Add librispeech dataset, audio data provider and simplfied DeepSpeech2 model configuration.

Bug exists when run training.
pull/2/head
Xinghai Sun 8 years ago
parent d59b8ca97e
commit 3fc94427db

@ -1 +1,7 @@
TBD
# Deep Speech 2 on PaddlePaddle
```
sh requirements.sh
python librispeech.py
python train.py
```

@ -0,0 +1,159 @@
import paddle.v2 as paddle
import logging
import json
import random
import soundfile
import numpy as np
import os
# TODO: add z-score normalization.
ENGLISH_CHAR_VOCAB_FILEPATH = "eng_vocab.txt"
logger = logging.getLogger(__name__)
def spectrogram_from_file(filename,
stride_ms=10,
window_ms=20,
max_freq=None,
eps=1e-14):
"""
Calculate the log of linear spectrogram from FFT energy
Refer to utils.py in https://github.com/baidu-research/ba-dls-deepspeech
"""
audio, sample_rate = soundfile.read(filename)
if audio.ndim >= 2:
audio = np.mean(audio, 1)
if max_freq is None:
max_freq = sample_rate / 2
if max_freq > sample_rate / 2:
raise ValueError("max_freq must be greater than half of "
"sample rate.")
if stride_ms > window_ms:
raise ValueError("Stride size must not be greater than window size.")
stride_size = int(0.001 * sample_rate * stride_ms)
window_size = int(0.001 * sample_rate * window_ms)
spectrogram, freqs = extract_spectrogram(
audio,
window_size=window_size,
stride_size=stride_size,
sample_rate=sample_rate)
ind = np.where(freqs <= max_freq)[0][-1] + 1
return np.log(spectrogram[:ind, :] + eps)
def extract_spectrogram(samples, window_size, stride_size, sample_rate):
"""
Compute the spectrogram for a real discrete signal.
Refer to utils.py in https://github.com/baidu-research/ba-dls-deepspeech
"""
# extract strided windows
truncate_size = (len(samples) - window_size) % stride_size
samples = samples[:len(samples) - truncate_size]
nshape = (window_size, (len(samples) - window_size) // stride_size + 1)
nstrides = (samples.strides[0], samples.strides[0] * stride_size)
windows = np.lib.stride_tricks.as_strided(
samples, shape=nshape, strides=nstrides)
assert np.all(
windows[:, 1] == samples[stride_size:(stride_size + window_size)])
# window weighting, compute squared Fast Fourier Transform (fft), scaling
weighting = np.hanning(window_size)[:, None]
fft = np.fft.rfft(windows * weighting, axis=0)
fft = np.absolute(fft)**2
scale = np.sum(weighting**2) * sample_rate
fft[1:-1, :] *= (2.0 / scale)
fft[(0, -1), :] /= scale
# prepare fft frequency list
freqs = float(sample_rate) / window_size * np.arange(fft.shape[0])
return fft, freqs
def vocabulary_from_file(vocabulary_path):
"""
Load vocabulary from file.
"""
if os.path.exists(vocabulary_path):
vocab_lines = []
with open(vocabulary_path, 'r') as file:
vocab_lines.extend(file.readlines())
vocab_list = [line[:-1] for line in vocab_lines]
vocab_dict = dict(
[(token, id) for (id, token) in enumerate(vocab_list)])
return vocab_dict, vocab_list
else:
raise ValueError("Vocabulary file %s not found.", vocabulary_path)
def get_vocabulary_size():
vocab_dict, _ = vocabulary_from_file(ENGLISH_CHAR_VOCAB_FILEPATH)
return len(vocab_dict)
def parse_transcript(text, vocabulary):
"""
Convert the transcript text string to list of token index integers..
"""
return [vocabulary[w] for w in text]
def reader_creator(manifest_path,
sort_by_duration=True,
shuffle=False,
max_duration=10.0,
min_duration=0.0):
if sort_by_duration and shuffle:
sort_by_duration = False
logger.warn("When shuffle set to true, "
"sort_by_duration is forced to set False.")
vocab_dict, _ = vocabulary_from_file(ENGLISH_CHAR_VOCAB_FILEPATH)
def reader():
# read manifest
manifest_data = []
for json_line in open(manifest_path):
try:
json_data = json.loads(json_line)
except Exception as e:
raise ValueError("Error reading manifest: %s" % str(e))
if (json_data["duration"] <= max_duration and
json_data["duration"] >= min_duration):
manifest_data.append(json_data)
# sort (by duration) or shuffle manifest
if sort_by_duration:
manifest_data.sort(key=lambda x: x["duration"])
if shuffle:
random.shuffle(manifest_data)
# extract spectrogram feature
for instance in manifest_data:
spectrogram = spectrogram_from_file(instance["audio_filepath"])
text = parse_transcript(instance["text"], vocab_dict)
yield (spectrogram, text)
return reader
def padding_batch_reader(batch_reader, padding=[-1, -1], flatten=True):
def padding_batch(batch):
new_batch = []
# get target shape within batch
nshape_list = [padding]
for audio, text in batch:
nshape_list.append(audio.shape)
target_shape = np.array(nshape_list).max(axis=0)
# padding
for audio, text in batch:
pad_shape = target_shape - audio.shape
assert np.all(pad_shape >= 0)
padded_audio = np.pad(
audio, [(0, pad_shape[0]), (0, pad_shape[1])], mode="constant")
if flatten:
padded_audio = padded_audio.flatten()
new_batch.append((padded_audio, text))
return new_batch
def new_batch_reader():
for batch in batch_reader():
yield padding_batch(batch)
return new_batch_reader

