Adding WavLM implementation

pull/3242/head
jiamingkong 2 years ago
parent 4323526155
commit 3b6651ba7c

@ -0,0 +1,197 @@
# Hubert2ASR with Librispeech
This example contains code used to finetune [hubert](https://arxiv.org/abs/2106.07447) model with [Librispeech dataset](http://www.openslr.org/resources/12)
## Overview
All the scripts you need are in `run.sh`. There are several stages in `run.sh`, and each stage has its function.
| Stage | Function |
|:---- |:----------------------------------------------------------- |
| 0 | Process data. It includes: <br> (1) Download the dataset <br> (2) Calculate the CMVN of the train dataset <br> (3) Get the vocabulary file <br> (4) Get the manifest files of the train, development and test dataset<br> (5) Download the pretrained wav2vec2 model |
| 1 | Train the model |
| 2 | Get the final model by averaging the top-k models, set k = 1 means to choose the best model |
| 3 | Test the final model performance |
| 4 | Infer the single audio file |
You can choose to run a range of stages by setting `stage` and `stop_stage `.
For example, if you want to execute the code in stage 2 and stage 3, you can run this script:
```bash
bash run.sh --stage 2 --stop_stage 3
```
Or you can set `stage` equal to `stop-stage` to only run one stage.
For example, if you only want to run `stage 0`, you can use the script below:
```bash
bash run.sh --stage 0 --stop_stage 0
```
The document below will describe the scripts in `run.sh` in detail.
## The Environment Variables
The path.sh contains the environment variables.
```bash
. ./path.sh
. ./cmd.sh
```
This script needs to be run first. And another script is also needed:
```bash
source ${MAIN_ROOT}/utils/parse_options.sh
```
It will support the way of using `--variable value` in the shell scripts.
## The Local Variables
Some local variables are set in `run.sh`.
`gpus` denotes the GPU number you want to use. If you set `gpus=`, it means you only use CPU.
`stage` denotes the number of stages you want to start from in the experiments.
`stop stage` denotes the number of the stage you want to end at in the experiments.
`conf_path` denotes the config path of the model.
`avg_num` denotes the number K of top-K models you want to average to get the final model.
`audio file` denotes the file path of the single file you want to infer in stage 5
`ckpt` denotes the checkpoint prefix of the model, e.g. "hubertASR"
You can set the local variables (except `ckpt`) when you use `run.sh`
For example, you can set the `gpus` and `avg_num` when you use the command line:
```bash
bash run.sh --gpus 0,1 --avg_num 20
```
## Stage 0: Data Processing
To use this example, you need to process data firstly and you can use stage 0 in `run.sh` to do this. The code is shown below:
```bash
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
bash ./local/data.sh || exit -1
fi
```
Stage 0 is for processing the data.
If you only want to process the data. You can run
```bash
bash run.sh --stage 0 --stop_stage 0
```
You can also just run these scripts in your command line.
```bash
. ./path.sh
. ./cmd.sh
bash ./local/data.sh
```
After processing the data, the `data` directory will look like this:
```bash
data/
|-- dev.meta
|-- lang_char
| `-- bpe_unigram_5000.model
| `-- bpe_unigram_5000.vocab
| `-- vocab.txt
|-- manifest.dev
|-- manifest.dev.raw
|-- manifest.test
|-- manifest.test.raw
|-- manifest.train
|-- manifest.train.raw
|-- mean_std.json
|-- test.meta
`-- train.meta
```
Stage 0 also downloads the pre-trained [hubert](https://paddlespeech.bj.bcebos.com/hubert/hubert-large-lv60.pdparams) model.
```bash
mkdir -p exp/hubert
wget -P exp/hubert https://paddlespeech.bj.bcebos.com/hubert/hubert-large-lv60.pdparams
```
## Stage 1: Model Training
If you want to train the model. you can use stage 1 in `run.sh`. The code is shown below.
```bash
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt}
fi
```
If you want to train the model, you can use the script below to execute stage 0 and stage 1:
```bash
bash run.sh --stage 0 --stop_stage 1
```
or you can run these scripts in the command line (only use CPU).
