname/*.wav
|
||||
self.dirname = spec_dict["ark"]
|
||||
Path(self.dirname).mkdir(parents=True, exist_ok=True)
|
||||
self.writer = None
|
||||
|
||||
if "scp" in spec_dict:
|
||||
self.writer_scp = open(spec_dict["scp"], "w", encoding="utf-8")
|
||||
else:
|
||||
self.writer_scp = None
|
||||
if write_num_frames is not None:
|
||||
self.writer_nframe = get_num_frames_writer(write_num_frames)
|
||||
else:
|
||||
self.writer_nframe = None
|
||||
|
||||
def __setitem__(self, key, value):
|
||||
assert_scipy_wav_style(value)
|
||||
rate, signal = value
|
||||
wavfile = Path(self.dirname) / (key + "." + self.pcm_format)
|
||||
soundfile.write(wavfile, signal.astype(numpy.int16), rate)
|
||||
|
||||
if self.writer_scp is not None:
|
||||
self.writer_scp.write(f"{key} {wavfile}\n")
|
||||
if self.writer_nframe is not None:
|
||||
self.writer_nframe.write(f"{key} {len(signal)}\n")
|
@ -0,0 +1,13 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
After Width: | Height: | Size: 72 KiB |
@ -0,0 +1,4 @@
|
||||
dump
|
||||
fbank
|
||||
exp
|
||||
data
|
@ -1,122 +0,0 @@
|
||||
# https://yaml.org/type/float.html
|
||||
data:
|
||||
train_manifest: data/manifest.train
|
||||
dev_manifest: data/manifest.dev
|
||||
test_manifest: data/manifest.test
|
||||
min_input_len: 0.5
|
||||
max_input_len: 20.0
|
||||
min_output_len: 0.0
|
||||
max_output_len: 400.0
|
||||
min_output_input_ratio: 0.05
|
||||
max_output_input_ratio: 10.0
|
||||
|
||||
collator:
|
||||
vocab_filepath: data/vocab.txt
|
||||
unit_type: 'spm'
|
||||
spm_model_prefix: 'data/bpe_unigram_5000'
|
||||
mean_std_filepath: ""
|
||||
augmentation_config: conf/augmentation.json
|
||||
batch_size: 16
|
||||
raw_wav: True # use raw_wav or kaldi feature
|
||||
spectrum_type: fbank #linear, mfcc, fbank
|
||||
feat_dim: 80
|
||||
delta_delta: False
|
||||
dither: 1.0
|
||||
target_sample_rate: 16000
|
||||
max_freq: None
|
||||
n_fft: None
|
||||
stride_ms: 10.0
|
||||
window_ms: 25.0
|
||||
use_dB_normalization: True
|
||||
target_dB: -20
|
||||
random_seed: 0
|
||||
keep_transcription_text: False
|
||||
sortagrad: True
|
||||
shuffle_method: batch_shuffle
|
||||
num_workers: 2
|
||||
|
||||
|
||||
# network architecture
|
||||
model:
|
||||
cmvn_file: "data/mean_std.json"
|
||||
cmvn_file_type: "json"
|
||||
# encoder related
|
||||
encoder: conformer
|
||||
encoder_conf:
|
||||
output_size: 256 # dimension of attention
|
||||
attention_heads: 4
|
||||
linear_units: 2048 # the number of units of position-wise feed forward
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||
normalize_before: True
|
||||
use_cnn_module: True
|
||||
cnn_module_kernel: 15
|
||||
activation_type: 'swish'
|
||||
pos_enc_layer_type: 'rel_pos'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
causal: True
|
||||
use_dynamic_chunk: true
|
||||
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
|
||||
use_dynamic_left_chunk: false
|
||||
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
ctc_dropoutrate: 0.0
|
||||
ctc_grad_norm_type: null
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
|
||||
|
||||
training:
|
||||
n_epoch: 240
|
||||
accum_grad: 8
|
||||
global_grad_clip: 5.0
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.001
|
||||
weight_decay: 1e-06
|
||||
scheduler: warmuplr # pytorch v1.1.0+ required
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
lr_decay: 1.0
|
||||
log_interval: 100
|
||||
checkpoint:
|
||||
kbest_n: 50
|
||||
latest_n: 5
|
||||
|
||||
|
||||
decoding:
|
||||
batch_size: 128
|
||||
error_rate_type: wer
|
||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||
alpha: 2.5
|
||||
beta: 0.3
|
||||
beam_size: 10
|
||||
cutoff_prob: 1.0
|
||||
cutoff_top_n: 0
|
||||
num_proc_bsearch: 8
|
||||
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||
# <0: for decoding, use full chunk.
|
||||
# >0: for decoding, use fixed chunk size as set.
|
||||
# 0: used for training, it's prohibited here.
|
||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||
simulate_streaming: true # simulate streaming inference. Defaults to False.
|
||||
|
||||
|
@ -1,115 +0,0 @@
|
||||
# https://yaml.org/type/float.html
|
||||
data:
|
||||
train_manifest: data/manifest.train
|
||||
dev_manifest: data/manifest.dev
|
||||
test_manifest: data/manifest.test
|
||||
min_input_len: 0.5 # second
|
||||
max_input_len: 20.0 # second
|
||||
min_output_len: 0.0 # tokens
|
||||
max_output_len: 400.0 # tokens
|
||||
min_output_input_ratio: 0.05
|
||||
max_output_input_ratio: 10.0
|
||||
|
||||
collator:
|
||||
vocab_filepath: data/vocab.txt
|
||||
unit_type: 'spm'
|
||||
spm_model_prefix: 'data/bpe_unigram_5000'
|
||||
mean_std_filepath: ""
|
||||
augmentation_config: conf/augmentation.json
|
||||
batch_size: 64
|
||||
raw_wav: True # use raw_wav or kaldi feature
|
||||
spectrum_type: fbank #linear, mfcc, fbank
|
||||
feat_dim: 80
|
||||
delta_delta: False
|
||||
dither: 1.0
|
||||
target_sample_rate: 16000
|
||||
max_freq: None
|
||||
n_fft: None
|
||||
stride_ms: 10.0
|
||||
window_ms: 25.0
|
||||
use_dB_normalization: True
|
||||
target_dB: -20
|
||||
random_seed: 0
|
||||
keep_transcription_text: False
|
||||
sortagrad: True
|
||||
shuffle_method: batch_shuffle
|
||||
num_workers: 2
|
||||
|
||||
|
||||
# network architecture
|
||||
model:
|
||||
cmvn_file: "data/mean_std.json"
|
||||
cmvn_file_type: "json"
|
||||
# encoder related
|
||||
encoder: transformer
|
||||
encoder_conf:
|
||||
output_size: 256 # dimension of attention
|
||||
attention_heads: 4
|
||||
linear_units: 2048 # the number of units of position-wise feed forward
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||
normalize_before: true
|
||||
use_dynamic_chunk: true
|
||||
use_dynamic_left_chunk: false
|
||||
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
ctc_dropoutrate: 0.0
|
||||
ctc_grad_norm_type: null
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
|
||||
|
||||
training:
|
||||
n_epoch: 120
|
||||
accum_grad: 1
|
||||
global_grad_clip: 5.0
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.001
|
||||
weight_decay: 1e-06
|
||||
scheduler: warmuplr # pytorch v1.1.0+ required
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
lr_decay: 1.0
|
||||
log_interval: 100
|
||||
checkpoint:
|
||||
kbest_n: 50
|
||||
latest_n: 5
|
||||
|
||||
|
||||
decoding:
|
||||
batch_size: 64
|
||||
error_rate_type: wer
|
||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||
alpha: 2.5
|
||||
beta: 0.3
|
||||
beam_size: 10
|
||||
cutoff_prob: 1.0
|
||||
cutoff_top_n: 0
|
||||
num_proc_bsearch: 8
|
||||
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||
# <0: for decoding, use full chunk.
|
||||
# >0: for decoding, use fixed chunk size as set.
|
||||
# 0: used for training, it's prohibited here.
|
||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||
simulate_streaming: true # simulate streaming inference. Defaults to False.
|
||||
|
||||
|
@ -1,118 +0,0 @@
|
||||
# https://yaml.org/type/float.html
|
||||
data:
|
||||
train_manifest: data/manifest.train
|
||||
dev_manifest: data/manifest.dev
|
||||
test_manifest: data/manifest.test-clean
|
||||
min_input_len: 0.5 # seconds
|
||||
max_input_len: 20.0 # seconds
|
||||
min_output_len: 0.0 # tokens
|
||||
max_output_len: 400.0 # tokens
|
||||
min_output_input_ratio: 0.05
|
||||
max_output_input_ratio: 10.0
|
||||
|
||||
collator:
|
||||
vocab_filepath: data/vocab.txt
|
||||
unit_type: 'spm'
|
||||
spm_model_prefix: 'data/bpe_unigram_5000'
|
||||
mean_std_filepath: ""
|
||||
augmentation_config: conf/augmentation.json
|
||||
batch_size: 16
|
||||
raw_wav: True # use raw_wav or kaldi feature
|
||||
spectrum_type: fbank #linear, mfcc, fbank
|
||||
feat_dim: 80
|
||||
delta_delta: False
|
||||
dither: 1.0
|
||||
target_sample_rate: 16000
|
||||
max_freq: None
|
||||
n_fft: None
|
||||
stride_ms: 10.0
|
||||
window_ms: 25.0
|
||||
use_dB_normalization: True
|
||||
target_dB: -20
|
||||
random_seed: 0
|
||||
keep_transcription_text: False
|
||||
sortagrad: True
|
||||
shuffle_method: batch_shuffle
|
||||
num_workers: 2
|
||||
|
||||
|
||||
# network architecture
|
||||
model:
|
||||
cmvn_file: "data/mean_std.json"
|
||||
cmvn_file_type: "json"
|
||||
# encoder related
|
||||
encoder: conformer
|
||||
encoder_conf:
|
||||
output_size: 256 # dimension of attention
|
||||
attention_heads: 4
|
||||
linear_units: 2048 # the number of units of position-wise feed forward
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||
normalize_before: True
|
||||
use_cnn_module: True
|
||||
cnn_module_kernel: 15
|
||||
activation_type: 'swish'
|
||||
pos_enc_layer_type: 'rel_pos'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 4
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
ctc_dropoutrate: 0.0
|
||||
ctc_grad_norm_type: null
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
|
||||
|
||||
training:
|
||||
n_epoch: 120
|
||||
accum_grad: 8
|
||||
global_grad_clip: 3.0
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.004
|
||||
weight_decay: 1e-06
|
||||
scheduler: warmuplr # pytorch v1.1.0+ required
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
lr_decay: 1.0
|
||||
log_interval: 100
|
||||
checkpoint:
|
||||
kbest_n: 50
|
||||
latest_n: 5
|
||||
|
||||
|
||||
decoding:
|
||||
batch_size: 64
|
||||
error_rate_type: wer
|
||||
decoding_method: attention # 'attention', 'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention_rescoring'
|
||||
lang_model_path: data/lm/common_crawl_00.prune01111.trie.klm
|
||||
alpha: 2.5
|
||||
beta: 0.3
|
||||
beam_size: 10
|
||||
cutoff_prob: 1.0
|
||||
cutoff_top_n: 0
|
||||
num_proc_bsearch: 8
|
||||
ctc_weight: 0.5 # ctc weight for attention rescoring decode mode.
|
||||
decoding_chunk_size: -1 # decoding chunk size. Defaults to -1.
|
||||
# <0: for decoding, use full chunk.
|
||||
# >0: for decoding, use fixed chunk size as set.
|
||||
# 0: used for training, it's prohibited here.
|
||||
num_decoding_left_chunks: -1 # number of left chunks for decoding. Defaults to -1.
|
||||
simulate_streaming: False # simulate streaming inference. Defaults to False.
