From 3fc94427db7395a1b7f9ab1013ca32218830a101 Mon Sep 17 00:00:00 2001 From: Xinghai Sun Date: Thu, 25 May 2017 01:17:18 +0800 Subject: [PATCH] Add librispeech dataset, audio data provider and simplfied DeepSpeech2 model configuration. Bug exists when run training. --- README.md | 8 +- audio_data_utils.py | 159 +++++++++++++++++++++++++++++++++++++ eng_vocab.txt | 28 +++++++ librispeech.py | 97 +++++++++++++++++++++++ requirements.sh | 5 ++ train.py | 188 ++++++++++++++++++++++++++++++++++++++++++++ 6 files changed, 484 insertions(+), 1 deletion(-) create mode 100644 audio_data_utils.py create mode 100644 eng_vocab.txt create mode 100644 librispeech.py create mode 100644 requirements.sh create mode 100644 train.py diff --git a/README.md b/README.md index a0990367e..fcadf5686 100644 --- a/README.md +++ b/README.md @@ -1 +1,7 @@ -TBD +# Deep Speech 2 on PaddlePaddle + +``` +sh requirements.sh +python librispeech.py +python train.py +``` diff --git a/audio_data_utils.py b/audio_data_utils.py new file mode 100644 index 000000000..2f7bfcf7c --- /dev/null +++ b/audio_data_utils.py @@ -0,0 +1,159 @@ +import paddle.v2 as paddle +import logging +import json +import random +import soundfile +import numpy as np +import os + +# TODO: add z-score normalization. + +ENGLISH_CHAR_VOCAB_FILEPATH = "eng_vocab.txt" + +logger = logging.getLogger(__name__) + + +def spectrogram_from_file(filename, + stride_ms=10, + window_ms=20, + max_freq=None, + eps=1e-14): + """ + Calculate the log of linear spectrogram from FFT energy + Refer to utils.py in https://github.com/baidu-research/ba-dls-deepspeech + """ + audio, sample_rate = soundfile.read(filename) + if audio.ndim >= 2: + audio = np.mean(audio, 1) + if max_freq is None: + max_freq = sample_rate / 2 + if max_freq > sample_rate / 2: + raise ValueError("max_freq must be greater than half of " + "sample rate.") + if stride_ms > window_ms: + raise ValueError("Stride size must not be greater than window size.") + stride_size = int(0.001 * sample_rate * stride_ms) + window_size = int(0.001 * sample_rate * window_ms) + spectrogram, freqs = extract_spectrogram( + audio, + window_size=window_size, + stride_size=stride_size, + sample_rate=sample_rate) + ind = np.where(freqs <= max_freq)[0][-1] + 1 + return np.log(spectrogram[:ind, :] + eps) + + +def extract_spectrogram(samples, window_size, stride_size, sample_rate): + """ + Compute the spectrogram for a real discrete signal. + Refer to utils.py in https://github.com/baidu-research/ba-dls-deepspeech + """ + # extract strided windows + truncate_size = (len(samples) - window_size) % stride_size + samples = samples[:len(samples) - truncate_size] + nshape = (window_size, (len(samples) - window_size) // stride_size + 1) + nstrides = (samples.strides[0], samples.strides[0] * stride_size) + windows = np.lib.stride_tricks.as_strided( + samples, shape=nshape, strides=nstrides) + assert np.all( + windows[:, 1] == samples[stride_size:(stride_size + window_size)]) + # window weighting, compute squared Fast Fourier Transform (fft), scaling + weighting = np.hanning(window_size)[:, None] + fft = np.fft.rfft(windows * weighting, axis=0) + fft = np.absolute(fft)**2 + scale = np.sum(weighting**2) * sample_rate + fft[1:-1, :] *= (2.0 / scale) + fft[(0, -1), :] /= scale + # prepare fft frequency list + freqs = float(sample_rate) / window_size * np.arange(fft.shape[0]) + return fft, freqs + + +def vocabulary_from_file(vocabulary_path): + """ + Load vocabulary from file. + """ + if os.path.exists(vocabulary_path): + vocab_lines = [] + with open(vocabulary_path, 'r') as file: + vocab_lines.extend(file.readlines()) + vocab_list = [line[:-1] for line in vocab_lines] + vocab_dict = dict( + [(token, id) for (id, token) in enumerate(vocab_list)]) + return vocab_dict, vocab_list + else: + raise ValueError("Vocabulary file %s not found.", vocabulary_path) + + +def get_vocabulary_size(): + vocab_dict, _ = vocabulary_from_file(ENGLISH_CHAR_VOCAB_FILEPATH) + return len(vocab_dict) + + +def parse_transcript(text, vocabulary): + """ + Convert the transcript text string to list of token index integers.. + """ + return [vocabulary[w] for w in text] + + +def reader_creator(manifest_path, + sort_by_duration=True, + shuffle=False, + max_duration=10.0, + min_duration=0.0): + if sort_by_duration and shuffle: + sort_by_duration = False + logger.warn("When shuffle set to true, " + "sort_by_duration is forced to set False.") + vocab_dict, _ = vocabulary_from_file(ENGLISH_CHAR_VOCAB_FILEPATH) + + def reader(): + # read manifest + manifest_data = [] + for json_line in open(manifest_path): + try: + json_data = json.loads(json_line) + except Exception as e: + raise ValueError("Error reading manifest: %s" % str(e)) + if (json_data["duration"] <= max_duration and + json_data["duration"] >= min_duration): + manifest_data.append(json_data) + # sort (by duration) or shuffle manifest + if sort_by_duration: + manifest_data.sort(key=lambda x: x["duration"]) + if shuffle: + random.shuffle(manifest_data) + # extract spectrogram feature + for instance in manifest_data: + spectrogram = spectrogram_from_file(instance["audio_filepath"]) + text = parse_transcript(instance["text"], vocab_dict) + yield (spectrogram, text) + + return reader + + +def padding_batch_reader(batch_reader, padding=[-1, -1], flatten=True): + def padding_batch(batch): + new_batch = [] + # get target shape within batch + nshape_list = [padding] + for audio, text in batch: + nshape_list.append(audio.shape) + target_shape = np.array(nshape_list).max(axis=0) + # padding + for audio, text in batch: + pad_shape = target_shape - audio.shape + assert np.all(pad_shape >= 0) + padded_audio = np.pad( + audio, [(0, pad_shape[0]), (0, pad_shape[1])], mode="constant") + if flatten: + padded_audio = padded_audio.flatten() + new_batch.append((padded_audio, text)) + return new_batch + + def new_batch_reader(): + for batch in batch_reader(): + yield padding_batch(batch) + + return new_batch_reader diff --git a/eng_vocab.txt b/eng_vocab.txt new file mode 100644 index 000000000..8268f3f33 --- /dev/null +++ b/eng_vocab.txt @@ -0,0 +1,28 @@ +' + +a +b +c +d +e +f +g +h +i +j +k +l +m +n +o +p +q +r +s +t +u +v +w +x +y +z diff --git a/librispeech.py b/librispeech.py new file mode 100644 index 000000000..fc7b9822b --- /dev/null +++ b/librispeech.py @@ -0,0 +1,97 @@ +import paddle.v2 as paddle +import os +import wget +import tarfile +import argparse +import soundfile +import json + +DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech') + +URL_TEST = "http://www.openslr.org/resources/12/test-clean.tar.gz" +URL_DEV = "http://www.openslr.org/resources/12/dev-clean.tar.gz" +URL_TRAIN = "http://www.openslr.org/resources/12/train-clean-100.tar.gz" + +parser = argparse.ArgumentParser( + description='Downloads and prepare LibriSpeech dataset.') +parser.add_argument( + "--target_dir", + default=DATA_HOME + "/Libri", + type=str, + help="Directory to save the dataset.") +parser.add_argument( + "--manifest", + default="./libri.manifest", + type=str, + help="Filepath prefix of output manifests.") +args = parser.parse_args() + + +def download(url, target_dir): + if not os.path.exists(target_dir): + os.makedirs(target_dir) + filepath = os.path.join(target_dir, url.split("/")[-1]) + if not