|
|
@ -403,8 +403,6 @@ class TTSExecutor(BaseExecutor):
|
|
|
|
with open(self.voc_config) as f:
|
|
|
|
with open(self.voc_config) as f:
|
|
|
|
self.voc_config = CfgNode(yaml.safe_load(f))
|
|
|
|
self.voc_config = CfgNode(yaml.safe_load(f))
|
|
|
|
|
|
|
|
|
|
|
|
# Enter the path of model root
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with open(self.phones_dict, "r") as f:
|
|
|
|
with open(self.phones_dict, "r") as f:
|
|
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
|
|
phn_id = [line.strip().split() for line in f.readlines()]
|
|
|
|
vocab_size = len(phn_id)
|
|
|
|
vocab_size = len(phn_id)
|
|
|
@ -499,10 +497,10 @@ class TTSExecutor(BaseExecutor):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Model inference and result stored in self.output.
|
|
|
|
Model inference and result stored in self.output.
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
model_name = am[:am.rindex('_')]
|
|
|
|
am_name = am[:am.rindex('_')]
|
|
|
|
dataset = am[am.rindex('_') + 1:]
|
|
|
|
am_dataset = am[am.rindex('_') + 1:]
|
|
|
|
get_tone_ids = False
|
|
|
|
get_tone_ids = False
|
|
|
|
if 'speedyspeech' in model_name:
|
|
|
|
if am_name == 'speedyspeech':
|
|
|
|
get_tone_ids = True
|
|
|
|
get_tone_ids = True
|
|
|
|
if lang == 'zh':
|
|
|
|
if lang == 'zh':
|
|
|
|
input_ids = self.frontend.get_input_ids(
|
|
|
|
input_ids = self.frontend.get_input_ids(
|
|
|
@ -519,15 +517,14 @@ class TTSExecutor(BaseExecutor):
|
|
|
|
print("lang should in {'zh', 'en'}!")
|
|
|
|
print("lang should in {'zh', 'en'}!")
|
|
|
|
|
|
|
|
|
|
|
|
# am
|
|
|
|
# am
|
|
|
|
if 'speedyspeech' in model_name:
|
|
|
|
if am_name == 'speedyspeech':
|
|
|
|
mel = self.am_inference(phone_ids, tone_ids)
|
|
|
|
mel = self.am_inference(phone_ids, tone_ids)
|
|
|
|
# fastspeech2
|
|
|
|
# fastspeech2
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
# multi speaker
|
|
|
|
# multi speaker
|
|
|
|
if dataset in {"aishell3", "vctk"}:
|
|
|
|
if am_dataset in {"aishell3", "vctk"}:
|
|
|
|
mel = self.am_inference(
|
|
|
|
mel = self.am_inference(
|
|
|
|
phone_ids, spk_id=paddle.to_tensor(spk_id))
|
|
|
|
phone_ids, spk_id=paddle.to_tensor(spk_id))
|
|
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
else:
|
|
|
|
mel = self.am_inference(phone_ids)
|
|
|
|
mel = self.am_inference(phone_ids)
|
|
|
|
|
|
|
|
|
|
|
|