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
batchsize: 0
|
||||
beam-size: 60
|
||||
ctc-weight: 0.0
|
||||
lm-weight: 0.0
|
||||
ctc-weight: 0.4
|
||||
lm-weight: 0.6
|
||||
maxlenratio: 0.0
|
||||
minlenratio: 0.0
|
||||
penalty: 0.0
|
||||
|
@ -0,0 +1,7 @@
|
||||
batchsize: 0
|
||||
beam-size: 60
|
||||
ctc-weight: 0.0
|
||||
lm-weight: 0.0
|
||||
maxlenratio: 0.0
|
||||
minlenratio: 0.0
|
||||
penalty: 0.0
|
@ -1,7 +1,7 @@
|
||||
batchsize: 0
|
||||
beam-size: 60
|
||||
ctc-weight: 0.4
|
||||
lm-weight: 0.6
|
||||
lm-weight: 0.0
|
||||
maxlenratio: 0.0
|
||||
minlenratio: 0.0
|
||||
penalty: 0.0
|
||||
penalty: 0.0
|
@ -0,0 +1,2 @@
|
||||
--sample-frequency=16000
|
||||
--num-mel-bins=80
|
@ -0,0 +1,13 @@
|
||||
model_module: transformer
|
||||
model:
|
||||
n_vocab: 5002
|
||||
pos_enc: null
|
||||
embed_unit: 128
|
||||
att_unit: 512
|
||||
head: 8
|
||||
unit: 2048
|
||||
layer: 16
|
||||
dropout_rate: 0.5
|
||||
emb_dropout_rate: 0.0
|
||||
att_dropout_rate: 0.0
|
||||
tie_weights: False
|
@ -0,0 +1 @@
|
||||
--sample-frequency=16000
|
@ -0,0 +1,85 @@
|
||||
#!/usr/bin/env bash
|
||||
|
||||
# Copyright 2014 Vassil Panayotov
|
||||
# 2014 Johns Hopkins University (author: Daniel Povey)
|
||||
# Apache 2.0
|
||||
|
||||
if [ "$#" -ne 2 ]; then
|
||||
echo "Usage: $0 <src-dir> <dst-dir>"
|
||||
echo "e.g.: $0 /export/a15/vpanayotov/data/LibriSpeech/dev-clean data/dev-clean"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
src=$1
|
||||
dst=$2
|
||||
|
||||
# all utterances are FLAC compressed
|
||||
if ! which flac >&/dev/null; then
|
||||
echo "Please install 'flac' on ALL worker nodes!"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
spk_file=$src/../SPEAKERS.TXT
|
||||
|
||||
mkdir -p $dst || exit 1
|
||||
|
||||
[ ! -d $src ] && echo "$0: no such directory $src" && exit 1
|
||||
[ ! -f $spk_file ] && echo "$0: expected file $spk_file to exist" && exit 1
|
||||
|
||||
|
||||
wav_scp=$dst/wav.scp; [[ -f "$wav_scp" ]] && rm $wav_scp
|
||||
trans=$dst/text; [[ -f "$trans" ]] && rm $trans
|
||||
utt2spk=$dst/utt2spk; [[ -f "$utt2spk" ]] && rm $utt2spk
|
||||
spk2gender=$dst/spk2gender; [[ -f $spk2gender ]] && rm $spk2gender
|
||||
|
||||
for reader_dir in $(find -L $src -mindepth 1 -maxdepth 1 -type d | sort); do
|
||||
reader=$(basename $reader_dir)
|
||||
if ! [ $reader -eq $reader ]; then # not integer.
|
||||
echo "$0: unexpected subdirectory name $reader"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
reader_gender=$(egrep "^$reader[ ]+\|" $spk_file | awk -F'|' '{gsub(/[ ]+/, ""); print tolower($2)}')
|
||||
if [ "$reader_gender" != 'm' ] && [ "$reader_gender" != 'f' ]; then
|
||||
echo "Unexpected gender: '$reader_gender'"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
for chapter_dir in $(find -L $reader_dir/ -mindepth 1 -maxdepth 1 -type d | sort); do
|
||||
chapter=$(basename $chapter_dir)
|
||||
if ! [ "$chapter" -eq "$chapter" ]; then
|
||||
echo "$0: unexpected chapter-subdirectory name $chapter"
|
||||
exit 1
|
||||
fi
|
||||
|
||||
find -L $chapter_dir/ -iname "*.flac" | sort | xargs -I% basename % .flac | \
|
||||
awk -v "dir=$chapter_dir" '{printf "%s flac -c -d -s %s/%s.flac |\n", $0, dir, $0}' >>$wav_scp|| exit 1
|
||||
|
||||
chapter_trans=$chapter_dir/${reader}-${chapter}.trans.txt
|
||||
[ ! -f $chapter_trans ] && echo "$0: expected file $chapter_trans to exist" && exit 1
|
||||
cat $chapter_trans >>$trans
|
||||
|
||||
# NOTE: For now we are using per-chapter utt2spk. That is each chapter is considered
|
||||
# to be a different speaker. This is done for simplicity and because we want
|
||||
# e.g. the CMVN to be calculated per-chapter
|
||||
awk -v "reader=$reader" -v "chapter=$chapter" '{printf "%s %s-%s\n", $1, reader, chapter}' \
|
||||
<$chapter_trans >>$utt2spk || exit 1
|
||||
|
||||
# reader -> gender map (again using per-chapter granularity)
|
||||
echo "${reader}-${chapter} $reader_gender" >>$spk2gender
|
||||
done
|
||||
done
|
||||
|
||||
spk2utt=$dst/spk2utt
|
||||
utils/utt2spk_to_spk2utt.pl <$utt2spk >$spk2utt || exit 1
|
||||
|
||||
ntrans=$(wc -l <$trans)
|
||||
nutt2spk=$(wc -l <$utt2spk)
|
||||
! [ "$ntrans" -eq "$nutt2spk" ] && \
|
||||
echo "Inconsistent #transcripts($ntrans) and #utt2spk($nutt2spk)" && exit 1
|
||||
|
||||
utils/validate_data_dir.sh --no-feats $dst || exit 1
|
||||
|
||||
echo "$0: successfully prepared data in $dst"
|
||||
|
||||
exit 0
|
@ -0,0 +1 @@
|
||||
../../../tools/kaldi/egs/wsj/s5/steps/
|
@ -1 +1 @@
|
||||
../../../utils/
|
||||
../../../tools/kaldi/egs/wsj/s5/utils
|
@ -0,0 +1,7 @@
|
||||
.ipynb_checkpoints/**
|
||||
*.ipynb
|
||||
nohup.out
|
||||
__pycache__/
|
||||
*.wav
|
||||
*.m4a
|
||||
obsolete/**
|
@ -0,0 +1,45 @@
|
||||
repos:
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: yapf
|
||||
name: yapf
|
||||
entry: yapf
|
||||
language: system
|
||||
args: [-i, --style .style.yapf]
|
||||
files: \.py$
|
||||
|
||||
- repo: https://github.com/pre-commit/pre-commit-hooks
|
||||
rev: a11d9314b22d8f8c7556443875b731ef05965464
|
||||
hooks:
|
||||
- id: check-merge-conflict
|
||||
- id: check-symlinks
|
||||
- id: end-of-file-fixer
|
||||
- id: trailing-whitespace
|
||||
- id: detect-private-key
|
||||
- id: check-symlinks
|
||||
- id: check-added-large-files
|
||||
|
||||
- repo: https://github.com/pycqa/isort
|
||||
rev: 5.8.0
|
||||
hooks:
|
||||
- id: isort
|
||||
name: isort (python)
|
||||
- id: isort
|
||||
name: isort (cython)
|
||||
types: [cython]
|
||||
- id: isort
|
||||
name: isort (pyi)
|
||||
types: [pyi]
|
||||
|
||||
- repo: local
|
||||
hooks:
|
||||
- id: flake8
|
||||
name: flake8
|
||||
entry: flake8
|
||||
language: system
|
||||
args:
|
||||
- --count
|
||||
- --select=E9,F63,F7,F82
|
||||
- --show-source
|
||||
- --statistics
|
||||
files: \.py$
|
@ -0,0 +1,3 @@
|
||||
[style]
|
||||
based_on_style = pep8
|
||||
column_limit = 80
|
@ -0,0 +1,201 @@
|
||||
Apache License
|
||||
Version 2.0, January 2004
|
||||
http://www.apache.org/licenses/
|
||||
|
||||
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
||||
|
||||
1. Definitions.
|
||||
|
||||
"License" shall mean the terms and conditions for use, reproduction,
|
||||
and distribution as defined by Sections 1 through 9 of this document.
|
||||
|
||||
"Licensor" shall mean the copyright owner or entity authorized by
|
||||
the copyright owner that is granting the License.
|
||||
|
||||
"Legal Entity" shall mean the union of the acting entity and all
|
||||
other entities that control, are controlled by, or are under common
|
||||
control with that entity. For the purposes of this definition,
|
||||
"control" means (i) the power, direct or indirect, to cause the
|
||||
direction or management of such entity, whether by contract or
|
||||
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
||||
outstanding shares, or (iii) beneficial ownership of such entity.
|
||||
|
||||
"You" (or "Your") shall mean an individual or Legal Entity
|
||||
exercising permissions granted by this License.
|
||||
|
||||
"Source" form shall mean the preferred form for making modifications,
|
||||
including but not limited to software source code, documentation
|
||||
source, and configuration files.
|
||||
|
||||
"Object" form shall mean any form resulting from mechanical
|
||||
transformation or translation of a Source form, including but
|
||||
not limited to compiled object code, generated documentation,
|
||||
and conversions to other media types.
|
||||
|
||||
"Work" shall mean the work of authorship, whether in Source or
|
||||
Object form, made available under the License, as indicated by a
|
||||
copyright notice that is included in or attached to the work
|
||||
(an example is provided in the Appendix below).
|
||||
|
||||
"Derivative Works" shall mean any work, whether in Source or Object
|
||||
form, that is based on (or derived from) the Work and for which the
|
||||
editorial revisions, annotations, elaborations, or other modifications
|
||||
represent, as a whole, an original work of authorship. For the purposes
|
||||
of this License, Derivative Works shall not include works that remain
|
||||
separable from, or merely link (or bind by name) to the interfaces of,
|
||||
the Work and Derivative Works thereof.
|
||||
|
||||
"Contribution" shall mean any work of authorship, including
|
||||
the original version of the Work and any modifications or additions
|
||||
to that Work or Derivative Works thereof, that is intentionally
|
||||
submitted to Licensor for inclusion in the Work by the copyright owner
|
||||
or by an individual or Legal Entity authorized to submit on behalf of
|
||||
the copyright owner. For the purposes of this definition, "submitted"
|
||||
means any form of electronic, verbal, or written communication sent
|
||||
to the Licensor or its representatives, including but not limited to
|
||||
communication on electronic mailing lists, source code control systems,
|
||||
and issue tracking systems that are managed by, or on behalf of, the
|
||||
Licensor for the purpose of discussing and improving the Work, but
|
||||
excluding communication that is conspicuously marked or otherwise
|
||||
designated in writing by the copyright owner as "Not a Contribution."
|
||||
|
||||
"Contributor" shall mean Licensor and any individual or Legal Entity
|
||||
on behalf of whom a Contribution has been received by Licensor and
|
||||
subsequently incorporated within the Work.
|
||||
|
||||
2. Grant of Copyright License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
copyright license to reproduce, prepare Derivative Works of,
|
||||
publicly display, publicly perform, sublicense, and distribute the
|
||||
Work and such Derivative Works in Source or Object form.
|
||||
|
||||
3. Grant of Patent License. Subject to the terms and conditions of
|
||||
this License, each Contributor hereby grants to You a perpetual,
|
||||
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
||||
(except as stated in this section) patent license to make, have made,
|
||||
use, offer to sell, sell, import, and otherwise transfer the Work,
|
||||
where such license applies only to those patent claims licensable
|
||||
by such Contributor that are necessarily infringed by their
|
||||
Contribution(s) alone or by combination of their Contribution(s)
|
||||
with the Work to which such Contribution(s) was submitted. If You
|
||||
institute patent litigation against any entity (including a
|
||||
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
||||
or a Contribution incorporated within the Work constitutes direct
|
||||
or contributory patent infringement, then any patent licenses
|
||||
granted to You under this License for that Work shall terminate
|
||||
as of the date such litigation is filed.
|
||||
|
||||
4. Redistribution. You may reproduce and distribute copies of the
|
||||
Work or Derivative Works thereof in any medium, with or without
|
||||
modifications, and in Source or Object form, provided that You
|
||||
meet the following conditions:
|
||||
|
||||
(a) You must give any other recipients of the Work or
|
||||
Derivative Works a copy of this License; and
|
||||
|
||||
(b) You must cause any modified files to carry prominent notices
|
||||
stating that You changed the files; and
|
||||
|
||||
(c) You must retain, in the Source form of any Derivative Works
|
||||
that You distribute, all copyright, patent, trademark, and
|
||||
attribution notices from the Source form of the Work,
|
||||
excluding those notices that do not pertain to any part of
|
||||
the Derivative Works; and
|
||||
|
||||
(d) If the Work includes a "NOTICE" text file as part of its
|
||||
distribution, then any Derivative Works that You distribute must
|
||||
include a readable copy of the attribution notices contained
|
||||
within such NOTICE file, excluding those notices that do not
|
||||
pertain to any part of the Derivative Works, in at least one
|
||||
of the following places: within a NOTICE text file distributed
|
||||
as part of the Derivative Works; within the Source form or
|
||||
documentation, if provided along with the Derivative Works; or,
|
||||
within a display generated by the Derivative Works, if and
|
||||
wherever such third-party notices normally appear. The contents
|
||||
of the NOTICE file are for informational purposes only and
|
||||
do not modify the License. You may add Your own attribution
|
||||
notices within Derivative Works that You distribute, alongside
|
||||
or as an addendum to the NOTICE text from the Work, provided
|
||||
that such additional attribution notices cannot be construed
|
||||
as modifying the License.
|
||||
|
||||
You may add Your own copyright statement to Your modifications and
|
||||
may provide additional or different license terms and conditions
|
||||
for use, reproduction, or distribution of Your modifications, or
|
||||
for any such Derivative Works as a whole, provided Your use,
|
||||
reproduction, and distribution of the Work otherwise complies with
|
||||
the conditions stated in this License.
|
||||
|
||||
5. Submission of Contributions. Unless You explicitly state otherwise,
|
||||
any Contribution intentionally submitted for inclusion in the Work
|
||||
by You to the Licensor shall be under the terms and conditions of
|
||||
this License, without any additional terms or conditions.
|
||||
Notwithstanding the above, nothing herein shall supersede or modify
|
||||
the terms of any separate license agreement you may have executed
|
||||
with Licensor regarding such Contributions.
|
||||
|
||||
6. Trademarks. This License does not grant permission to use the trade
|
||||
names, trademarks, service marks, or product names of the Licensor,
|
||||
except as required for reasonable and customary use in describing the
|
||||
origin of the Work and reproducing the content of the NOTICE file.