os.path.exists(filepath): + print("Downloading %s ..." % url) + wget.download(url, target_dir) + print("") + return filepath + + +def unpack(filepath, target_dir): + print("Unpacking %s ..." % filepath) + tar = tarfile.open(filepath) + tar.extractall(target_dir) + tar.close() + return target_dir + + +def create_manifest(data_dir, manifest_path): + print("Creating manifest %s ..." % manifest_path) + json_lines = [] + for subfolder, _, filelist in os.walk(data_dir): + text_filelist = [ + filename for filename in filelist if filename.endswith('trans.txt') + ] + if len(text_filelist) > 0: + text_filepath = os.path.join(data_dir, subfolder, text_filelist[0]) + for line in open(text_filepath): + segments = line.strip().split() + text = ' '.join(segments[1:]).lower() + audio_filepath = os.path.join(data_dir, subfolder, + segments[0] + '.flac') + audio_data, samplerate = soundfile.read(audio_filepath) + duration = float(len(audio_data)) / samplerate + json_lines.append( + json.dumps({ + 'audio_filepath': audio_filepath, + 'duration': duration, + 'text': text + })) + with open(manifest_path, 'w') as out_file: + for line in json_lines: + out_file.write(line + '\n') + + +def prepare_dataset(url, target_dir, manifest_path): + filepath = download(url, target_dir) + unpacked_dir = unpack(filepath, target_dir) + create_manifest(unpacked_dir, manifest_path) + + +def main(): + prepare_dataset( + url=URL_TEST, + target_dir=os.path.join(args.target_dir), + manifest_path=args.manifest + ".test") + prepare_dataset( + url=URL_DEV, + target_dir=os.path.join(args.target_dir), + manifest_path=args.manifest + ".dev") + #prepare_dataset(url=URL_TRAIN, +#target_dir=os.path.join(args.target_dir), +#manifest_path=args.manifest + ".train") + + +if __name__ == '__main__': + main() diff --git a/requirements.sh b/requirements.sh new file mode 100644 index 000000000..7a0891699 --- /dev/null +++ b/requirements.sh @@ -0,0 +1,5 @@ +pip install wget +pip install soundfile + +# For Linux only +apt-get install libsndfile1 diff --git a/train.py b/train.py new file mode 100644 index 000000000..083a718d5 --- /dev/null +++ b/train.py @@ -0,0 +1,188 @@ +import paddle.v2 as paddle +import audio_data_utils +import argparse + +parser = argparse.ArgumentParser( + description='Simpled version of DeepSpeech2 trainer.') +parser.add_argument( + "--batch_size", default=512, type=int, help="Minibatch size.") +parser.add_argument("--trainer", default=1, type=int, help="Trainer number.") +parser.add_argument( + "--num_passes", default=20, type=int, help="Training pass number.") +args = parser.parse_args() + + +def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride, + padding, act): + conv_layer = paddle.layer.img_conv( + input=input, + filter_size=filter_size, + num_channels=num_channels_in, + num_filters=num_channels_out, + stride=stride, + padding=padding, + act=paddle.activation.Linear(), + bias_attr=False) + return paddle.layer.batch_norm(input=conv_layer, act=act) + + +def bidirectonal_simple_rnn_bn_layer(name, input, size, act): + def __simple_rnn_step__(input): + last_state = paddle.layer.memory(name=name + "_state", size=size) + input_fc = paddle.layer.fc( + input=input, + size=size, + act=paddle.activation.Linear(), + bias_attr=False) + input_fc_bn = paddle.layer.batch_norm( + input=input_fc, act=paddle.activation.Linear()) + state_fc = paddle.layer.fc( + input=last_state, + size=size, + act=paddle.activation.Linear(), + bias_attr=False) + return paddle.layer.addto( + name=name + "_state", input=[input_fc_bn, state_fc], act=act) + + forward = paddle.layer.recurrent_group( + step=__simple_rnn_step__, input=input) + return