@ -0,0 +1,28 @@
'
a
b
c
d
e
f
g
h
i
j
k
l
m
n
o
p
q
r
s
t
u
v
w
x
y
z

@ -0,0 +1,97 @@
import paddle.v2 as paddle
import os
import wget
import tarfile
import argparse
import soundfile
import json
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech')
URL_TEST = "http://www.openslr.org/resources/12/test-clean.tar.gz"
URL_DEV = "http://www.openslr.org/resources/12/dev-clean.tar.gz"
URL_TRAIN = "http://www.openslr.org/resources/12/train-clean-100.tar.gz"
parser = argparse.ArgumentParser(
description='Downloads and prepare LibriSpeech dataset.')
parser.add_argument(
"--target_dir",
default=DATA_HOME + "/Libri",
type=str,
help="Directory to save the dataset.")
parser.add_argument(
"--manifest",
default="./libri.manifest",
type=str,
help="Filepath prefix of output manifests.")
args = parser.parse_args()
def download(url, target_dir):
if not os.path.exists(target_dir):
os.makedirs(target_dir)
filepath = os.path.join(target_dir, url.split("/")[-1])
if not os.path.exists(filepath):
print("Downloading %s ..." % url)
wget.download(url, target_dir)
print("")
return filepath
def unpack(filepath, target_dir):
print("Unpacking %s ..." % filepath)
tar = tarfile.open(filepath)
tar.extractall(target_dir)
tar.close()
return target_dir
def create_manifest(data_dir, manifest_path):
print("Creating manifest %s ..." % manifest_path)
json_lines = []
for subfolder, _, filelist in os.walk(data_dir):
text_filelist = [
filename for filename in filelist if filename.endswith('trans.txt')
]
if len(text_filelist) > 0:
text_filepath = os.path.join(data_dir, subfolder, text_filelist[0])
for line in open(text_filepath):
segments = line.strip().split()
text = ' '.join(segments[1:]).lower()
audio_filepath = os.path.join(data_dir, subfolder,
segments[0] + '.flac')
audio_data, samplerate = soundfile.read(audio_filepath)
duration = float(len(audio_data)) / samplerate
json_lines.append(
json.dumps({
'audio_filepath': audio_filepath,
'duration': duration,
'text': text
}))
with open(manifest_path, 'w') as out_file:
for line in json_lines:
out_file.write(line + '\n')
def prepare_dataset(url, target_dir, manifest_path):
filepath = download(url, target_dir)
unpacked_dir = unpack(filepath, target_dir)
create_manifest(unpacked_dir, manifest_path)
def main():
prepare_dataset(
url=URL_TEST,
target_dir=os.path.join(args.target_dir),
manifest_path=args.manifest + ".test")
prepare_dataset(
url=URL_DEV,
target_dir=os.path.join(args.target_dir),
manifest_path=args.manifest + ".dev")
#prepare_dataset(url=URL_TRAIN,
#target_dir=os.path.join(args.target_dir),
#manifest_path=args.manifest + ".train")
if __name__ == '__main__':
main()

@ -0,0 +1,5 @@
pip install wget
pip install soundfile
# For Linux only
apt-get install libsndfile1