|
||||
|
||||
7. Disclaimer of Warranty. Unless required by applicable law or
|
||||
agreed to in writing, Licensor provides the Work (and each
|
||||
Contributor provides its Contributions) on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
||||
implied, including, without limitation, any warranties or conditions
|
||||
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
||||
PARTICULAR PURPOSE. You are solely responsible for determining the
|
||||
appropriateness of using or redistributing the Work and assume any
|
||||
risks associated with Your exercise of permissions under this License.
|
||||
|
||||
8. Limitation of Liability. In no event and under no legal theory,
|
||||
whether in tort (including negligence), contract, or otherwise,
|
||||
unless required by applicable law (such as deliberate and grossly
|
||||
negligent acts) or agreed to in writing, shall any Contributor be
|
||||
liable to You for damages, including any direct, indirect, special,
|
||||
incidental, or consequential damages of any character arising as a
|
||||
result of this License or out of the use or inability to use the
|
||||
Work (including but not limited to damages for loss of goodwill,
|
||||
work stoppage, computer failure or malfunction, or any and all
|
||||
other commercial damages or losses), even if such Contributor
|
||||
has been advised of the possibility of such damages.
|
||||
|
||||
9. Accepting Warranty or Additional Liability. While redistributing
|
||||
the Work or Derivative Works thereof, You may choose to offer,
|
||||
and charge a fee for, acceptance of support, warranty, indemnity,
|
||||
or other liability obligations and/or rights consistent with this
|
||||
License. However, in accepting such obligations, You may act only
|
||||
on Your own behalf and on Your sole responsibility, not on behalf
|
||||
of any other Contributor, and only if You agree to indemnify,
|
||||
defend, and hold each Contributor harmless for any liability
|
||||
incurred by, or claims asserted against, such Contributor by reason
|
||||
of your accepting any such warranty or additional liability.
|
||||
|
||||
END OF TERMS AND CONDITIONS
|
||||
|
||||
APPENDIX: How to apply the Apache License to your work.
|
||||
|
||||
To apply the Apache License to your work, attach the following
|
||||
boilerplate notice, with the fields enclosed by brackets "[]"
|
||||
replaced with your own identifying information. (Don't include
|
||||
the brackets!) The text should be enclosed in the appropriate
|
||||
comment syntax for the file format. We also recommend that a
|
||||
file or class name and description of purpose be included on the
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License.
|
@ -0,0 +1,37 @@
|
||||
# PaddleAudio: The audio library for PaddlePaddle
|
||||
|
||||
## Introduction
|
||||
PaddleAudio is the audio toolkit to speed up your audio research and development loop in PaddlePaddle. It currently provides a collection of audio datasets, feature-extraction functions, audio transforms,state-of-the-art pre-trained models in sound tagging/classification and anomaly sound detection. More models and features are on the roadmap.
|
||||
|
||||
|
||||
|
||||
## Features
|
||||
- Spectrogram and related features are compatible with librosa.
|
||||
- State-of-the-art models in sound tagging on Audioset, sound classification on esc50, and more to come.
|
||||
- Ready-to-use audio embedding with a line of code, includes sound embedding and more on the roadmap.
|
||||
- Data loading supports for common open source audio in multiple languages including English, Mandarin and so on.
|
||||
|
||||
|
||||
## Install
|
||||
```
|
||||
git clone https://github.com/PaddlePaddle/models
|
||||
cd models/PaddleAudio
|
||||
pip install .
|
||||
|
||||
```
|
||||
|
||||
## Quick start
|
||||
### Audio loading and feature extraction
|
||||
```
|
||||
import paddleaudio as pa
|
||||
s,r = pa.load(f)
|
||||
mel_spect = pa.melspectrogram(s,sr=r)
|
||||
```
|
||||
|
||||
### Examples
|
||||
We provide a set of examples to help you get started in using PaddleAudio quickly.
|
||||
- [PANNs: acoustic scene and events analysis using pre-trained models](./examples/panns)
|
||||
- [Environmental Sound classification on ESC-50 dataset](./examples/sound_classification)
|
||||
- [Training a audio-tagging network on Audioset](./examples/audioset_training)
|
||||
|
||||
Please refer to [example directory](./examples) for more details.
|
@ -0,0 +1,527 @@
|
||||
Speech
|
||||
Male speech, man speaking
|
||||
Female speech, woman speaking
|
||||
Child speech, kid speaking
|
||||
Conversation
|
||||
Narration, monologue
|
||||
Babbling
|
||||
Speech synthesizer
|
||||
Shout
|
||||
Bellow
|
||||
Whoop
|
||||
Yell
|
||||
Battle cry
|
||||
Children shouting
|
||||
Screaming
|
||||
Whispering
|
||||
Laughter
|
||||
Baby laughter
|
||||
Giggle
|
||||
Snicker
|
||||
Belly laugh
|
||||
Chuckle, chortle
|
||||
Crying, sobbing
|
||||
Baby cry, infant cry
|
||||
Whimper
|
||||
Wail, moan
|
||||
Sigh
|
||||
Singing
|
||||
Choir
|
||||
Yodeling
|
||||
Chant
|
||||
Mantra
|
||||
Male singing
|
||||
Female singing
|
||||
Child singing
|
||||
Synthetic singing
|
||||
Rapping
|
||||
Humming
|
||||
Groan
|
||||
Grunt
|
||||
Whistling
|
||||
Breathing
|
||||
Wheeze
|
||||
Snoring
|
||||
Gasp
|
||||
Pant
|
||||
Snort
|
||||
Cough
|
||||
Throat clearing
|
||||
Sneeze
|
||||
Sniff
|
||||
Run
|
||||
Shuffle
|
||||
Walk, footsteps
|
||||
Chewing, mastication
|
||||
Biting
|
||||
Gargling
|
||||
Stomach rumble
|
||||
Burping, eructation
|
||||
Hiccup
|
||||
Fart
|
||||
Hands
|
||||
Finger snapping
|
||||
Clapping
|
||||
Heart sounds, heartbeat
|
||||
Heart murmur
|
||||
Cheering
|
||||
Applause
|
||||
Chatter
|
||||
Crowd
|
||||
Hubbub, speech noise, speech babble
|
||||
Children playing
|
||||
Animal
|
||||
Domestic animals, pets
|
||||
Dog
|
||||
Bark
|
||||
Yip
|
||||
Howl
|
||||
Bow-wow
|
||||
Growling
|
||||
Whimper (dog)
|
||||
Cat
|
||||
Purr
|
||||
Meow
|
||||
Hiss
|
||||
Caterwaul
|
||||
Livestock, farm animals, working animals
|
||||
Horse
|
||||
Clip-clop
|
||||
Neigh, whinny
|
||||
Cattle, bovinae
|
||||
Moo
|
||||
Cowbell
|
||||
Pig
|
||||
Oink
|
||||
Goat
|
||||
Bleat
|
||||
Sheep
|
||||
Fowl
|
||||
Chicken, rooster
|
||||
Cluck
|
||||
Crowing, cock-a-doodle-doo
|
||||
Turkey
|
||||
Gobble
|
||||
Duck
|
||||
Quack
|
||||
Goose
|
||||
Honk
|
||||
Wild animals
|
||||
Roaring cats (lions, tigers)
|
||||
Roar
|
||||
Bird
|
||||
Bird vocalization, bird call, bird song
|
||||
Chirp, tweet
|
||||
Squawk
|
||||
Pigeon, dove
|
||||
Coo
|
||||
Crow
|
||||
Caw
|
||||
Owl
|
||||
Hoot
|
||||
Bird flight, flapping wings
|
||||
Canidae, dogs, wolves
|
||||
Rodents, rats, mice
|
||||
Mouse
|
||||
Patter
|
||||
Insect
|
||||
Cricket
|
||||
Mosquito
|
||||
Fly, housefly
|
||||
Buzz
|
||||
Bee, wasp, etc.
|
||||
Frog
|
||||
Croak
|
||||
Snake
|
||||
Rattle
|
||||
Whale vocalization
|
||||
Music
|
||||
Musical instrument
|
||||
Plucked string instrument
|
||||
Guitar
|
||||
Electric guitar
|
||||
Bass guitar
|
||||
Acoustic guitar
|
||||
Steel guitar, slide guitar
|
||||
Tapping (guitar technique)
|
||||
Strum
|
||||
Banjo
|
||||
Sitar
|
||||
Mandolin
|
||||
Zither
|
||||
Ukulele
|
||||
Keyboard (musical)
|
||||
Piano
|
||||
Electric piano
|
||||
Organ
|
||||
Electronic organ
|
||||
Hammond organ
|
||||
Synthesizer
|
||||
Sampler
|
||||
Harpsichord
|
||||
Percussion
|
||||
Drum kit
|
||||
Drum machine
|
||||
Drum
|
||||
Snare drum
|
||||
Rimshot
|
||||
Drum roll
|
||||
Bass drum
|
||||
Timpani
|
||||
Tabla
|
||||
Cymbal
|
||||
Hi-hat
|
||||
Wood block
|
||||
Tambourine
|
||||
Rattle (instrument)
|
||||
Maraca
|
||||
Gong
|
||||
Tubular bells
|
||||
Mallet percussion
|
||||
Marimba, xylophone
|
||||
Glockenspiel
|
||||
Vibraphone
|
||||
Steelpan
|
||||
Orchestra
|
||||
Brass instrument
|
||||
French horn
|
||||
Trumpet
|
||||
Trombone
|
||||
Bowed string instrument
|
||||
String section
|
||||
Violin, fiddle
|
||||
Pizzicato
|
||||
Cello
|
||||
Double bass
|
||||
Wind instrument, woodwind instrument
|
||||
Flute
|
||||
Saxophone
|
||||
Clarinet
|
||||
Harp
|
||||
Bell
|
||||
Church bell
|
||||
Jingle bell
|
||||
Bicycle bell
|
||||
Tuning fork
|
||||
Chime
|
||||
Wind chime
|
||||
Change ringing (campanology)
|
||||
Harmonica
|
||||
Accordion
|
||||
Bagpipes
|
||||
Didgeridoo
|
||||
Shofar
|
||||
Theremin
|
||||
Singing bowl
|
||||
Scratching (performance technique)
|
||||
Pop music
|
||||
Hip hop music
|
||||
Beatboxing
|
||||
Rock music
|
||||
Heavy metal
|
||||
Punk rock
|
||||
Grunge
|
||||
Progressive rock
|
||||
Rock and roll
|
||||
Psychedelic rock
|
||||
Rhythm and blues
|
||||
Soul music
|
||||
Reggae
|
||||
Country
|
||||
Swing music
|
||||
Bluegrass
|
||||
Funk
|
||||
Folk music
|
||||
Middle Eastern music
|
||||
Jazz
|
||||
Disco
|
||||
Classical music
|
||||
Opera
|
||||
Electronic music
|
||||
House music
|
||||
Techno
|
||||
Dubstep
|
||||
Drum and bass
|
||||
Electronica
|
||||
Electronic dance music
|
||||
Ambient music
|
||||
Trance music
|
||||
Music of Latin America
|
||||
Salsa music
|
||||
Flamenco
|
||||
Blues
|
||||
Music for children
|
||||
New-age music
|
||||
Vocal music
|
||||
A capella
|
||||
Music of Africa
|
||||
Afrobeat
|
||||
Christian music
|
||||
Gospel music
|
||||
Music of Asia
|
||||
Carnatic music
|
||||
Music of Bollywood
|
||||
Ska
|
||||
Traditional music
|
||||
Independent music
|
||||
Song
|
||||
Background music
|
||||
Theme music
|
||||
Jingle (music)
|
||||
Soundtrack music
|
||||
Lullaby
|
||||
Video game music
|
||||
Christmas music
|
||||
Dance music
|
||||
Wedding music
|
||||
Happy music
|
||||
Funny music
|
||||
Sad music
|
||||
Tender music
|
||||
Exciting music
|
||||
Angry music
|
||||
Scary music
|
||||
Wind
|
||||
Rustling leaves
|
||||
Wind noise (microphone)
|
||||
Thunderstorm
|
||||
Thunder
|
||||
Water
|
||||
Rain
|
||||
Raindrop
|
||||
Rain on surface
|
||||
Stream
|
||||
Waterfall
|
||||
Ocean
|
||||
Waves, surf
|
||||
Steam
|
||||
Gurgling
|
||||
Fire
|
||||
Crackle
|
||||
Vehicle
|
||||
Boat, Water vehicle
|
||||
Sailboat, sailing ship
|
||||
Rowboat, canoe, kayak
|
||||
Motorboat, speedboat
|
||||
Ship
|
||||
Motor vehicle (road)
|
||||
Car
|
||||
Vehicle horn, car horn, honking
|
||||
Toot
|
||||
Car alarm
|
||||
Power windows, electric windows
|
||||
Skidding
|
||||
Tire squeal
|
||||
Car passing by
|
||||
Race car, auto racing
|
||||
Truck
|
||||
Air brake
|
||||
Air horn, truck horn
|
||||
Reversing beeps
|
||||
Ice cream truck, ice cream van
|
||||
Bus
|
||||
Emergency vehicle
|
||||
Police car (siren)
|
||||
Ambulance (siren)
|
||||
Fire engine, fire truck (siren)
|
||||
Motorcycle
|
||||
Traffic noise, roadway noise
|
||||
Rail transport
|
||||
Train
|
||||
Train whistle
|
||||
Train horn
|
||||
Railroad car, train wagon
|
||||
Train wheels squealing
|
||||
Subway, metro, underground
|
||||
Aircraft
|
||||
Aircraft engine
|
||||
Jet engine
|
||||
Propeller, airscrew
|
||||
Helicopter
|
||||
