You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
351 lines
12 KiB
351 lines
12 KiB
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import librosa
|
|
import numpy
|
|
import scipy
|
|
import soundfile
|
|
|
|
from deepspeech.io.reader import SoundHDF5File
|
|
|
|
|
|
class SpeedPerturbation():
|
|
"""SpeedPerturbation
|
|
|
|
The speed perturbation in kaldi uses sox-speed instead of sox-tempo,
|
|
and sox-speed just to resample the input,
|
|
i.e pitch and tempo are changed both.
|
|
|
|
"Why use speed option instead of tempo -s in SoX for speed perturbation"
|
|
https://groups.google.com/forum/#!topic/kaldi-help/8OOG7eE4sZ8
|
|
|
|
Warning:
|
|
This function is very slow because of resampling.
|
|
I recommmend to apply speed-perturb outside the training using sox.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
lower=0.9,
|
|
upper=1.1,
|
|
utt2ratio=None,
|
|
keep_length=True,
|
|
res_type="kaiser_best",
|
|
seed=None, ):
|
|
self.res_type = res_type
|
|
self.keep_length = keep_length
|
|
self.state = numpy.random.RandomState(seed)
|
|
|
|
if utt2ratio is not None:
|
|
self.utt2ratio = {}
|
|
# Use the scheduled ratio for each utterances
|
|
self.utt2ratio_file = utt2ratio
|
|
self.lower = None
|
|
self.upper = None
|
|
self.accept_uttid = True
|
|
|
|
with open(utt2ratio, "r") as f:
|
|
for line in f:
|
|
utt, ratio = line.rstrip().split(None, 1)
|
|
ratio = float(ratio)
|
|
self.utt2ratio[utt] = ratio
|
|
else:
|
|
self.utt2ratio = None
|
|
# The ratio is given on runtime randomly
|
|
self.lower = lower
|
|
self.upper = upper
|
|
|
|
def __repr__(self):
|
|
if self.utt2ratio is None:
|
|
return "{}(lower={}, upper={}, " "keep_length={}, res_type={})".format(
|
|
self.__class__.__name__,
|
|
self.lower,
|
|
self.upper,
|
|
self.keep_length,
|
|
self.res_type, )
|
|
else:
|
|
return "{}({}, res_type={})".format(
|
|
self.__class__.__name__, self.utt2ratio_file, self.res_type)
|
|
|
|
def __call__(self, x, uttid=None, train=True):
|
|
if not train:
|
|
return x
|
|
|
|
x = x.astype(numpy.float32)
|
|
if self.accept_uttid:
|
|
ratio = self.utt2ratio[uttid]
|
|
else:
|
|
ratio = self.state.uniform(self.lower, self.upper)
|
|
|
|
# Note1: resample requires the sampling-rate of input and output,
|
|
# but actually only the ratio is used.
|
|
y = librosa.resample(x, ratio, 1, res_type=self.res_type)
|
|
|
|
if self.keep_length:
|
|
diff = abs(len(x) - len(y))
|
|
if len(y) > len(x):
|
|
# Truncate noise
|
|
y = y[diff // 2:-((diff + 1) // 2)]
|
|
elif len(y) < len(x):
|
|
# Assume the time-axis is the first: (Time, Channel)
|
|
pad_width = [(diff // 2, (diff + 1) // 2)] + [
|
|
(0, 0) for _ in range(y.ndim - 1)
|
|
]
|
|
y = numpy.pad(
|
|
y, pad_width=pad_width, constant_values=0, mode="constant")
|
|
return y
|
|
|
|
|
|
class BandpassPerturbation():
|
|
"""BandpassPerturbation
|
|
|
|
Randomly dropout along the frequency axis.
|
|
|
|
The original idea comes from the following:
|
|
"randomly-selected frequency band was cut off under the constraint of
|
|
leaving at least 1,000 Hz band within the range of less than 4,000Hz."