```bash
. ./path.sh
. ./cmd.sh
bash ./local/data.sh
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/hubertASR.yaml hubertASR
```
## Stage 2: Top-k Models Averaging
After training the model, we need to get the final model for testing and inference. In every epoch, the model checkpoint is saved, so we can choose the best model from them based on the validation loss or we can sort them and average the parameters of the top-k models to get the final model. We can use stage 2 to do this, and the code is shown below. Note: We only train one epoch for hubertASR, thus the `avg_num` is set to 1.
```bash
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# avg n best model
avg.sh best exp/${ckpt}/checkpoints ${avg_num}
fi
```
The `avg.sh` is in the `../../../utils/` which is define in the `path.sh`.
If you want to get the final model, you can use the script below to execute stage 0, stage 1, and stage 2:
```bash
bash run.sh --stage 0 --stop_stage 2
```
or you can run these scripts in the command line (only use CPU).
```bash
. ./path.sh
. ./cmd.sh
bash ./local/data.sh
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/hubertASR.yaml hubertASR
avg.sh best exp/hubertASR/checkpoints 1
```
## Stage 3: Model Testing
The test stage is to evaluate the model performance. The code of test stage is shown below:
```bash
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# test ckpt avg_n
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
```
If you want to train a model and test it, you can use the script below to execute stage 0, stage 1, stage 2, and stage 3 :
```bash
bash run.sh --stage 0 --stop_stage 3
```
or you can run these scripts in the command line (only use CPU).
```bash
. ./path.sh
. ./cmd.sh
bash ./local/data.sh
CUDA_VISIBLE_DEVICES= ./local/train.sh conf/hubertASR.yaml hubertASR
avg.sh best exp/hubertASR/checkpoints 1
CUDA_VISIBLE_DEVICES= ./local/test.sh conf/hubertASR.yaml conf/tuning/decode.yaml exp/hubertASR/checkpoints/avg_1
```
## Pretrained Model
You can get the pretrained hubertASR from [this](../../../docs/source/released_model.md).
using the `tar` scripts to unpack the model and then you can use the script to test the model.
For example:
```bash
wget https://paddlespeech.bj.bcebos.com/hubert/hubertASR-large-100h-librispeech_ckpt_1.4.0.model.tar.gz
tar xzvf hubertASR-large-100h-librispeech_ckpt_1.4.0.model.tar.gz
source path.sh
# If you have process the data and get the manifest file you can skip the following 2 steps
bash local/data.sh --stage -1 --stop_stage -1
bash local/data.sh --stage 2 --stop_stage 2
CUDA_VISIBLE_DEVICES= ./local/test.sh conf/hubertASR.yaml conf/tuning/decode.yaml exp/hubertASR/checkpoints/avg_1
```
The performance of the released models are shown in [here](./RESULTS.md).
## Stage 4: Single Audio File Inference
In some situations, you want to use the trained model to do the inference for the single audio file. You can use stage 5. The code is shown below
```bash
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${audio_file} || exit -1
fi
```
you can train the model by yourself using ```bash run.sh --stage 0 --stop_stage 3```, or you can download the pretrained model through the script below:
```bash
wget https://paddlespeech.bj.bcebos.com/hubert/hubertASR-large-100h-librispeech_ckpt_1.4.0.model.tar.gz
tar xzvf hubertASR-large-100h-librispeech_ckpt_1.4.0.model.tar.gz
```
You can download the audio demo:
```bash
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/en/demo_002_en.wav -P data/
```
You need to prepare an audio file or use the audio demo above, please confirm the sample rate of the audio is 16K. You can get the result of the audio demo by running the script below.