Fixed-wing aircraft, airplane
|
||||
Bicycle
|
||||
Skateboard
|
||||
Engine
|
||||
Light engine (high frequency)
|
||||
Dental drill, dentist's drill
|
||||
Lawn mower
|
||||
Chainsaw
|
||||
Medium engine (mid frequency)
|
||||
Heavy engine (low frequency)
|
||||
Engine knocking
|
||||
Engine starting
|
||||
Idling
|
||||
Accelerating, revving, vroom
|
||||
Door
|
||||
Doorbell
|
||||
Ding-dong
|
||||
Sliding door
|
||||
Slam
|
||||
Knock
|
||||
Tap
|
||||
Squeak
|
||||
Cupboard open or close
|
||||
Drawer open or close
|
||||
Dishes, pots, and pans
|
||||
Cutlery, silverware
|
||||
Chopping (food)
|
||||
Frying (food)
|
||||
Microwave oven
|
||||
Blender
|
||||
Water tap, faucet
|
||||
Sink (filling or washing)
|
||||
Bathtub (filling or washing)
|
||||
Hair dryer
|
||||
Toilet flush
|
||||
Toothbrush
|
||||
Electric toothbrush
|
||||
Vacuum cleaner
|
||||
Zipper (clothing)
|
||||
Keys jangling
|
||||
Coin (dropping)
|
||||
Scissors
|
||||
Electric shaver, electric razor
|
||||
Shuffling cards
|
||||
Typing
|
||||
Typewriter
|
||||
Computer keyboard
|
||||
Writing
|
||||
Alarm
|
||||
Telephone
|
||||
Telephone bell ringing
|
||||
Ringtone
|
||||
Telephone dialing, DTMF
|
||||
Dial tone
|
||||
Busy signal
|
||||
Alarm clock
|
||||
Siren
|
||||
Civil defense siren
|
||||
Buzzer
|
||||
Smoke detector, smoke alarm
|
||||
Fire alarm
|
||||
Foghorn
|
||||
Whistle
|
||||
Steam whistle
|
||||
Mechanisms
|
||||
Ratchet, pawl
|
||||
Clock
|
||||
Tick
|
||||
Tick-tock
|
||||
Gears
|
||||
Pulleys
|
||||
Sewing machine
|
||||
Mechanical fan
|
||||
Air conditioning
|
||||
Cash register
|
||||
Printer
|
||||
Camera
|
||||
Single-lens reflex camera
|
||||
Tools
|
||||
Hammer
|
||||
Jackhammer
|
||||
Sawing
|
||||
Filing (rasp)
|
||||
Sanding
|
||||
Power tool
|
||||
Drill
|
||||
Explosion
|
||||
Gunshot, gunfire
|
||||
Machine gun
|
||||
Fusillade
|
||||
Artillery fire
|
||||
Cap gun
|
||||
Fireworks
|
||||
Firecracker
|
||||
Burst, pop
|
||||
Eruption
|
||||
Boom
|
||||
Wood
|
||||
Chop
|
||||
Splinter
|
||||
Crack
|
||||
Glass
|
||||
Chink, clink
|
||||
Shatter
|
||||
Liquid
|
||||
Splash, splatter
|
||||
Slosh
|
||||
Squish
|
||||
Drip
|
||||
Pour
|
||||
Trickle, dribble
|
||||
Gush
|
||||
Fill (with liquid)
|
||||
Spray
|
||||
Pump (liquid)
|
||||
Stir
|
||||
Boiling
|
||||
Sonar
|
||||
Arrow
|
||||
Whoosh, swoosh, swish
|
||||
Thump, thud
|
||||
Thunk
|
||||
Electronic tuner
|
||||
Effects unit
|
||||
Chorus effect
|
||||
Basketball bounce
|
||||
Bang
|
||||
Slap, smack
|
||||
Whack, thwack
|
||||
Smash, crash
|
||||
Breaking
|
||||
Bouncing
|
||||
Whip
|
||||
Flap
|
||||
Scratch
|
||||
Scrape
|
||||
Rub
|
||||
Roll
|
||||
Crushing
|
||||
Crumpling, crinkling
|
||||
Tearing
|
||||
Beep, bleep
|
||||
Ping
|
||||
Ding
|
||||
Clang
|
||||
Squeal
|
||||
Creak
|
||||
Rustle
|
||||
Whir
|
||||
Clatter
|
||||
Sizzle
|
||||
Clicking
|
||||
Clickety-clack
|
||||
Rumble
|
||||
Plop
|
||||
Jingle, tinkle
|
||||
Hum
|
||||
Zing
|
||||
Boing
|
||||
Crunch
|
||||
Silence
|
||||
Sine wave
|
||||
Harmonic
|
||||
Chirp tone
|
||||
Sound effect
|
||||
Pulse
|
||||
Inside, small room
|
||||
Inside, large room or hall
|
||||
Inside, public space
|
||||
Outside, urban or manmade
|
||||
Outside, rural or natural
|
||||
Reverberation
|
||||
Echo
|
||||
Noise
|
||||
Environmental noise
|
||||
Static
|
||||
Mains hum
|
||||
Distortion
|
||||
Sidetone
|
||||
Cacophony
|
||||
White noise
|
||||
Pink noise
|
||||
Throbbing
|
||||
Vibration
|
||||
Television
|
||||
Radio
|
||||
Field recording
|
@ -0,0 +1,112 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
|
||||
from paddleaudio.backends import load as load_audio
|
||||
from paddleaudio.features import melspectrogram
|
||||
from paddleaudio.models.panns import cnn14
|
||||
from paddleaudio.utils import logger
|
||||
|
||||
# yapf: disable
|
||||
parser = argparse.ArgumentParser(__doc__)
|
||||
parser.add_argument('--device', choices=['cpu', 'gpu'], default='gpu', help='Select which device to predict, defaults to gpu.')
|
||||
parser.add_argument('--wav', type=str, required=True, help='Audio file to infer.')
|
||||
parser.add_argument('--sample_duration', type=float, default=2.0, help='Duration(in seconds) of tagging samples to predict.')
|
||||
parser.add_argument('--hop_duration', type=float, default=0.3, help='Duration(in seconds) between two samples.')
|
||||
parser.add_argument('--output_dir', type=str, default='./output_dir', help='Directory to save tagging result.')
|
||||
args = parser.parse_args()
|
||||
# yapf: enable
|
||||
|
||||
|
||||
def split(waveform: np.ndarray, win_size: int, hop_size: int):
|
||||
"""
|
||||
Split into N waveforms.
|
||||
N is decided by win_size and hop_size.
|
||||
"""
|
||||
assert isinstance(waveform, np.ndarray)
|
||||
time = []
|
||||
data = []
|
||||
for i in range(0, len(waveform), hop_size):
|
||||
segment = waveform[i:i + win_size]
|
||||
if len(segment) < win_size:
|
||||
segment = np.pad(segment, (0, win_size - len(segment)))
|
||||
data.append(segment)
|
||||
time.append(i / len(waveform))
|
||||
return time, data
|
||||
|
||||
|
||||
def batchify(data: List[List[float]],
|
||||
sample_rate: int,
|
||||
batch_size: int,
|
||||
**kwargs):
|
||||
"""
|
||||
Extract features from waveforms and create batches.
|
||||
"""
|
||||
examples = []
|
||||
for waveform in data:
|
||||
feats = melspectrogram(waveform, sample_rate, **kwargs).transpose()
|
||||
examples.append(feats)
|
||||
|
||||
# Seperates data into some batches.
|
||||
one_batch = []
|
||||
for example in examples:
|
||||
one_batch.append(example)
|
||||
if len(one_batch) == batch_size:
|
||||
yield one_batch
|
||||
one_batch = []
|
||||
if one_batch:
|
||||
yield one_batch
|
||||
|
||||
|
||||
def predict(model, data: List[List[float]], sample_rate: int,
|
||||
batch_size: int=1):
|
||||
"""
|
||||
Use pretrained model to make predictions.
|
||||
"""
|
||||
batches = batchify(data, sample_rate, batch_size)
|
||||
results = None
|
||||
model.eval()
|
||||
for batch in batches:
|
||||
feats = paddle.to_tensor(batch).unsqueeze(1) \
|
||||
# (batch_size, num_frames, num_melbins) -> (batch_size, 1, num_frames, num_melbins)
|
||||
|
||||
audioset_scores = model(feats)
|
||||
if results is None:
|
||||
results = audioset_scores.numpy()
|
||||
else:
|
||||
results = np.concatenate((results, audioset_scores.numpy()))
|
||||
|
||||
return results
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
paddle.set_device(args.device)
|
||||
model = cnn14(pretrained=True, extract_embedding=False)
|
||||
waveform, sr = load_audio(args.wav, sr=None)
|
||||
time, data = split(waveform,
|
||||
int(args.sample_duration * sr),
|
||||
int(args.hop_duration * sr))
|
||||
results = predict(model, data, sr, batch_size=8)
|
||||
|
||||
if not os.path.exists(args.output_dir):
|
||||
os.makedirs(args.output_dir)
|
||||
time = np.arange(0, 1, int(args.hop_duration * sr) / len(waveform))
|
||||
output_file = os.path.join(args.output_dir, f'audioset_tagging_sr_{sr}.npz')
|
||||
np.savez(output_file, time=time, scores=results)
|
||||
logger.info(f'Saved tagging results to {output_file}')
|
@ -0,0 +1,84 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import ast
|
||||
import os
|
||||
from typing import Dict
|
||||
|
||||
import numpy as np
|
||||
|
||||
from paddleaudio.utils import logger
|
||||
|
||||
# yapf: disable
|
||||
parser = argparse.ArgumentParser(__doc__)
|
||||
parser.add_argument('--tagging_file', type=str, required=True, help='')
|
||||
parser.add_argument('--top_k', type=int, default=10, help='Get top k predicted results of audioset labels.')
|
||||
parser.add_argument('--smooth', type=ast.literal_eval, default=True, help='Set "True" to apply posterior smoothing.')
|
||||
parser.add_argument('--smooth_size', type=int, default=5, help='Window size of posterior smoothing.')
|
||||
parser.add_argument('--label_file', type=str, default='./assets/audioset_labels.txt', help='File of audioset labels.')
|
||||
parser.add_argument('--output_dir', type=str, default='./output_dir', help='Directory to save tagging labels.')
|
||||
args = parser.parse_args()
|
||||
# yapf: enable
|
||||
|
||||
|
||||
def smooth(results: np.ndarray, win_size: int):
|
||||
"""
|
||||
Execute posterior smoothing in-place.
|
||||
"""
|
||||
for i in range(len(results) - 1, -1, -1):
|
||||
if i < win_size - 1:
|
||||
left = 0
|
||||
else:
|
||||
left = i + 1 - win_size
|
||||
results[i] = np.sum(results[left:i + 1], axis=0) / (i - left + 1)
|
||||
|
||||
|
||||
def generate_topk_label(k: int, label_map: Dict, result: np.ndarray):
|
||||
"""
|
||||
Return top k result.
|
||||
"""
|
||||
result = np.asarray(result)
|
||||
topk_idx = (-result).argsort()[:k]
|
||||
|
||||
ret = ''
|
||||
for idx in topk_idx:
|
||||
label, score = label_map[idx], result[idx]
|
||||
ret += f'{label}: {score}\n'
|
||||
return ret
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
label_map = {}
|
||||
with open(args.label_file, 'r') as f:
|
||||
for i, l in enumerate(f.readlines()):
|
||||
label_map[i] = l.strip()
|
||||
|
||||
results = np.load(args.tagging_file, allow_pickle=True)
|
||||
times, scores = results['time'], results['scores']
|
||||
|
||||
if args.smooth:
|
||||
logger.info('Posterior smoothing...')
|
||||
smooth(scores, win_size=args.smooth_size)
|
||||
|
||||
if not os.path.exists(args.output_dir):
|
||||
os.makedirs(args.output_dir)
|
||||
output_file = os.path.join(
|
||||
args.output_dir,
|
||||
os.path.basename(args.tagging_file).split('.')[0] + '.txt')
|
||||
with open(output_file, 'w') as f:
|
||||
for time, score in zip(times, scores):
|
||||
f.write(f'{time}\n')
|
||||
f.write(generate_topk_label(args.top_k, label_map, score) + '\n')
|
||||
|
||||
logger.info(f'Saved tagging labels to {output_file}')
|
@ -0,0 +1,147 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
from paddle import inference
|
||||
from scipy.special import softmax
|
||||
|
||||
from paddleaudio.backends import load as load_audio
|
||||
from paddleaudio.datasets import ESC50
|
||||
from paddleaudio.features import melspectrogram
|
||||
|
||||
# yapf: disable
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model_dir", type=str, required=True, default="./export", help="The directory to static model.")
|
||||
parser.add_argument("--batch_size", type=int, default=2, help="Batch size per GPU/CPU for training.")
|
||||
parser.add_argument('--device', choices=['cpu', 'gpu', 'xpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
|
||||
parser.add_argument('--use_tensorrt', type=eval, default=False, choices=[True, False], help='Enable to use tensorrt to speed up.')
|
||||
parser.add_argument("--precision", type=str, default="fp32", choices=["fp32", "fp16"], help='The tensorrt precision.')
|
||||
parser.add_argument('--cpu_threads', type=int, default=10, help='Number of threads to predict when using cpu.')
|
||||
parser.add_argument('--enable_mkldnn', type=eval, default=False, choices=[True, False], help='Enable to use mkldnn to speed up when using cpu.')