|
|
(The Hitachi/JHU CHiME-5 system: Advances in speech recognition for
|
|
everyday home environments using multiple microphone arrays;
|
|
http://spandh.dcs.shef.ac.uk/chime_workshop/papers/CHiME_2018_paper_kanda.pdf)
|
|
|
|
"""
|
|
|
|
def __init__(self, lower=0.0, upper=0.75, seed=None, axes=(-1, )):
|
|
self.lower = lower
|
|
self.upper = upper
|
|
self.state = numpy.random.RandomState(seed)
|
|
# x_stft: (Time, Channel, Freq)
|
|
self.axes = axes
|
|
|
|
def __repr__(self):
|
|
return "{}(lower={}, upper={})".format(self.__class__.__name__,
|
|
self.lower, self.upper)
|
|
|
|
def __call__(self, x_stft, uttid=None, train=True):
|
|
if not train:
|
|
return x_stft
|
|
|
|
if x_stft.ndim == 1:
|
|
raise RuntimeError("Input in time-freq domain: "
|
|
"(Time, Channel, Freq) or (Time, Freq)")
|
|
|
|
ratio = self.state.uniform(self.lower, self.upper)
|
|
axes = [i if i >= 0 else x_stft.ndim - i for i in self.axes]
|
|
shape = [s if i in axes else 1 for i, s in enumerate(x_stft.shape)]
|
|
|
|
mask = self.state.randn(*shape) > ratio
|
|
x_stft *= mask
|
|
return x_stft
|
|
|
|
|
|
class VolumePerturbation():
|
|
def __init__(self,
|
|
lower=-1.6,
|
|
upper=1.6,
|
|
utt2ratio=None,
|
|
dbunit=True,
|
|
seed=None):
|
|
self.dbunit = dbunit
|
|
self.utt2ratio_file = utt2ratio
|
|
self.lower = lower
|
|
self.upper = upper
|
|
self.state = numpy.random.RandomState(seed)
|
|
|
|
if utt2ratio is not None:
|
|
# Use the scheduled ratio for each utterances
|
|
self.utt2ratio = {}
|
|
self.lower = None
|
|
self.upper = None
|
|
self.accept_uttid = True
|
|
|
|
with open(utt2ratio, "r") as f:
|
|
for line in f:
|
|
utt, ratio = line.rstrip().split(None, 1)
|
|
ratio = float(ratio)
|
|
self.utt2ratio[utt] = ratio
|
|
else:
|
|
# The ratio is given on runtime randomly
|
|
self.utt2ratio = None
|
|
|
|
def __repr__(self):
|
|
if self.utt2ratio is None:
|
|
return "{}(lower={}, upper={}, dbunit={})".format(
|
|
self.__class__.__name__, self.lower, self.upper, self.dbunit)
|
|
else:
|
|
return '{}("{}", dbunit={})'.format(
|
|
self.__class__.__name__, self.utt2ratio_file, self.dbunit)
|
|
|
|
def __call__(self, x, uttid=None, train=True):
|
|
if not train:
|
|
return x
|
|
|
|
x = x.astype(numpy.float32)
|
|
|
|
if self.accept_uttid:
|
|
ratio = self.utt2ratio[uttid]
|
|
else:
|
|
ratio = self.state.uniform(self.lower, self.upper)
|
|
if self.dbunit:
|
|
ratio = 10**(ratio / 20)
|
|
return x * ratio
|
|
|
|
|
|
class NoiseInjection():
|
|
"""Add isotropic noise"""
|
|
|
|
def __init__(
|
|
self,
|
|
utt2noise=None,
|
|
lower=-20,
|
|
upper=-5,
|
|
utt2ratio=None,
|
|
filetype="list",
|
|
dbunit=True,
|
|
seed=None, ):
|
|
self.utt2noise_file = utt2noise
|
|
self.utt2ratio_file = utt2ratio
|
|
self.filetype = filetype
|
|
self.dbunit = dbunit
|
|
self.lower = lower
|
|
self.upper = upper
|
|
self.state = numpy.random.RandomState(seed)
|
|
|
|
if utt2ratio is not None:
|
|
# Use the scheduled ratio for each utterances
|
|
self.utt2ratio = {}
|
|
with open(utt2noise, "r") as f:
|
|
for line in f:
|
|
utt, snr = line.rstrip().split(None, 1)
|
|
snr = float(snr)
|
|
self.utt2ratio[utt] = snr
|
|
else:
|
|
# The ratio is given on runtime randomly
|
|
self.utt2ratio = None
|
|
|
|
if utt2noise is not None:
|
|
self.utt2noise = {}
|
|
if filetype == "list":
|
|
with open(utt2noise, "r") as f:
|
|
for line in f:
|
|
utt, filename = line.rstrip().split(None, 1)
|
|
signal, rate = soundfile.read(filename, dtype="int16")
|
|
# Load all files in memory
|
|
self.utt2noise[utt] = (signal, rate)
|
|
|
|
elif filetype == "sound.hdf5":
|
|
self.utt2noise = SoundHDF5File(utt2noise, "r")
|
|
else:
|
|
raise ValueError(filetype)
|
|
else:
|
|
self.utt2noise = None
|
|
|
|
if utt2noise is not None and utt2ratio is not None:
|
|
if set(self.utt2ratio) != set(self.utt2noise):
|
|
raise RuntimeError("The uttids mismatch between {} and {}".