```bash
CUDA_VISIBLE_DEVICES= ./local/test_wav.sh conf/hubertASR.yaml conf/tuning/decode.yaml exp/hubertASR/checkpoints/avg_1 data/demo_002_en.wav
```

@ -0,0 +1,9 @@
# LibriSpeech
## hubertASR
Fintuning on train-clean-100
train: Epoch 3, 1*V100-32G, batchsize: 4, accum_grad: 8
| Model | Params | Config | Augmentation| Test set | Decode method | WER |
| --- | --- | --- | --- | --- | --- | --- |
| hubertASR | 326.16M | conf/hubertASR.yaml | spec_aug | test-clean | greedy search | 0.05868 |

@ -0,0 +1,33 @@
#! /usr/bin/env bash
if [ $# != 3 ]; then
echo "usage: ${0} [best|latest] ckpt_dir avg_num"
exit -1
fi
avg_mode=${1} # best,latest
ckpt_dir=${2}
average_num=${3}
decode_checkpoint=${ckpt_dir}/avg_${average_num}.pdparams
if [ $avg_mode == best ];then
# best
python avg_model.py \
--dst_model ${decode_checkpoint} \
--ckpt_dir ${ckpt_dir} \
--num ${average_num} \
--val_best
else
# latest
python avg_model.py \
--dst_model ${decode_checkpoint} \
--ckpt_dir ${ckpt_dir} \
--num ${average_num}
fi
if [ $? -ne 0 ]; then
echo "Failed in avg ckpt!"
exit 1
fi
exit 0

@ -0,0 +1,18 @@
#!/usr/bin/env python3
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddlespeech.dataset.s2t import avg_ckpts_main
if __name__ == '__main__':
avg_ckpts_main()

@ -0,0 +1,89 @@
# ====== About run.pl, queue.pl, slurm.pl, and ssh.pl ======
# Usage: <cmd>.pl [options] JOB=1:<nj> <log> <command...>
# e.g.
# run.pl --mem 4G JOB=1:10 echo.JOB.log echo JOB
#
# Options:
# --time <time>: Limit the maximum time to execute.
# --mem <mem>: Limit the maximum memory usage.
# -max-jobs-run <njob>: Limit the number parallel jobs. This is ignored for non-array jobs.
# --num-threads <ngpu>: Specify the number of CPU core.
# --gpu <ngpu>: Specify the number of GPU devices.
# --config: Change the configuration file from default.
#
# "JOB=1:10" is used for "array jobs" and it can control the number of parallel jobs.
# The left string of "=", i.e. "JOB", is replaced by <N>(Nth job) in the command and the log file name,
# e.g. "echo JOB" is changed to "echo 3" for the 3rd job and "echo 8" for 8th job respectively.
# Note that the number must start with a positive number, so you can't use "JOB=0:10" for example.
#
# run.pl, queue.pl, slurm.pl, and ssh.pl have unified interface, not depending on its backend.
# These options are mapping to specific options for each backend and
# it is configured by "conf/queue.conf" and "conf/slurm.conf" by default.
# If jobs failed, your configuration might be wrong for your environment.
#
#
# The official documentation for run.pl, queue.pl, slurm.pl, and ssh.pl:
# "Parallelization in Kaldi": http://kaldi-asr.org/doc/queue.html
# =========================================================~
# Select the backend used by run.sh from "local", "sge", "slurm", or "ssh"
cmd_backend='local'
# Local machine, without any Job scheduling system
if [ "${cmd_backend}" = local ]; then
# The other usage
export train_cmd="run.pl"
# Used for "*_train.py": "--gpu" is appended optionally by run.sh
export cuda_cmd="run.pl"
# Used for "*_recog.py"
export decode_cmd="run.pl"
# "qsub" (SGE, Torque, PBS, etc.)
elif [ "${cmd_backend}" = sge ]; then
# The default setting is written in conf/queue.conf.
# You must change "-q g.q" for the "queue" for your environment.
# To know the "queue" names, type "qhost -q"
# Note that to use "--gpu *", you have to setup "complex_value" for the system scheduler.
export train_cmd="queue.pl"
export cuda_cmd="queue.pl"
export decode_cmd="queue.pl"