|
||||
parser.add_argument("--log_dir", type=str, default="./log", help="The path to save log.")
|
||||
args = parser.parse_args()
|
||||
# yapf: enable
|
||||
|
||||
|
||||
def extract_features(files: str, **kwargs):
|
||||
waveforms = []
|
||||
srs = []
|
||||
max_length = float('-inf')
|
||||
for file in files:
|
||||
waveform, sr = load_audio(file, sr=None)
|
||||
max_length = max(max_length, len(waveform))
|
||||
waveforms.append(waveform)
|
||||
srs.append(sr)
|
||||
|
||||
feats = []
|
||||
for i in range(len(waveforms)):
|
||||
# padding
|
||||
if len(waveforms[i]) < max_length:
|
||||
pad_width = max_length - len(waveforms[i])
|
||||
waveforms[i] = np.pad(waveforms[i], pad_width=(0, pad_width))
|
||||
|
||||
feat = melspectrogram(waveforms[i], sr, **kwargs).transpose()
|
||||
feats.append(feat)
|
||||
|
||||
return np.stack(feats, axis=0)
|
||||
|
||||
|
||||
class Predictor(object):
|
||||
def __init__(self,
|
||||
model_dir,
|
||||
device="gpu",
|
||||
batch_size=1,
|
||||
use_tensorrt=False,
|
||||
precision="fp32",
|
||||
cpu_threads=10,
|
||||
enable_mkldnn=False):
|
||||
self.batch_size = batch_size
|
||||
|
||||
model_file = os.path.join(model_dir, "inference.pdmodel")
|
||||
params_file = os.path.join(model_dir, "inference.pdiparams")
|
||||
|
||||
assert os.path.isfile(model_file) and os.path.isfile(
|
||||
params_file), 'Please check model and parameter files.'
|
||||
|
||||
config = inference.Config(model_file, params_file)
|
||||
if device == "gpu":
|
||||
# set GPU configs accordingly
|
||||
# such as intialize the gpu memory, enable tensorrt
|
||||
config.enable_use_gpu(100, 0)
|
||||
precision_map = {
|
||||
"fp16": inference.PrecisionType.Half,
|
||||
"fp32": inference.PrecisionType.Float32,
|
||||
}
|
||||
precision_mode = precision_map[precision]
|
||||
|
||||
if use_tensorrt:
|
||||
config.enable_tensorrt_engine(
|
||||
max_batch_size=batch_size,
|
||||
min_subgraph_size=30,
|
||||
precision_mode=precision_mode)
|
||||
elif device == "cpu":
|
||||
# set CPU configs accordingly,
|
||||
# such as enable_mkldnn, set_cpu_math_library_num_threads
|
||||
config.disable_gpu()
|
||||
if enable_mkldnn:
|
||||
# cache 10 different shapes for mkldnn to avoid memory leak
|
||||
config.set_mkldnn_cache_capacity(10)
|
||||
config.enable_mkldnn()
|
||||
config.set_cpu_math_library_num_threads(cpu_threads)
|
||||
elif device == "xpu":
|
||||
# set XPU configs accordingly
|
||||
config.enable_xpu(100)
|
||||
|
||||
config.switch_use_feed_fetch_ops(False)
|
||||
self.predictor = inference.create_predictor(config)
|
||||
self.input_handles = [
|
||||
self.predictor.get_input_handle(name)
|
||||
for name in self.predictor.get_input_names()
|
||||
]
|
||||
self.output_handle = self.predictor.get_output_handle(
|
||||
self.predictor.get_output_names()[0])
|
||||
|
||||
def predict(self, wavs):
|
||||
feats = extract_features(wavs)
|
||||
|
||||
self.input_handles[0].copy_from_cpu(feats)
|
||||
self.predictor.run()
|
||||
logits = self.output_handle.copy_to_cpu()
|
||||
probs = softmax(logits, axis=1)
|
||||
indices = np.argmax(probs, axis=1)
|
||||
|
||||
return indices
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
# Define predictor to do prediction.
|
||||
predictor = Predictor(args.model_dir, args.device, args.batch_size,
|
||||
args.use_tensorrt, args.precision, args.cpu_threads,
|
||||
args.enable_mkldnn)
|
||||
|
||||
wavs = [
|
||||
'~/audio_demo_resource/cat.wav',
|
||||
'~/audio_demo_resource/dog.wav',
|
||||
]
|
||||
|
||||
for i in range(len(wavs)):
|
||||
wavs[i] = os.path.abspath(os.path.expanduser(wavs[i]))
|
||||
assert os.path.isfile(
|
||||
wavs[i]), f'Please check input wave file: {wavs[i]}'
|
||||
|
||||
results = predictor.predict(wavs)
|
||||
for idx, wav in enumerate(wavs):
|
||||
print(f'Wav: {wav} \t Label: {ESC50.label_list[results[idx]]}')
|
@ -0,0 +1,45 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import paddle
|
||||
from model import SoundClassifier
|
||||
|
||||
from paddleaudio.datasets import ESC50
|
||||
from paddleaudio.models.panns import cnn14
|
||||
|
||||
# yapf: disable
|
||||
parser = argparse.ArgumentParser(__doc__)
|
||||
parser.add_argument("--checkpoint", type=str, required=True, help="Checkpoint of model.")
|
||||
parser.add_argument("--output_dir", type=str, default='./export', help="Path to save static model and its parameters.")
|
||||
args = parser.parse_args()
|
||||
# yapf: enable
|
||||
|
||||
if __name__ == '__main__':
|
||||
model = SoundClassifier(
|
||||
backbone=cnn14(pretrained=False, extract_embedding=True),
|
||||
num_class=len(ESC50.label_list))
|
||||
model.set_state_dict(paddle.load(args.checkpoint))
|
||||
model.eval()
|
||||
|
||||
model = paddle.jit.to_static(
|
||||
model,
|
||||
input_spec=[
|
||||
paddle.static.InputSpec(
|
||||
shape=[None, None, 64], dtype=paddle.float32)
|
||||
])
|
||||
|
||||
# Save in static graph model.
|
||||
paddle.jit.save(model, os.path.join(args.output_dir, "inference"))
|
@ -0,0 +1,36 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import paddle.nn as nn
|
||||
|
||||
|
||||
class SoundClassifier(nn.Layer):
|
||||
"""
|
||||
Model for sound classification which uses panns pretrained models to extract
|
||||
embeddings from audio files.
|
||||
"""
|
||||
|
||||
def __init__(self, backbone, num_class, dropout=0.1):
|
||||
super(SoundClassifier, self).__init__()
|
||||
self.backbone = backbone
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.fc = nn.Linear(self.backbone.emb_size, num_class)
|
||||
|
||||
def forward(self, x):
|
||||
# x: (batch_size, num_frames, num_melbins) -> (batch_size, 1, num_frames, num_melbins)
|
||||
x = x.unsqueeze(1)
|
||||
x = self.backbone(x)
|
||||
x = self.dropout(x)
|
||||
logits = self.fc(x)
|
||||
|
||||
return logits
|
@ -0,0 +1,61 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
import paddle.nn.functional as F
|
||||
from model import SoundClassifier
|
||||
|
||||
from paddleaudio.backends import load as load_audio
|
||||
from paddleaudio.datasets import ESC50
|
||||
from paddleaudio.features import melspectrogram
|
||||
from paddleaudio.models.panns import cnn14
|
||||
|
||||
# yapf: disable
|
||||
parser = argparse.ArgumentParser(__doc__)
|
||||
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to predict, defaults to gpu.")
|
||||
parser.add_argument("--wav", type=str, required=True, help="Audio file to infer.")
|
||||
parser.add_argument("--top_k", type=int, default=1, help="Show top k predicted results")
|
||||
parser.add_argument("--checkpoint", type=str, required=True, help="Checkpoint of model.")
|
||||
args = parser.parse_args()
|
||||
# yapf: enable
|
||||
|
||||
|
||||
def extract_features(file: str, **kwargs):
|
||||
waveform, sr = load_audio(file, sr=None)
|
||||
feat = melspectrogram(waveform, sr, **kwargs).transpose()
|
||||
return feat
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
paddle.set_device(args.device)
|
||||
|
||||
model = SoundClassifier(
|
||||
backbone=cnn14(pretrained=False, extract_embedding=True),
|
||||
num_class=len(ESC50.label_list))
|
||||
model.set_state_dict(paddle.load(args.checkpoint))
|
||||
model.eval()
|
||||
|
||||
feat = np.expand_dims(extract_features(args.wav), 0)
|
||||
feat = paddle.to_tensor(feat)
|
||||
logits = model(feat)
|
||||
probs = F.softmax(logits, axis=1).numpy()
|
||||
|
||||
sorted_indices = (-probs[0]).argsort()
|
||||
|
||||
msg = f'[{args.wav}]\n'
|
||||
for idx in sorted_indices[:args.top_k]:
|
||||
msg += f'{ESC50.label_list[idx]}: {probs[0][idx]}\n'
|
||||
print(msg)
|
@ -0,0 +1,149 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import argparse
|
||||
import os
|
||||
|
||||
import paddle
|
||||
from model import SoundClassifier
|
||||
|
||||
from paddleaudio.datasets import ESC50
|
||||
from paddleaudio.models.panns import cnn14
|
||||
from paddleaudio.utils import logger
|
||||
from paddleaudio.utils import Timer
|
||||
|
||||
# yapf: disable
|
||||
parser = argparse.ArgumentParser(__doc__)
|
||||
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
|
||||
parser.add_argument("--epochs", type=int, default=50, help="Number of epoches for fine-tuning.")
|
||||
parser.add_argument("--learning_rate", type=float, default=5e-5, help="Learning rate used to train with warmup.")
|
||||
parser.add_argument("--batch_size", type=int, default=16, help="Total examples' number in batch for training.")
|
||||
parser.add_argument("--num_workers", type=int, default=0, help="Number of workers in dataloader.")
|
||||
parser.add_argument("--checkpoint_dir", type=str, default='./checkpoint', help="Directory to save model checkpoints.")
|
||||
parser.add_argument("--save_freq", type=int, default=10, help="Save checkpoint every n epoch.")
|
||||
parser.add_argument("--log_freq", type=int, default=10, help="Log the training infomation every n steps.")
|
||||
args = parser.parse_args()
|
||||
# yapf: enable
|
||||
|
||||
if __name__ == "__main__":
|
||||
paddle.set_device(args.device)
|
||||
nranks = paddle.distributed.get_world_size()
|
||||
if paddle.distributed.get_world_size() > 1:
|
||||
paddle.distributed.init_parallel_env()
|
||||
local_rank = paddle.distributed.get_rank()
|
||||
|
||||
backbone = cnn14(pretrained=True, extract_embedding=True)
|
||||
model = SoundClassifier(backbone, num_class=len(ESC50.label_list))
|
||||
model = paddle.DataParallel(model)
|
||||
optimizer = paddle.optimizer.Adam(
|
||||
learning_rate=args.learning_rate, parameters=model.parameters())
|
||||
criterion = paddle.nn.loss.CrossEntropyLoss()
|
||||
|
||||
train_ds = ESC50(mode='train', feat_type='melspectrogram')
|
||||
dev_ds = ESC50(mode='dev', feat_type='melspectrogram')
|
||||
|
||||
train_sampler = paddle.io.DistributedBatchSampler(
|
||||
train_ds, batch_size=args.batch_size, shuffle=True, drop_last=False)
|
||||
train_loader = paddle.io.DataLoader(
|
||||
train_ds,
|
||||
batch_sampler=train_sampler,
|
||||
num_workers=args.num_workers,
|
||||
return_list=True,
|
||||
use_buffer_reader=True, )
|
||||
|
||||
steps_per_epoch = len(train_sampler)
|
||||
timer = Timer(steps_per_epoch * args.epochs)
|
||||
timer.start()
|
||||
|
||||
for epoch in range(1, args.epochs + 1):
|
||||
model.train()
|
||||
|
||||
avg_loss = 0
|
||||
num_corrects = 0
|
||||
num_samples = 0
|
||||
for batch_idx, batch in enumerate(train_loader):
|
||||
feats, labels = batch
|
||||
logits = model(feats)
|
||||
|
||||
loss = criterion(logits, labels)
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if isinstance(optimizer._learning_rate,
|
||||
paddle.optimizer.lr.LRScheduler):
|
||||
optimizer._learning_rate.step()
|
||||
optimizer.clear_grad()
|
||||
|
||||
# Calculate loss
|
||||
avg_loss += loss.numpy()[0]
|
||||
|
||||
# Calculate metrics
|
||||
preds = paddle.argmax(logits, axis=1)
|
||||
num_corrects += (preds == labels).numpy().sum()
|
||||
num_samples += feats.shape[0]
|
||||
|
||||
timer.count()
|
||||
|
||||
if (batch_idx + 1) % args.log_freq == 0 and local_rank == 0:
|
||||
lr = optimizer.get_lr()
|
||||
avg_loss /= args.log_freq
|
||||
avg_acc = num_corrects / num_samples
|
||||
|
||||
print_msg = 'Epoch={}/{}, Step={}/{}'.format(
|
||||
epoch, args.epochs, batch_idx + 1, steps_per_epoch)
|
||||
print_msg += ' loss={:.4f}'.format(avg_loss)
|
||||
print_msg += ' acc={:.4f}'.format(avg_acc)
|
||||
print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format(
|
||||
lr, timer.timing, timer.eta)
|
||||
logger.train(print_msg)
|
||||
|
||||
avg_loss = 0
|
||||
num_corrects = 0
|
||||
num_samples = 0
|
||||
|
||||
if epoch % args.save_freq == 0 and batch_idx + 1 == steps_per_epoch and local_rank == 0:
|
||||
dev_sampler = paddle.io.BatchSampler(
|
||||
dev_ds,
|
||||
batch_size=args.batch_size,
|
||||
shuffle=False,
|
||||
drop_last=False)
|
||||
dev_loader = paddle.io.DataLoader(
|
||||
dev_ds,
|
||||
batch_sampler=dev_sampler,
|
||||
num_workers=args.num_workers,
|
||||
return_list=True, )
|
||||
|
||||
model.eval()
|
||||
num_corrects = 0
|
||||
num_samples = 0
|
||||
with logger.processing('Evaluation on validation dataset'):
|
||||
for batch_idx, batch in enumerate(dev_loader):
|
||||
feats, labels = batch
|
||||
logits = model(feats)
|
||||
|
||||
preds = paddle.argmax(logits, axis=1)
|
||||
num_corrects += (preds == labels).numpy().sum()
|
||||
num_samples += feats.shape[0]
|
||||
|
||||
print_msg = '[Evaluation result]'
|
||||
print_msg += ' dev_acc={:.4f}'.format(num_corrects / num_samples)
|
||||
|
||||
logger.eval(print_msg)
|
||||
|
||||
# Save model
|
||||
save_dir = os.path.join(args.checkpoint_dir,
|
||||
'epoch_{}'.format(epoch))
|
||||
logger.info('Saving model checkpoint to {}'.format(save_dir))
|
||||
paddle.save(model.state_dict(),
|
||||
os.path.join(save_dir, 'model.pdparams'))
|
||||
paddle.save(optimizer.state_dict(),
|
||||
os.path.join(save_dir, 'model.pdopt'))
|
@ -0,0 +1,15 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .backends import *
|
||||
from .features import *
|
@ -0,0 +1,14 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .audio import *
|
@ -0,0 +1,303 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import warnings
|
||||
from typing import Optional
|
||||
from typing import Tuple
|
||||
from typing import Union
|
||||
|
||||
import numpy as np
|
||||
import resampy
|
||||
import soundfile as sf
|
||||
from numpy import ndarray as array
|
||||
from scipy.io import wavfile
|
||||
|
||||
from ..utils import ParameterError
|
||||
|
||||
__all__ = [
|
||||
'resample',
|
||||
'to_mono',
|
||||
'depth_convert',
|
||||
'normalize',
|
||||
'save_wav',
|
||||
'load',
|
||||
]
|
||||
NORMALMIZE_TYPES = ['linear', 'gaussian']
|
||||
MERGE_TYPES = ['ch0', 'ch1', 'random', 'average']
|
||||
RESAMPLE_MODES = ['kaiser_best', 'kaiser_fast']
|
||||
EPS = 1e-8
|
||||
|
||||
|
||||
def resample(y: array, src_sr: int, target_sr: int,
|
||||
mode: str='kaiser_fast') -> array:
|
||||
""" Audio resampling
|
||||
|
||||
This function is the same as using resampy.resample().