@ -0,0 +1,188 @@
import paddle.v2 as paddle
import audio_data_utils
import argparse
parser = argparse.ArgumentParser(
description='Simpled version of DeepSpeech2 trainer.')
parser.add_argument(
"--batch_size", default=512, type=int, help="Minibatch size.")
parser.add_argument("--trainer", default=1, type=int, help="Trainer number.")
parser.add_argument(
"--num_passes", default=20, type=int, help="Training pass number.")
args = parser.parse_args()
def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
padding, act):
conv_layer = paddle.layer.img_conv(
input=input,
filter_size=filter_size,
num_channels=num_channels_in,
num_filters=num_channels_out,
stride=stride,
padding=padding,
act=paddle.activation.Linear(),
bias_attr=False)
return paddle.layer.batch_norm(input=conv_layer, act=act)
def bidirectonal_simple_rnn_bn_layer(name, input, size, act):
def __simple_rnn_step__(input):
last_state = paddle.layer.memory(name=name + "_state", size=size)
input_fc = paddle.layer.fc(
input=input,
size=size,
act=paddle.activation.Linear(),
bias_attr=False)
input_fc_bn = paddle.layer.batch_norm(
input=input_fc, act=paddle.activation.Linear())
state_fc = paddle.layer.fc(
input=last_state,
size=size,
act=paddle.activation.Linear(),
bias_attr=False)
return paddle.layer.addto(
name=name + "_state", input=[input_fc_bn, state_fc], act=act)
forward = paddle.layer.recurrent_group(
step=__simple_rnn_step__, input=input)
return forward
# argument reverse is not exposed in V2 recurrent_group
#backward = paddle.layer.recurrent_group(
#step=__simple_rnn_step__,
#input=input,
#reverse=True)
#return paddle.layer.concat(input=[forward, backward])
def conv_group(input):
conv1 = conv_bn_layer(
input=input,
filter_size=(11, 41),
num_channels_in=1,
num_channels_out=32,
stride=(3, 2),
padding=(5, 20),
act=paddle.activation.BRelu())
conv2 = conv_bn_layer(
input=conv1,
filter_size=(11, 21),
num_channels_in=32,
num_channels_out=32,
stride=(1, 2),
padding=(5, 10),
act=paddle.activation.BRelu())
conv3 = conv_bn_layer(
input=conv2,
filter_size=(11, 21),
num_channels_in=32,
num_channels_out=32,
stride=(1, 2),
padding=(5, 10),
act=paddle.activation.BRelu())
return conv3
def rnn_group(input, size, num_stacks):
output = input
for i in xrange(num_stacks):
output = bidirectonal_simple_rnn_bn_layer(
name=str(i), input=output, size=size, act=paddle.activation.BRelu())
return output
def deep_speech2(audio_data, text_data, dict_size):
conv_group_output = conv_group(input=audio_data)
conv2seq = paddle.layer.block_expand(
input=conv_group_output,
num_channels=32,
stride_x=1,
stride_y=1,
block_x=1,
block_y=21)
rnn_group_output = rnn_group(input=conv2seq, size=256, num_stacks=5)
fc = paddle.layer.fc(
input=rnn_group_output,
size=dict_size + 1,
act=paddle.activation.Linear(),
bias_attr=True)
cost = paddle.layer.warp_ctc(
input=fc,
label=text_data,
size=dict_size + 1,
blank=dict_size,
norm_by_times=True)
return cost
def train():
# create network config
dict_size = audio_data_utils.get_vocabulary_size()
audio_data = paddle.layer.data(
name="audio_spectrogram",
height=161,
width=1000,
type=paddle.data_type.dense_vector(161000))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(dict_size))
cost = deep_speech2(audio_data, text_data, dict_size)
# create parameters and optimizer
parameters = paddle.parameters.create(cost)
optimizer = paddle.optimizer.Adam(
learning_rate=5e-5,
gradient_clipping_threshold=5,
regularization=paddle.optimizer.L2Regularization(rate=8e-4))
trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=optimizer)
return
# create data readers
feeding = {
"audio_spectrogram": 0,
"transcript_text": 1,
}
train_batch_reader = audio_data_utils.padding_batch_reader(
paddle.batch(
audio_data_utils.reader_creator("./libri.manifest.dev"),
batch_size=args.batch_size // args.trainer),
padding=[-1, 1000])
test_batch_reader = audio_data_utils.padding_batch_reader(
paddle.batch(
audio_data_utils.reader_creator("./libri.manifest.test"),
batch_size=args.batch_size // args.trainer),
padding=[-1, 1000])
# create event handler
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 10 == 0:
print "Pass: %d, Batch: %d, TrainCost: %f, %s" % (
event.pass_id, event.batch_id, event.cost, event.metrics)
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.EndPass):
result = trainer.test(reader=test_batch_reader, feeding=feeding)
print "Pass: %d, TestCost: %f, %s" % (event.pass_id, event.cost,
result.metrics)
with gzip.open("params.tar.gz", 'w') as f:
parameters.to_tar(f)
# run train
trainer.train(
reader=train_batch_reader,
event_handler=event_handler,
num_passes=10,
feeding=feeding)
def main():
train()
if __name__ == '__main__':
main()
Loading…
Cancel
Save