|
|
format(utt2ratio, utt2noise))
|
|
|
|
def __repr__(self):
|
|
if self.utt2ratio is None:
|
|
return "{}(lower={}, upper={}, dbunit={})".format(
|
|
self.__class__.__name__, self.lower, self.upper, self.dbunit)
|
|
else:
|
|
return '{}("{}", dbunit={})'.format(
|
|
self.__class__.__name__, self.utt2ratio_file, self.dbunit)
|
|
|
|
def __call__(self, x, uttid=None, train=True):
|
|
if not train:
|
|
return x
|
|
x = x.astype(numpy.float32)
|
|
|
|
# 1. Get ratio of noise to signal in sound pressure level
|
|
if uttid is not None and self.utt2ratio is not None:
|
|
ratio = self.utt2ratio[uttid]
|
|
else:
|
|
ratio = self.state.uniform(self.lower, self.upper)
|
|
|
|
if self.dbunit:
|
|
ratio = 10**(ratio / 20)
|
|
scale = ratio * numpy.sqrt((x**2).mean())
|
|
|
|
# 2. Get noise
|
|
if self.utt2noise is not None:
|
|
# Get noise from the external source
|
|
if uttid is not None:
|
|
noise, rate = self.utt2noise[uttid]
|
|
else:
|
|
# Randomly select the noise source
|
|
noise = self.state.choice(list(self.utt2noise.values()))
|
|
# Normalize the level
|
|
noise /= numpy.sqrt((noise**2).mean())
|
|
|
|
# Adjust the noise length
|
|
diff = abs(len(x) - len(noise))
|
|
offset = self.state.randint(0, diff)
|
|
if len(noise) > len(x):
|
|
# Truncate noise
|
|
noise = noise[offset:-(diff - offset)]
|
|
else:
|
|
noise = numpy.pad(
|
|
noise, pad_width=[offset, diff - offset], mode="wrap")
|
|
|
|
else:
|
|
# Generate white noise
|
|
noise = self.state.normal(0, 1, x.shape)
|
|
|
|
# 3. Add noise to signal
|
|
return x + noise * scale
|
|
|
|
|
|
class RIRConvolve():
|
|
def __init__(self, utt2rir, filetype="list"):
|
|
self.utt2rir_file = utt2rir
|
|
self.filetype = filetype
|
|
|
|
self.utt2rir = {}
|
|
if filetype == "list":
|
|
with open(utt2rir, "r") as f:
|
|
for line in f:
|
|
utt, filename = line.rstrip().split(None, 1)
|
|
signal, rate = soundfile.read(filename, dtype="int16")
|
|
self.utt2rir[utt] = (signal, rate)
|
|
|
|
elif filetype == "sound.hdf5":
|
|
self.utt2rir = SoundHDF5File(utt2rir, "r")
|
|
else:
|
|
raise NotImplementedError(filetype)
|
|
|
|
def __repr__(self):
|
|
return '{}("{}")'.format(self.__class__.__name__, self.utt2rir_file)
|
|
|
|
def __call__(self, x, uttid=None, train=True):
|
|
if not train:
|
|
return x
|
|
|
|
x = x.astype(numpy.float32)
|
|
|
|
if x.ndim != 1:
|
|
# Must be single channel
|
|
raise RuntimeError(
|
|
"Input x must be one dimensional array, but got {}".format(
|
|
x.shape))
|
|
|
|
rir, rate = self.utt2rir[uttid]
|
|
if rir.ndim == 2:
|
|
# FIXME(kamo): Use chainer.convolution_1d?
|
|
# return [Time, Channel]
|
|
return numpy.stack(
|
|
[scipy.convolve(x, r, mode="same") for r in rir], axis=-1)
|
|
else:
|
|
return scipy.convolve(x, rir, mode="same")
|