|
||||
|
||||
Notes:
|
||||
The default mode is kaiser_fast. For better audio quality, use mode = 'kaiser_fast'
|
||||
|
||||
"""
|
||||
|
||||
if mode == 'kaiser_best':
|
||||
warnings.warn(
|
||||
f'Using resampy in kaiser_best to {src_sr}=>{target_sr}. This function is pretty slow, \
|
||||
we recommend the mode kaiser_fast in large scale audio trainning')
|
||||
|
||||
if not isinstance(y, np.ndarray):
|
||||
raise ParameterError(
|
||||
'Only support numpy array, but received y in {type(y)}')
|
||||
|
||||
if mode not in RESAMPLE_MODES:
|
||||
raise ParameterError(f'resample mode must in {RESAMPLE_MODES}')
|
||||
|
||||
return resampy.resample(y, src_sr, target_sr, filter=mode)
|
||||
|
||||
|
||||
def to_mono(y: array, merge_type: str='average') -> array:
|
||||
""" convert sterior audio to mono
|
||||
"""
|
||||
if merge_type not in MERGE_TYPES:
|
||||
raise ParameterError(
|
||||
f'Unsupported merge type {merge_type}, available types are {MERGE_TYPES}'
|
||||
)
|
||||
if y.ndim > 2:
|
||||
raise ParameterError(
|
||||
f'Unsupported audio array, y.ndim > 2, the shape is {y.shape}')
|
||||
if y.ndim == 1: # nothing to merge
|
||||
return y
|
||||
|
||||
if merge_type == 'ch0':
|
||||
return y[0]
|
||||
if merge_type == 'ch1':
|
||||
return y[1]
|
||||
if merge_type == 'random':
|
||||
return y[np.random.randint(0, 2)]
|
||||
|
||||
# need to do averaging according to dtype
|
||||
|
||||
if y.dtype == 'float32':
|
||||
y_out = (y[0] + y[1]) * 0.5
|
||||
elif y.dtype == 'int16':
|
||||
y_out = y.astype('int32')
|
||||
y_out = (y_out[0] + y_out[1]) // 2
|
||||
y_out = np.clip(y_out, np.iinfo(y.dtype).min,
|
||||
np.iinfo(y.dtype).max).astype(y.dtype)
|
||||
|
||||
elif y.dtype == 'int8':
|
||||
y_out = y.astype('int16')
|
||||
y_out = (y_out[0] + y_out[1]) // 2
|
||||
y_out = np.clip(y_out, np.iinfo(y.dtype).min,
|
||||
np.iinfo(y.dtype).max).astype(y.dtype)
|
||||
else:
|
||||
raise ParameterError(f'Unsupported dtype: {y.dtype}')
|
||||
return y_out
|
||||
|
||||
|
||||
def _safe_cast(y: array, dtype: Union[type, str]) -> array:
|
||||
""" data type casting in a safe way, i.e., prevent overflow or underflow
|
||||
|
||||
This function is used internally.
|
||||
"""
|
||||
return np.clip(y, np.iinfo(dtype).min, np.iinfo(dtype).max).astype(dtype)
|
||||
|
||||
|
||||
def depth_convert(y: array, dtype: Union[type, str],
|
||||
dithering: bool=True) -> array:
|
||||
"""Convert audio array to target dtype safely
|
||||
|
||||
This function convert audio waveform to a target dtype, with addition steps of
|
||||
preventing overflow/underflow and preserving audio range.
|
||||
|
||||
"""
|
||||
|
||||
SUPPORT_DTYPE = ['int16', 'int8', 'float32', 'float64']
|
||||
if y.dtype not in SUPPORT_DTYPE:
|
||||
raise ParameterError(
|
||||
'Unsupported audio dtype, '
|
||||
f'y.dtype is {y.dtype}, supported dtypes are {SUPPORT_DTYPE}')
|
||||
|
||||
if dtype not in SUPPORT_DTYPE:
|
||||
raise ParameterError(
|
||||
'Unsupported audio dtype, '
|
||||
f'target dtype is {dtype}, supported dtypes are {SUPPORT_DTYPE}')
|
||||
|
||||
if dtype == y.dtype:
|
||||
return y
|
||||
|
||||
if dtype == 'float64' and y.dtype == 'float32':
|
||||
return _safe_cast(y, dtype)
|
||||
if dtype == 'float32' and y.dtype == 'float64':
|
||||
return _safe_cast(y, dtype)
|
||||
|
||||
if dtype == 'int16' or dtype == 'int8':
|
||||
if y.dtype in ['float64', 'float32']:
|
||||
factor = np.iinfo(dtype).max
|
||||
y = np.clip(y * factor, np.iinfo(dtype).min,
|
||||
np.iinfo(dtype).max).astype(dtype)
|
||||
y = y.astype(dtype)
|
||||
else:
|
||||
if dtype == 'int16' and y.dtype == 'int8':
|
||||
factor = np.iinfo('int16').max / np.iinfo('int8').max - EPS
|
||||
y = y.astype('float32') * factor
|
||||
y = y.astype('int16')
|
||||
|
||||
else: # dtype == 'int8' and y.dtype=='int16':
|
||||
y = y.astype('int32') * np.iinfo('int8').max / \
|
||||
np.iinfo('int16').max
|
||||
y = y.astype('int8')
|
||||
|
||||
if dtype in ['float32', 'float64']:
|
||||
org_dtype = y.dtype
|
||||
y = y.astype(dtype) / np.iinfo(org_dtype).max
|
||||
return y
|
||||
|
||||
|
||||
def sound_file_load(file: str,
|
||||
offset: Optional[float]=None,
|
||||
dtype: str='int16',
|
||||
duration: Optional[int]=None) -> Tuple[array, int]:
|
||||
"""Load audio using soundfile library
|
||||
|
||||
This function load audio file using libsndfile.
|
||||
|
||||
Reference:
|
||||
http://www.mega-nerd.com/libsndfile/#Features
|
||||
|
||||
"""
|
||||
with sf.SoundFile(file) as sf_desc:
|
||||
sr_native = sf_desc.samplerate
|
||||
if offset:
|
||||
sf_desc.seek(int(offset * sr_native))
|
||||
if duration is not None:
|
||||
frame_duration = int(duration * sr_native)
|
||||
else:
|
||||
frame_duration = -1
|
||||
y = sf_desc.read(frames=frame_duration, dtype=dtype, always_2d=False).T
|
||||
|
||||
return y, sf_desc.samplerate
|
||||
|
||||
|
||||
def audio_file_load():
|
||||
"""Load audio using audiofile library
|
||||
|
||||
This function load audio file using audiofile.
|
||||
|
||||
Reference:
|
||||
https://audiofile.68k.org/
|
||||
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
def sox_file_load():
|
||||
"""Load audio using sox library
|
||||
|
||||
This function load audio file using sox.
|
||||
|
||||
Reference:
|
||||
http://sox.sourceforge.net/
|
||||
"""
|
||||
raise NotImplementedError()
|
||||
|
||||
|
||||
def normalize(y: array, norm_type: str='linear',
|
||||
mul_factor: float=1.0) -> array:
|
||||
""" normalize an input audio with additional multiplier.
|
||||
|
||||
"""
|
||||
|
||||
if norm_type == 'linear':
|
||||
amax = np.max(np.abs(y))
|
||||
factor = 1.0 / (amax + EPS)
|
||||
y = y * factor * mul_factor
|
||||
elif norm_type == 'gaussian':
|
||||
amean = np.mean(y)
|
||||
astd = np.std(y)
|
||||
astd = max(astd, EPS)
|
||||
y = mul_factor * (y - amean) / astd
|
||||
else:
|
||||
raise NotImplementedError(f'norm_type should be in {NORMALMIZE_TYPES}')
|
||||
|
||||
return y
|
||||
|
||||
|
||||
def save_wav(y: array, sr: int, file: str) -> None:
|
||||
"""Save audio file to disk.
|
||||
This function saves audio to disk using scipy.io.wavfile, with additional step
|
||||
to convert input waveform to int16 unless it already is int16
|
||||
|
||||
Notes:
|
||||
It only support raw wav format.
|
||||
|
||||
"""
|
||||
if not file.endswith('.wav'):
|
||||
raise ParameterError(
|
||||
f'only .wav file supported, but dst file name is: {file}')
|
||||
|
||||
if sr <= 0:
|
||||
raise ParameterError(
|
||||
f'Sample rate should be larger than 0, recieved sr = {sr}')
|
||||
|
||||
if y.dtype not in ['int16', 'int8']:
|
||||
warnings.warn(
|
||||
f'input data type is {y.dtype}, will convert data to int16 format before saving'
|
||||
)
|
||||
y_out = depth_convert(y, 'int16')
|
||||
else:
|
||||
y_out = y
|
||||
|
||||
wavfile.write(file, sr, y_out)
|
||||
|
||||
|
||||
def load(
|
||||
file: str,
|
||||
sr: Optional[int]=None,
|
||||
mono: bool=True,
|
||||
merge_type: str='average', # ch0,ch1,random,average
|
||||
normal: bool=True,
|
||||
norm_type: str='linear',
|
||||
norm_mul_factor: float=1.0,
|
||||
offset: float=0.0,
|
||||
duration: Optional[int]=None,
|
||||
dtype: str='float32',
|
||||
resample_mode: str='kaiser_fast') -> Tuple[array, int]:
|
||||
"""Load audio file from disk.
|
||||
This function loads audio from disk using using audio beackend.