# "sbatch" (Slurm)
elif [ "${cmd_backend}" = slurm ]; then
# The default setting is written in conf/slurm.conf.
# You must change "-p cpu" and "-p gpu" for the "partion" for your environment.
# To know the "partion" names, type "sinfo".
# You can use "--gpu * " by default for slurm and it is interpreted as "--gres gpu:*"
# The devices are allocated exclusively using "${CUDA_VISIBLE_DEVICES}".
export train_cmd="slurm.pl"
export cuda_cmd="slurm.pl"
export decode_cmd="slurm.pl"
elif [ "${cmd_backend}" = ssh ]; then
# You have to create ".queue/machines" to specify the host to execute jobs.
# e.g. .queue/machines
# host1
# host2
# host3
# Assuming you can login them without any password, i.e. You have to set ssh keys.
export train_cmd="ssh.pl"
export cuda_cmd="ssh.pl"
export decode_cmd="ssh.pl"
# This is an example of specifying several unique options in the JHU CLSP cluster setup.
# Users can modify/add their own command options according to their cluster environments.
elif [ "${cmd_backend}" = jhu ]; then
export train_cmd="queue.pl --mem 2G"
export cuda_cmd="queue-freegpu.pl --mem 2G --gpu 1 --config conf/gpu.conf"
export decode_cmd="queue.pl --mem 4G"
else
echo "$0: Error: Unknown cmd_backend=${cmd_backend}" 1>&2
return 1
fi

@ -0,0 +1,558 @@
# Copyright 2021 Mobvoi Inc. All Rights Reserved.
# flake8: noqa
import codecs
import re
import sys
import unicodedata
remove_tag = True
spacelist = [' ', '\t', '\r', '\n']
puncts = [
'!', ',', '?', '', '', '', '', '', '', '', '', '', '', '', '',
'', ''
]
def characterize(string):
res = []
i = 0
while i < len(string):
char = string[i]
if char in puncts:
i += 1
continue
cat1 = unicodedata.category(char)
#https://unicodebook.readthedocs.io/unicode.html#unicode-categories
if cat1 == 'Zs' or cat1 == 'Cn' or char in spacelist: # space or not assigned
i += 1
continue
if cat1 == 'Lo': # letter-other
res.append(char)
i += 1
else:
# some input looks like: <unk><noise>, we want to separate it to two words.
sep = ' '
if char == '<': sep = '>'
j = i + 1
while j < len(string):
c = string[j]
if ord(c) >= 128 or (c in spacelist) or (c == sep):
break
j += 1
if j < len(string) and string[j] == '>':
j += 1
res.append(string[i:j])
i = j
return res
def stripoff_tags(x):
if not x: return ''
chars = []
i = 0
T = len(x)
while i < T:
if x[i] == '<':
while i < T and x[i] != '>':
i += 1
i += 1
else:
chars.append(x[i])
i += 1
return ''.join(chars)
def normalize(sentence, ignore_words, cs, split=None):
""" sentence, ignore_words are both in unicode
"""
new_sentence = []
for token in sentence:
x = token
if not cs:
x = x.upper()
if x in ignore_words:
continue
if remove_tag:
x = stripoff_tags(x)
if not x:
continue
if split and x in split:
new_sentence += split[x]
else:
new_sentence.append(x)
return new_sentence
class Calculator:
def __init__(self):
self.data = {}
self.space = []
self.cost = {}
self.cost['cor'] = 0
self.cost['sub'] = 1
self.cost['del'] = 1
self.cost['ins'] = 1
def calculate(self, lab, rec):
# Initialization
lab.insert(0, '')
rec.insert(0, '')
while len(self.space) < len(lab):
self.space.append([])
for row in self.space:
for element in row:
element['dist'] = 0
element['error'] = 'non'
while len(row) < len(rec):
row.append({'dist': 0, 'error': 'non'})
for i in range(len(lab)):
self.space[i][0]['dist'] = i
self.space[i][0]['error'] = 'del'
for j in range(len(rec)):
self.space[0][j]['dist'] = j
self.space[0][j]['error'] = 'ins'
self.space[0][0]['error'] = 'non'
for token in lab:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
for token in rec:
if token not in self.data and len(token) > 0:
self.data[token] = {
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
# Computing edit distance
for i, lab_token in enumerate(lab):
for j, rec_token in enumerate(rec):
if i == 0 or j == 0:
continue
min_dist = sys.maxsize
min_error = 'none'
dist = self.space[i - 1][j]['dist'] + self.cost['del']
error = 'del'
if dist < min_dist:
min_dist = dist
min_error = error
dist = self.space[i][j - 1]['dist'] + self.cost['ins']
error = 'ins'
if dist < min_dist:
min_dist = dist
min_error = error
if lab_token == rec_token:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['cor']
error = 'cor'
else:
dist = self.space[i - 1][j - 1]['dist'] + self.cost['sub']
error = 'sub'
if dist < min_dist:
min_dist = dist
min_error = error
self.space[i][j]['dist'] = min_dist
self.space[i][j]['error'] = min_error
# Tracing back
result = {
'lab': [],
'rec': [],
'all': 0,
'cor': 0,
'sub': 0,
'ins': 0,
'del': 0
}
i = len(lab) - 1
j = len(rec) - 1
while True:
if self.space[i][j]['error'] == 'cor': # correct
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['cor'] = self.data[lab[i]]['cor'] + 1
result['all'] = result['all'] + 1
result['cor'] = result['cor'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'sub': # substitution
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['sub'] = self.data[lab[i]]['sub'] + 1
result['all'] = result['all'] + 1
result['sub'] = result['sub'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, rec[j])
i = i - 1
j = j - 1
elif self.space[i][j]['error'] == 'del': # deletion
if len(lab[i]) > 0:
self.data[lab[i]]['all'] = self.data[lab[i]]['all'] + 1
self.data[lab[i]]['del'] = self.data[lab[i]]['del'] + 1
result['all'] = result['all'] + 1
result['del'] = result['del'] + 1
result['lab'].insert(0, lab[i])
result['rec'].insert(0, "")
i = i - 1
elif self.space[i][j]['error'] == 'ins': # insertion
if len(rec[j]) > 0:
self.data[rec[j]]['ins'] = self.data[rec[j]]['ins'] + 1
result['ins'] = result['ins'] + 1
result['lab'].insert(0, "")
result['rec'].insert(0, rec[j])
j = j - 1
elif self.space[i][j]['error'] == 'non': # starting point
break
else: # shouldn't reach here
print(
'this should not happen , i = {i} , j = {j} , error = {error}'.
format(i=i, j=j, error=self.space[i][j]['error']))
return result
def overall(self):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def cluster(self, data):
result = {'all': 0, 'cor': 0, 'sub': 0, 'ins': 0, 'del': 0}
for token in data:
if token in self.data:
result['all'] = result['all'] + self.data[token]['all']
result['cor'] = result['cor'] + self.data[token]['cor']
result['sub'] = result['sub'] + self.data[token]['sub']
result['ins'] = result['ins'] + self.data[token]['ins']
result['del'] = result['del'] + self.data[token]['del']
return result
def keys(self):
return list(self.data.keys())
def width(string):
return sum(1 + (unicodedata.east_asian_width(c) in "AFW") for c in string)
def default_cluster(word):
unicode_names = [unicodedata.name(char) for char in word]
for i in reversed(range(len(unicode_names))):
if unicode_names[i].startswith('DIGIT'): # 1
unicode_names[i] = 'Number' # 'DIGIT'
elif (unicode_names[i].startswith('CJK UNIFIED IDEOGRAPH') or
unicode_names[i].startswith('CJK COMPATIBILITY IDEOGRAPH')):
# 明 / 郎
unicode_names[i] = 'Mandarin' # 'CJK IDEOGRAPH'
elif (unicode_names[i].startswith('LATIN CAPITAL LETTER') or
unicode_names[i].startswith('LATIN SMALL LETTER')):
# A / a
unicode_names[i] = 'English' # 'LATIN LETTER'
elif unicode_names[i].startswith('HIRAGANA LETTER'): # は こ め