forward + # argument reverse is not exposed in V2 recurrent_group + #backward = paddle.layer.recurrent_group( + + +#step=__simple_rnn_step__, +#input=input, +#reverse=True) +#return paddle.layer.concat(input=[forward, backward]) + + +def conv_group(input): + conv1 = conv_bn_layer( + input=input, + filter_size=(11, 41), + num_channels_in=1, + num_channels_out=32, + stride=(3, 2), + padding=(5, 20), + act=paddle.activation.BRelu()) + conv2 = conv_bn_layer( + input=conv1, + filter_size=(11, 21), + num_channels_in=32, + num_channels_out=32, + stride=(1, 2), + padding=(5, 10), + act=paddle.activation.BRelu()) + conv3 = conv_bn_layer( + input=conv2, + filter_size=(11, 21), + num_channels_in=32, + num_channels_out=32, + stride=(1, 2), + padding=(5, 10), + act=paddle.activation.BRelu()) + return conv3 + + +def rnn_group(input, size, num_stacks): + output = input + for i in xrange(num_stacks): + output = bidirectonal_simple_rnn_bn_layer( + name=str(i), input=output, size=size, act=paddle.activation.BRelu()) + return output + + +def deep_speech2(audio_data, text_data, dict_size): + conv_group_output = conv_group(input=audio_data) + conv2seq = paddle.layer.block_expand( + input=conv_group_output, + num_channels=32, + stride_x=1, + stride_y=1, + block_x=1, + block_y=21) + rnn_group_output = rnn_group(input=conv2seq, size=256, num_stacks=5) + fc = paddle.layer.fc( + input=rnn_group_output, + size=dict_size + 1, + act=paddle.activation.Linear(), + bias_attr=True) + cost = paddle.layer.warp_ctc( + input=fc, + label=text_data, + size=dict_size + 1, + blank=dict_size, + norm_by_times=True) + return cost + + +def train(): + # create network config + dict_size = audio_data_utils.get_vocabulary_size() + audio_data = paddle.layer.data( + name="audio_spectrogram", + height=161, + width=1000, + type=paddle.data_type.dense_vector(161000)) + text_data = paddle.layer.data( + name="transcript_text", + type=paddle.data_type.integer_value_sequence(dict_size)) + cost = deep_speech2(audio_data, text_data, dict_size) + + # create parameters and optimizer + parameters = paddle.parameters.create(cost) + optimizer = paddle.optimizer.Adam( + learning_rate=5e-5, + gradient_clipping_threshold=5, + regularization=paddle.optimizer.L2Regularization(rate=8e-4)) + trainer = paddle.trainer.SGD( + cost=cost, parameters=parameters, update_equation=optimizer) + return + + # create data readers + feeding = { + "audio_spectrogram": 0, + "transcript_text": 1, + } + train_batch_reader = audio_data_utils.padding_batch_reader( + paddle.batch( + audio_data_utils.reader_creator("./libri.manifest.dev"), + batch_size=args.batch_size // args.trainer), + padding=[-1, 1000]) + test_batch_reader = audio_data_utils.padding_batch_reader( + paddle.batch( + audio_data_utils.reader_creator("./libri.manifest.test"), + batch_size=args.batch_size // args.trainer), + padding=[-1, 1000]) + + # create event handler + def event_handler(event): + if isinstance(event, paddle.event.EndIteration): + if event.batch_id % 10 == 0: + print "Pass: %d, Batch: %d, TrainCost: %f, %s" % ( + event.pass_id, event.batch_id, event.cost, event.metrics) + else: + sys.stdout.write('.') + sys.stdout.flush() + if isinstance(event, paddle.event.EndPass): + result = trainer.test(reader=test_batch_reader, feeding=feeding) + print "Pass: %d, TestCost: %f, %s" % (event.pass_id, event.cost, + result.metrics) + with gzip.open("params.tar.gz", 'w') as f: + parameters.to_tar(f) + + # run train + trainer.train( + reader=train_batch_reader, + event_handler=event_handler, + num_passes=10, + feeding=feeding) + + +def main(): + train() + + +if __name__ == '__main__': + main()