|
||||
|
||||
Parameters:
|
||||
|
||||
Notes:
|
||||
|
||||
"""
|
||||
|
||||
y, r = sound_file_load(file, offset=offset, dtype=dtype, duration=duration)
|
||||
|
||||
if not ((y.ndim == 1 and len(y) > 0) or (y.ndim == 2 and len(y[0]) > 0)):
|
||||
raise ParameterError(f'audio file {file} looks empty')
|
||||
|
||||
if mono:
|
||||
y = to_mono(y, merge_type)
|
||||
|
||||
if sr is not None and sr != r:
|
||||
y = resample(y, r, sr, mode=resample_mode)
|
||||
r = sr
|
||||
|
||||
if normal:
|
||||
y = normalize(y, norm_type, norm_mul_factor)
|
||||
elif dtype in ['int8', 'int16']:
|
||||
# still need to do normalization, before depth convertion
|
||||
y = normalize(y, 'linear', 1.0)
|
||||
|
||||
y = depth_convert(y, dtype)
|
||||
return y, r
|
@ -0,0 +1,34 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .aishell import AISHELL1
|
||||
from .dcase import UrbanAcousticScenes
|
||||
from .dcase import UrbanAudioVisualScenes
|
||||
from .esc50 import ESC50
|
||||
from .gtzan import GTZAN
|
||||
from .librispeech import LIBRISPEECH
|
||||
from .ravdess import RAVDESS
|
||||
from .tess import TESS
|
||||
from .urban_sound import UrbanSound8K
|
||||
|
||||
__all__ = [
|
||||
'AISHELL1',
|
||||
'LIBRISPEECH',
|
||||
'ESC50',
|
||||
'UrbanSound8K',
|
||||
'GTZAN',
|
||||
'UrbanAcousticScenes',
|
||||
'UrbanAudioVisualScenes',
|
||||
'RAVDESS',
|
||||
'TESS',
|
||||
]
|
@ -0,0 +1,154 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import codecs
|
||||
import collections
|
||||
import json
|
||||
import os
|
||||
from typing import Dict
|
||||
|
||||
from paddle.io import Dataset
|
||||
from tqdm import tqdm
|
||||
|
||||
from ..backends import load as load_audio
|
||||
from ..utils.download import decompress
|
||||
from ..utils.download import download_and_decompress
|
||||
from ..utils.env import DATA_HOME
|
||||
from ..utils.log import logger
|
||||
from .dataset import feat_funcs
|
||||
|
||||
__all__ = ['AISHELL1']
|
||||
|
||||
|
||||
class AISHELL1(Dataset):
|
||||
"""
|
||||
This Open Source Mandarin Speech Corpus, AISHELL-ASR0009-OS1, is 178 hours long.
|
||||
It is a part of AISHELL-ASR0009, of which utterance contains 11 domains, including
|
||||
smart home, autonomous driving, and industrial production. The whole recording was
|
||||
put in quiet indoor environment, using 3 different devices at the same time: high
|
||||
fidelity microphone (44.1kHz, 16-bit,); Android-system mobile phone (16kHz, 16-bit),
|
||||
iOS-system mobile phone (16kHz, 16-bit). Audios in high fidelity were re-sampled
|
||||
to 16kHz to build AISHELL- ASR0009-OS1. 400 speakers from different accent areas
|
||||
in China were invited to participate in the recording. The manual transcription
|
||||
accuracy rate is above 95%, through professional speech annotation and strict
|
||||
quality inspection. The corpus is divided into training, development and testing
|
||||
sets.
|
||||
|
||||
Reference:
|
||||
AISHELL-1: An Open-Source Mandarin Speech Corpus and A Speech Recognition Baseline
|
||||
https://arxiv.org/abs/1709.05522
|
||||
"""
|
||||
|
||||
archieves = [
|
||||
{
|
||||
'url': 'http://www.openslr.org/resources/33/data_aishell.tgz',
|
||||
'md5': '2f494334227864a8a8fec932999db9d8',
|
||||
},
|
||||
]
|
||||
text_meta = os.path.join('data_aishell', 'transcript',
|
||||
'aishell_transcript_v0.8.txt')
|
||||
utt_info = collections.namedtuple('META_INFO',
|
||||
('file_path', 'utt_id', 'text'))
|
||||
audio_path = os.path.join('data_aishell', 'wav')
|
||||
manifest_path = os.path.join('data_aishell', 'manifest')
|
||||
subset = ['train', 'dev', 'test']
|
||||
|
||||
def __init__(self, subset: str='train', feat_type: str='raw', **kwargs):
|
||||
assert subset in self.subset, 'Dataset subset must be one in {}, but got {}'.format(
|
||||
self.subset, subset)
|
||||
self.subset = subset
|
||||
self.feat_type = feat_type
|
||||
self.feat_config = kwargs
|
||||
self._data = self._get_data()
|
||||
super(AISHELL1, self).__init__()
|
||||
|
||||
def _get_text_info(self) -> Dict[str, str]:
|
||||
ret = {}
|
||||
with open(os.path.join(DATA_HOME, self.text_meta), 'r') as rf:
|
||||
for line in rf.readlines()[1:]:
|
||||
utt_id, text = map(str.strip, line.split(' ',
|
||||
1)) # utt_id, text
|
||||
ret.update({utt_id: ''.join(text.split())})
|
||||
return ret
|
||||
|
||||
def _get_data(self):
|
||||
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
|
||||
not os.path.isfile(os.path.join(DATA_HOME, self.text_meta)):
|
||||
download_and_decompress(self.archieves, DATA_HOME)
|
||||
# Extract *wav from *.tar.gz.
|
||||
for root, _, files in os.walk(
|
||||
os.path.join(DATA_HOME, self.audio_path)):
|
||||
for file in files:
|
||||
if file.endswith('.tar.gz'):
|
||||
decompress(os.path.join(root, file))
|
||||
os.remove(os.path.join(root, file))
|
||||
|
||||
text_info = self._get_text_info()
|
||||
|
||||
data = []
|
||||
for root, _, files in os.walk(
|
||||
os.path.join(DATA_HOME, self.audio_path, self.subset)):
|
||||
for file in files:
|
||||
if file.endswith('.wav'):
|
||||
utt_id = os.path.splitext(file)[0]
|
||||
if utt_id not in text_info: # There are some utt_id that without label
|
||||
continue
|
||||
text = text_info[utt_id]
|
||||
file_path = os.path.join(root, file)
|
||||
data.append(self.utt_info(file_path, utt_id, text))
|
||||
|
||||
return data
|
||||
|
||||
def _convert_to_record(self, idx: int):
|
||||
sample = self._data[idx]
|
||||
|
||||
record = {}
|
||||
# To show all fields in a namedtuple: `type(sample)._fields`
|
||||
for field in type(sample)._fields:
|
||||
record[field] = getattr(sample, field)
|
||||
|
||||
waveform, sr = load_audio(
|
||||
sample[0]) # The first element of sample is file path
|
||||
feat_func = feat_funcs[self.feat_type]
|
||||
feat = feat_func(
|
||||
waveform, sample_rate=sr,
|
||||
**self.feat_config) if feat_func else waveform
|
||||
record.update({'feat': feat, 'duration': len(waveform) / sr})
|
||||
return record
|
||||
|
||||
def create_manifest(self, prefix='manifest'):
|
||||
if not os.path.isdir(os.path.join(DATA_HOME, self.manifest_path)):
|
||||
os.makedirs(os.path.join(DATA_HOME, self.manifest_path))
|
||||
|
||||
manifest_file = os.path.join(DATA_HOME, self.manifest_path,
|
||||
f'{prefix}.{self.subset}')
|
||||
with codecs.open(manifest_file, 'w', 'utf-8') as f:
|
||||
for idx in tqdm(range(len(self))):
|
||||
record = self._convert_to_record(idx)
|
||||
record_line = json.dumps(
|
||||
{
|
||||
'utt': record['utt_id'],
|
||||
'feat': record['file_path'],
|
||||
'feat_shape': (record['duration'], ),
|
||||
'text': record['text']
|
||||
},
|
||||
ensure_ascii=False)
|
||||
f.write(record_line + '\n')
|
||||
logger.info(f'Manifest file {manifest_file} created.')
|
||||
|
||||
def __getitem__(self, idx):
|
||||
record = self._convert_to_record(idx)
|
||||
return tuple(record.values())
|
||||
|
||||
def __len__(self):
|
||||
return len(self._data)
|
@ -0,0 +1,82 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import List
|
||||
|
||||
import numpy as np
|
||||
import paddle
|
||||
|
||||
from ..backends import load as load_audio
|
||||
from ..features import melspectrogram
|
||||
from ..features import mfcc
|
||||
|
||||
feat_funcs = {
|
||||
'raw': None,
|
||||
'melspectrogram': melspectrogram,
|
||||
'mfcc': mfcc,
|
||||
}
|
||||
|
||||
|
||||
class AudioClassificationDataset(paddle.io.Dataset):
|
||||
"""
|
||||
Base class of audio classification dataset.
|
||||
"""
|
||||
|
||||
def __init__(self,
|
||||
files: List[str],
|
||||
labels: List[int],
|
||||
feat_type: str='raw',
|
||||
**kwargs):
|
||||
"""
|
||||
Ags:
|
||||
files (:obj:`List[str]`): A list of absolute path of audio files.
|
||||
labels (:obj:`List[int]`): Labels of audio files.
|
||||
feat_type (:obj:`str`, `optional`, defaults to `raw`):
|
||||
It identifies the feature type that user wants to extrace of an audio file.
|
||||
"""
|
||||
super(AudioClassificationDataset, self).__init__()
|
||||
|
||||
if feat_type not in feat_funcs.keys():
|
||||
raise RuntimeError(
|
||||
f"Unknown feat_type: {feat_type}, it must be one in {list(feat_funcs.keys())}"
|
||||
)
|
||||
|
||||
self.files = files
|
||||
self.labels = labels
|
||||
|
||||
self.feat_type = feat_type
|
||||
self.feat_config = kwargs # Pass keyword arguments to customize feature config
|
||||
|
||||
def _get_data(self, input_file: str):
|
||||
raise NotImplementedError
|
||||
|
||||
def _convert_to_record(self, idx):
|
||||
file, label = self.files[idx], self.labels[idx]
|
||||
|
||||
waveform, sample_rate = load_audio(file)
|
||||
feat_func = feat_funcs[self.feat_type]
|
||||
|
||||
record = {}
|
||||
record['feat'] = feat_func(
|
||||
waveform, sample_rate,
|
||||
**self.feat_config) if feat_func else waveform
|
||||
record['label'] = label
|
||||
return record
|
||||
|
||||
def __getitem__(self, idx):
|
||||
record = self._convert_to_record(idx)
|
||||
return np.array(record['feat']).transpose(), np.array(
|
||||
record['label'], dtype=np.int64)
|
||||
|
||||
def __len__(self):
|
||||
return len(self.files)
|
@ -0,0 +1,298 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import collections
|
||||
import os
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
|
||||
from ..utils.download import download_and_decompress
|
||||
from ..utils.env import DATA_HOME
|
||||
from .dataset import AudioClassificationDataset
|
||||
|
||||
__all__ = ['UrbanAcousticScenes', 'UrbanAudioVisualScenes']
|
||||
|
||||
|
||||
class UrbanAcousticScenes(AudioClassificationDataset):
|
||||
"""
|
||||
TAU Urban Acoustic Scenes 2020 Mobile Development dataset contains recordings from
|
||||
12 European cities in 10 different acoustic scenes using 4 different devices.
|
||||
Additionally, synthetic data for 11 mobile devices was created based on the original
|
||||
recordings. Of the 12 cities, two are present only in the evaluation set.
|
||||
|
||||
Reference:
|
||||
A multi-device dataset for urban acoustic scene classification
|
||||
https://arxiv.org/abs/1807.09840
|
||||
"""
|
||||
|
||||
source_url = 'https://zenodo.org/record/3819968/files/'
|
||||
base_name = 'TAU-urban-acoustic-scenes-2020-mobile-development'
|
||||
archieves = [
|
||||
{
|
||||
'url': source_url + base_name + '.meta.zip',
|
||||
'md5': '6eae9db553ce48e4ea246e34e50a3cf5',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.1.zip',
|
||||
'md5': 'b1e85b8a908d3d6a6ab73268f385d5c8',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.2.zip',
|
||||
'md5': '4310a13cc2943d6ce3f70eba7ba4c784',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.3.zip',
|
||||
'md5': 'ed38956c4246abb56190c1e9b602b7b8',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.4.zip',
|
||||
'md5': '97ab8560056b6816808dedc044dcc023',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.5.zip',
|
||||
'md5': 'b50f5e0bfed33cd8e52cb3e7f815c6cb',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.6.zip',
|
||||
'md5': 'fbf856a3a86fff7520549c899dc94372',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.7.zip',
|
||||
'md5': '0dbffe7b6e45564da649378723284062',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.8.zip',
|
||||
'md5': 'bb6f77832bf0bd9f786f965beb251b2e',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.9.zip',
|
||||
'md5': 'a65596a5372eab10c78e08a0de797c9e',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.10.zip',
|
||||
'md5': '2ad595819ffa1d56d2de4c7ed43205a6',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.11.zip',
|
||||
'md5': '0ad29f7040a4e6a22cfd639b3a6738e5',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.12.zip',
|
||||
'md5': 'e5f4400c6b9697295fab4cf507155a2f',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.13.zip',
|
||||
'md5': '8855ab9f9896422746ab4c5d89d8da2f',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.14.zip',
|
||||
'md5': '092ad744452cd3e7de78f988a3d13020',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.15.zip',
|
||||
'md5': '4b5eb85f6592aebf846088d9df76b420',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.16.zip',
|
||||
'md5': '2e0a89723e58a3836be019e6996ae460',
|
||||
},
|
||||
]
|
||||
label_list = [
|
||||
'airport', 'shopping_mall', 'metro_station', 'street_pedestrian',
|
||||
'public_square', 'street_traffic', 'tram', 'bus', 'metro', 'park'
|
||||
]
|
||||
|
||||
meta = os.path.join(base_name, 'meta.csv')
|
||||
meta_info = collections.namedtuple('META_INFO', (
|
||||
'filename', 'scene_label', 'identifier', 'source_label'))
|
||||
subset_meta = {
|
||||
'train': os.path.join(base_name, 'evaluation_setup', 'fold1_train.csv'),
|
||||
'dev':
|
||||
os.path.join(base_name, 'evaluation_setup', 'fold1_evaluate.csv'),
|
||||
'test': os.path.join(base_name, 'evaluation_setup', 'fold1_test.csv'),
|
||||
}
|
||||
subset_meta_info = collections.namedtuple('SUBSET_META_INFO',
|
||||
('filename', 'scene_label'))
|
||||
audio_path = os.path.join(base_name, 'audio')
|
||||
|
||||
def __init__(self, mode: str='train', feat_type: str='raw', **kwargs):
|
||||
"""
|
||||
Ags:
|
||||
mode (:obj:`str`, `optional`, defaults to `train`):
|
||||
It identifies the dataset mode (train or dev).