unicode_names[i] = 'Japanese' # 'GANA LETTER'
elif (unicode_names[i].startswith('AMPERSAND') or
unicode_names[i].startswith('APOSTROPHE') or
unicode_names[i].startswith('COMMERCIAL AT') or
unicode_names[i].startswith('DEGREE CELSIUS') or
unicode_names[i].startswith('EQUALS SIGN') or
unicode_names[i].startswith('FULL STOP') or
unicode_names[i].startswith('HYPHEN-MINUS') or
unicode_names[i].startswith('LOW LINE') or
unicode_names[i].startswith('NUMBER SIGN') or
unicode_names[i].startswith('PLUS SIGN') or
unicode_names[i].startswith('SEMICOLON')):
# & / ' / @ / ℃ / = / . / - / _ / # / + / ;
del unicode_names[i]
else:
return 'Other'
if len(unicode_names) == 0:
return 'Other'
if len(unicode_names) == 1:
return unicode_names[0]
for i in range(len(unicode_names) - 1):
if unicode_names[i] != unicode_names[i + 1]:
return 'Other'
return unicode_names[0]
def usage():
print(
"compute-wer.py : compute word error rate (WER) and align recognition results and references."
)
print(
" usage : python compute-wer.py [--cs={0,1}] [--cluster=foo] [--ig=ignore_file] [--char={0,1}] [--v={0,1}] [--padding-symbol={space,underline}] test.ref test.hyp > test.wer"
)
def main():
# python utils/compute-wer.py --char=1 --v=1 ref hyp > rsl.error
if len(sys.argv) == 1:
usage()
sys.exit(0)
calculator = Calculator()
cluster_file = ''
ignore_words = set()
tochar = False
verbose = 1
padding_symbol = ' '
case_sensitive = False
max_words_per_line = sys.maxsize
split = None
while len(sys.argv) > 3:
a = '--maxw='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):]
del sys.argv[1]
max_words_per_line = int(b)
continue
a = '--rt='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
remove_tag = (b == 'true') or (b != '0')
continue
a = '--cs='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
case_sensitive = (b == 'true') or (b != '0')
continue
a = '--cluster='
if sys.argv[1].startswith(a):
cluster_file = sys.argv[1][len(a):]
del sys.argv[1]
continue
a = '--splitfile='
if sys.argv[1].startswith(a):
split_file = sys.argv[1][len(a):]
del sys.argv[1]
split = dict()
with codecs.open(split_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
words = line.strip().split()
if len(words) >= 2:
split[words[0]] = words[1:]
continue
a = '--ig='
if sys.argv[1].startswith(a):
ignore_file = sys.argv[1][len(a):]
del sys.argv[1]
with codecs.open(ignore_file, 'r', 'utf-8') as fh:
for line in fh: # line in unicode
line = line.strip()
if len(line) > 0:
ignore_words.add(line)
continue
a = '--char='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
tochar = (b == 'true') or (b != '0')
continue
a = '--v='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
verbose = 0
try:
verbose = int(b)
except:
if b == 'true' or b != '0':
verbose = 1
continue
a = '--padding-symbol='
if sys.argv[1].startswith(a):
b = sys.argv[1][len(a):].lower()
del sys.argv[1]
if b == 'space':
padding_symbol = ' '
elif b == 'underline':
padding_symbol = '_'
continue
if True or sys.argv[1].startswith('-'):
#ignore invalid switch
del sys.argv[1]
continue
if not case_sensitive:
ig = set([w.upper() for w in ignore_words])
ignore_words = ig
default_clusters = {}
default_words = {}
ref_file = sys.argv[1]
hyp_file = sys.argv[2]
rec_set = {}
if split and not case_sensitive:
newsplit = dict()
for w in split:
words = split[w]
for i in range(len(words)):
words[i] = words[i].upper()
newsplit[w.upper()] = words
split = newsplit
with codecs.open(hyp_file, 'r', 'utf-8') as fh:
for line in fh:
if tochar:
array = characterize(line)