|
||||
feat_type (:obj:`str`, `optional`, defaults to `raw`):
|
||||
It identifies the feature type that user wants to extrace of an audio file.
|
||||
"""
|
||||
files, labels = self._get_data(mode)
|
||||
super(UrbanAcousticScenes, self).__init__(
|
||||
files=files, labels=labels, feat_type=feat_type, **kwargs)
|
||||
|
||||
def _get_meta_info(self, subset: str=None,
|
||||
skip_header: bool=True) -> List[collections.namedtuple]:
|
||||
if subset is None:
|
||||
meta_file = self.meta
|
||||
meta_info = self.meta_info
|
||||
else:
|
||||
assert subset in self.subset_meta, f'Subset must be one in {list(self.subset_meta.keys())}, but got {subset}.'
|
||||
meta_file = self.subset_meta[subset]
|
||||
meta_info = self.subset_meta_info
|
||||
|
||||
ret = []
|
||||
with open(os.path.join(DATA_HOME, meta_file), 'r') as rf:
|
||||
lines = rf.readlines()[1:] if skip_header else rf.readlines()
|
||||
for line in lines:
|
||||
ret.append(meta_info(*line.strip().split('\t')))
|
||||
return ret
|
||||
|
||||
def _get_data(self, mode: str) -> Tuple[List[str], List[int]]:
|
||||
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
|
||||
not os.path.isfile(os.path.join(DATA_HOME, self.meta)):
|
||||
download_and_decompress(self.archieves, DATA_HOME)
|
||||
|
||||
meta_info = self._get_meta_info(subset=mode, skip_header=True)
|
||||
|
||||
files = []
|
||||
labels = []
|
||||
for sample in meta_info:
|
||||
filename, label = sample[:2]
|
||||
filename = os.path.basename(filename)
|
||||
target = self.label_list.index(label)
|
||||
|
||||
files.append(os.path.join(DATA_HOME, self.audio_path, filename))
|
||||
labels.append(int(target))
|
||||
|
||||
return files, labels
|
||||
|
||||
|
||||
class UrbanAudioVisualScenes(AudioClassificationDataset):
|
||||
"""
|
||||
TAU Urban Audio Visual Scenes 2021 Development dataset contains synchronized audio
|
||||
and video recordings from 12 European cities in 10 different scenes.
|
||||
This dataset consists of 10-seconds audio and video segments from 10
|
||||
acoustic scenes. The total amount of audio in the development set is 34 hours.
|
||||
|
||||
Reference:
|
||||
A Curated Dataset of Urban Scenes for Audio-Visual Scene Analysis
|
||||
https://arxiv.org/abs/2011.00030
|
||||
"""
|
||||
|
||||
source_url = 'https://zenodo.org/record/4477542/files/'
|
||||
base_name = 'TAU-urban-audio-visual-scenes-2021-development'
|
||||
|
||||
archieves = [
|
||||
{
|
||||
'url': source_url + base_name + '.meta.zip',
|
||||
'md5': '76e3d7ed5291b118372e06379cb2b490',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.1.zip',
|
||||
'md5': '186f6273f8f69ed9dbdc18ad65ac234f',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.2.zip',
|
||||
'md5': '7fd6bb63127f5785874a55aba4e77aa5',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.3.zip',
|
||||
'md5': '61396bede29d7c8c89729a01a6f6b2e2',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.4.zip',
|
||||
'md5': '6ddac89717fcf9c92c451868eed77fe1',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.5.zip',
|
||||
'md5': 'af4820756cdf1a7d4bd6037dc034d384',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.6.zip',
|
||||
'md5': 'ebd11ec24411f2a17a64723bd4aa7fff',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.7.zip',
|
||||
'md5': '2be39a76aeed704d5929d020a2909efd',
|
||||
},
|
||||
{
|
||||
'url': source_url + base_name + '.audio.8.zip',
|
||||
'md5': '972d8afe0874720fc2f28086e7cb22a9',
|
||||
},
|
||||
]
|
||||
label_list = [
|
||||
'airport', 'shopping_mall', 'metro_station', 'street_pedestrian',
|
||||
'public_square', 'street_traffic', 'tram', 'bus', 'metro', 'park'
|
||||
]
|
||||
|
||||
meta_base_path = os.path.join(base_name, base_name + '.meta')
|
||||
meta = os.path.join(meta_base_path, 'meta.csv')
|
||||
meta_info = collections.namedtuple('META_INFO', (
|
||||
'filename_audio', 'filename_video', 'scene_label', 'identifier'))
|
||||
subset_meta = {
|
||||
'train':
|
||||
os.path.join(meta_base_path, 'evaluation_setup', 'fold1_train.csv'),
|
||||
'dev':
|
||||
os.path.join(meta_base_path, 'evaluation_setup', 'fold1_evaluate.csv'),
|
||||
'test':
|
||||
os.path.join(meta_base_path, 'evaluation_setup', 'fold1_test.csv'),
|
||||
}
|
||||
subset_meta_info = collections.namedtuple('SUBSET_META_INFO', (
|
||||
'filename_audio', 'filename_video', 'scene_label'))
|
||||
audio_path = os.path.join(base_name, 'audio')
|
||||
|
||||
def __init__(self, mode: str='train', feat_type: str='raw', **kwargs):
|
||||
"""
|
||||
Ags:
|
||||
mode (:obj:`str`, `optional`, defaults to `train`):
|
||||
It identifies the dataset mode (train or dev).
|
||||
feat_type (:obj:`str`, `optional`, defaults to `raw`):
|
||||
It identifies the feature type that user wants to extrace of an audio file.
|
||||
"""
|
||||
files, labels = self._get_data(mode)
|
||||
super(UrbanAudioVisualScenes, self).__init__(
|
||||
files=files, labels=labels, feat_type=feat_type, **kwargs)
|
||||
|
||||
def _get_meta_info(self, subset: str=None,
|
||||
skip_header: bool=True) -> List[collections.namedtuple]:
|
||||
if subset is None:
|
||||
meta_file = self.meta
|
||||
meta_info = self.meta_info
|
||||
else:
|
||||
assert subset in self.subset_meta, f'Subset must be one in {list(self.subset_meta.keys())}, but got {subset}.'
|
||||
meta_file = self.subset_meta[subset]
|
||||
meta_info = self.subset_meta_info
|
||||
|
||||
ret = []
|
||||
with open(os.path.join(DATA_HOME, meta_file), 'r') as rf:
|
||||
lines = rf.readlines()[1:] if skip_header else rf.readlines()
|
||||
for line in lines:
|
||||
ret.append(meta_info(*line.strip().split('\t')))
|
||||
return ret
|
||||
|
||||
def _get_data(self, mode: str) -> Tuple[List[str], List[int]]:
|
||||
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
|
||||
not os.path.isfile(os.path.join(DATA_HOME, self.meta)):
|
||||
download_and_decompress(self.archieves,
|
||||
os.path.join(DATA_HOME, self.base_name))
|
||||
|
||||
meta_info = self._get_meta_info(subset=mode, skip_header=True)
|
||||
|
||||
files = []
|
||||
labels = []
|
||||
for sample in meta_info:
|
||||
filename, _, label = sample[:3]
|
||||
filename = os.path.basename(filename)
|
||||
target = self.label_list.index(label)
|
||||
|
||||
files.append(os.path.join(DATA_HOME, self.audio_path, filename))
|
||||
labels.append(int(target))
|
||||
|
||||
return files, labels
|
@ -0,0 +1,152 @@
|
||||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import collections
|
||||
import os
|
||||
from typing import List
|
||||
from typing import Tuple
|
||||
|
||||
from ..utils.download import download_and_decompress
|
||||
from ..utils.env import DATA_HOME
|
||||
from .dataset import AudioClassificationDataset
|
||||
|
||||
__all__ = ['ESC50']
|
||||
|
||||
|
||||
class ESC50(AudioClassificationDataset):
|
||||
"""
|
||||
The ESC-50 dataset is a labeled collection of 2000 environmental audio recordings
|
||||
suitable for benchmarking methods of environmental sound classification. The dataset
|
||||
consists of 5-second-long recordings organized into 50 semantical classes (with
|
||||
40 examples per class)
|
||||
|
||||
Reference:
|
||||
ESC: Dataset for Environmental Sound Classification
|
||||
http://dx.doi.org/10.1145/2733373.2806390
|
||||
"""
|
||||
|
||||
archieves = [
|
||||
{
|
||||
'url':
|
||||
'https://paddleaudio.bj.bcebos.com/datasets/ESC-50-master.zip',
|
||||
'md5': '7771e4b9d86d0945acce719c7a59305a',
|
||||
},
|
||||
]
|
||||
label_list = [
|
||||
# Animals
|
||||
'Dog',
|
||||
'Rooster',
|
||||
'Pig',
|
||||
'Cow',
|
||||
'Frog',
|
||||
'Cat',
|
||||
'Hen',
|
||||
'Insects (flying)',
|
||||
'Sheep',
|
||||
'Crow',
|
||||
# Natural soundscapes & water sounds
|
||||
'Rain',
|
||||
'Sea waves',
|
||||
'Crackling fire',
|
||||
'Crickets',
|
||||
'Chirping birds',
|
||||
'Water drops',
|
||||
'Wind',
|
||||
'Pouring water',
|
||||
'Toilet flush',
|
||||
'Thunderstorm',
|
||||
# Human, non-speech sounds
|
||||
'Crying baby',
|
||||
'Sneezing',
|
||||
'Clapping',
|
||||
'Breathing',
|
||||
'Coughing',
|
||||
'Footsteps',
|
||||
'Laughing',
|
||||
'Brushing teeth',
|
||||
'Snoring',
|
||||
'Drinking, sipping',
|
||||
# Interior/domestic sounds
|
||||
'Door knock',
|
||||
'Mouse click',
|
||||
'Keyboard typing',
|
||||
'Door, wood creaks',
|
||||
'Can opening',
|
||||
'Washing machine',
|
||||
'Vacuum cleaner',
|
||||
'Clock alarm',
|
||||
'Clock tick',
|
||||
'Glass breaking',
|
||||
# Exterior/urban noises
|
||||
'Helicopter',
|
||||
'Chainsaw',
|
||||
'Siren',
|
||||
'Car horn',
|
||||
'Engine',
|
||||
'Train',
|
||||
'Church bells',
|
||||
'Airplane',
|
||||
'Fireworks',
|
||||
'Hand saw',
|
||||
]
|
||||
meta = os.path.join('ESC-50-master', 'meta', 'esc50.csv')
|
||||
meta_info = collections.namedtuple(
|
||||
'META_INFO',
|
||||
('filename', 'fold', 'target', 'category', 'esc10', 'src_file', 'take'))
|
||||
audio_path = os.path.join('ESC-50-master', 'audio')
|
||||
|
||||
def __init__(self,
|
||||
mode: str='train',
|
||||
split: int=1,
|
||||
feat_type: str='raw',
|
||||
**kwargs):
|
||||
"""
|
||||
Ags:
|
||||
mode (:obj:`str`, `optional`, defaults to `train`):
|
||||
It identifies the dataset mode (train or dev).
|
||||
split (:obj:`int`, `optional`, defaults to 1):
|
||||
It specify the fold of dev dataset.
|
||||
feat_type (:obj:`str`, `optional`, defaults to `raw`):
|
||||
It identifies the feature type that user wants to extrace of an audio file.
|
||||
"""
|
||||
files, labels = self._get_data(mode, split)
|
||||
super(ESC50, self).__init__(
|
||||
files=files, labels=labels, feat_type=feat_type, **kwargs)
|
||||
|
||||
def _get_meta_info(self) -> List[collections.namedtuple]:
|
||||
ret = []
|
||||
with open(os.path.join(DATA_HOME, self.meta), 'r') as rf:
|
||||
for line in rf.readlines()[1:]:
|
||||
ret.append(self.meta_info(*line.strip().split(',')))
|
||||
return ret
|
||||
|
||||
def _get_data(self, mode: str, split: int) -> Tuple[List[str], List[int]]:
|
||||
if not os.path.isdir(os.path.join(DATA_HOME, self.audio_path)) or \
|
||||
not os.path.isfile(os.path.join(DATA_HOME, self.meta)):
|
||||
download_and_decompress(self.archieves, DATA_HOME)
|
||||
|
||||
meta_info = self._get_meta_info()
|
||||
|
||||
files = []
|
||||
labels = []
|
||||
for sample in meta_info:
|
||||
filename, fold, target, _, _, _, _ = sample
|
||||
if mode == 'train' and int(fold) != split:
|
||||
files.append(os.path.join(DATA_HOME, self.audio_path, filename))
|
||||
labels.append(int(target))
|
||||
|
||||
if mode != 'train' and int(fold) == split:
|
||||
files.append(os.path.join(DATA_HOME, self.audio_path, filename))
|
||||
labels.append(int(target))
|
||||
|
||||
return files, labels
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in new issue