else:
array = line.strip().split()
if len(array) == 0: continue
fid = array[0]
rec_set[fid] = normalize(array[1:], ignore_words, case_sensitive,
split)
# compute error rate on the interaction of reference file and hyp file
for line in open(ref_file, 'r', encoding='utf-8'):
if tochar:
array = characterize(line)
else:
array = line.rstrip('\n').split()
if len(array) == 0: continue
fid = array[0]
if fid not in rec_set:
continue
lab = normalize(array[1:], ignore_words, case_sensitive, split)
rec = rec_set[fid]
if verbose:
print('\nutt: %s' % fid)
for word in rec + lab:
if word not in default_words:
default_cluster_name = default_cluster(word)
if default_cluster_name not in default_clusters:
default_clusters[default_cluster_name] = {}
if word not in default_clusters[default_cluster_name]:
default_clusters[default_cluster_name][word] = 1
default_words[word] = default_cluster_name
result = calculator.calculate(lab, rec)
if verbose:
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('WER: %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
space = {}
space['lab'] = []
space['rec'] = []
for idx in range(len(result['lab'])):
len_lab = width(result['lab'][idx])
len_rec = width(result['rec'][idx])
length = max(len_lab, len_rec)
space['lab'].append(length - len_lab)
space['rec'].append(length - len_rec)
upper_lab = len(result['lab'])
upper_rec = len(result['rec'])
lab1, rec1 = 0, 0
while lab1 < upper_lab or rec1 < upper_rec:
if verbose > 1:
print('lab(%s):' % fid.encode('utf-8'), end=' ')
else:
print('lab:', end=' ')
lab2 = min(upper_lab, lab1 + max_words_per_line)
for idx in range(lab1, lab2):
token = result['lab'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['lab'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print()
if verbose > 1:
print('rec(%s):' % fid.encode('utf-8'), end=' ')
else:
print('rec:', end=' ')
rec2 = min(upper_rec, rec1 + max_words_per_line)
for idx in range(rec1, rec2):
token = result['rec'][idx]
print('{token}'.format(token=token), end='')
for n in range(space['rec'][idx]):
print(padding_symbol, end='')
print(' ', end='')
print('\n', end='\n')
lab1 = lab2
rec1 = rec2
if verbose:
print(
'==========================================================================='
)
print()
result = calculator.overall()
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('Overall -> %4.2f %%' % wer, end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if not verbose:
print()
if verbose:
for cluster_id in default_clusters:
result = calculator.cluster(
[k for k in default_clusters[cluster_id]])
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'], result['del'],
result['ins']))
if len(cluster_file) > 0: # compute separated WERs for word clusters
cluster_id = ''
cluster = []
for line in open(cluster_file, 'r', encoding='utf-8'):
for token in line.decode('utf-8').rstrip('\n').split():
# end of cluster reached, like </Keyword>
if token[0:2] == '</' and token[len(token)-1] == '>' and \
token.lstrip('</').rstrip('>') == cluster_id :
result = calculator.cluster(cluster)
if result['all'] != 0:
wer = float(result['ins'] + result['sub'] + result[
'del']) * 100.0 / result['all']
else:
wer = 0.0
print('%s -> %4.2f %%' % (cluster_id, wer), end=' ')
print('N=%d C=%d S=%d D=%d I=%d' %
(result['all'], result['cor'], result['sub'],
result['del'], result['ins']))
cluster_id = ''
cluster = []
# begin of cluster reached, like <Keyword>
elif token[0] == '<' and token[len(token)-1] == '>' and \
cluster_id == '' :
cluster_id = token.lstrip('<').rstrip('>')
cluster = []
# general terms, like WEATHER / CAR / ...
else:
cluster.append(token)
print()
print(
'==========================================================================='
)
if __name__ == '__main__':
main()

@ -0,0 +1,3 @@
process:
# use raw audio
- type: wav_process

@ -0,0 +1,9 @@
{
"do_normalize": true,
"feature_extractor_type": "Wav2Vec2FeatureExtractor",
"feature_size": 1,
"padding_side": "right",
"padding_value": 0,
"return_attention_mask": true,
"sampling_rate": 16000
}

@ -0,0 +1,4 @@
decode_batch_size: 1
error_rate_type: wer
decoding_method: "ctc_greedy_search" # 'ctc_greedy_search', 'ctc_prefix_beam_search'
beam_size: 10

@ -0,0 +1,137 @@
############################################
# Network Architecture #
############################################
freeze_wavlm: False
normalize_wav: True
output_norm: True
init_type: kaiming_uniform # !Warning: need to convergence
enc:
input_shape: 768
dnn_blocks: 2
dnn_neurons: 768
activation: True
normalization: True
dropout_rate: [0.15, 0]
ctc:
enc_n_units: 768
blank_id: 0
dropout_rate: 0.0
wavlm_params_path: "/home/ubuntu/Documents/Github/wavlm_paddle/wavlm-paddle-ft.pth"
task_cfg:
label_rate: 50.0
sample_rate: 16000
normalize: True
enable_padding: False
max_keep_size: None
max_sample_size: 250000
min_sample_size: 32000
dropout_input: 0.1
final_dropout: 0.0
dropout: 0.1
attention_dropout: 0.0
activation_dropout: 0.1
apply_mask: True
mask_length: 10
mask_prob: 0.5
mask_selection: static
mask_other: 0.0
no_mask_overlap: False
mask_channel_length: 10
mask_channel_prob: 0.0
mask_channel_selection: static
mask_channel_other: 0.0
no_mask_channel_overlap: False
feature_grad_mult: 0.0
layerdrop: 0.1
fp16: True
extractor_mode: layer_norm
encoder_layers: 12
encoder_embed_dim: 768
encoder_ffn_embed_dim: 3072
encoder_attention_heads: 12
activation_fn: gelu
encoder_layerdrop: 0.0
dropout_features: 0.0
final_dim: 768
untie_final_proj: True
layer_norm_first: True
conv_feature_layers: "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2"
conv_bias: False
logit_temp: 0.1
target_glu: False
mask_min_space: 1
mask_channel_min_space: 1
conv_pos: 128
conv_pos_groups: 16
latent_temp: [2.0, 0.5, 0.999995]
skip_masked: False
skip_nomask: True
###########################################
# Data #
###########################################
train_manifest: data/manifest.train
dev_manifest: data/manifest.dev
test_manifest: data/manifest.test-clean
###########################################
# Dataloader #
###########################################
vocab_filepath: data/lang_char/vocab.txt
unit_type: char
mean_std_filepath: ""
preprocess_config: conf/preprocess.yaml
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs 0: disabled other: enabled for other epochs
batch_size: 8 # Different batch_size may cause large differences in results
maxlen_in: 51200000000 # if input length > maxlen-in batchsize is automatically reduced
maxlen_out: 160000
minibatches: 0 # for debug
batch_count: auto
batch_bins: 0
batch_frames_in: 0
batch_frames_out: 0
batch_frames_inout: 0
num_workers: 0
subsampling_factor: 1
num_encs: 1
dist_sampler: True
shortest_first: False
return_lens_rate: True
############################################
# Data Augmentation #
############################################
audio_augment: # for raw audio
sample_rate: 16000
speeds: [90, 100, 110]
###########################################
# Training #
###########################################
n_epoch: 10
accum_grad: 8
global_grad_clip: 5.0
model_scheduler: newbobscheduler
model_scheduler_conf:
improvement_threshold: 0.0025
annealing_factor: 0.8
patient: 0
model_optim: adam
model_optim_conf:
lr: 0.0001
weight_decay: 0.0
# I changed this
wavlm_optim: adam
wavlm_optim_conf:
lr: 0.00005
weight_decay: 0.0
wavlm_scheduler: constantlr
wavlm_scheduler_conf:
warmup_steps: 1000
lr_decay: 1.0
log_interval: 1
checkpoint:
kbest_n: 50
latest_n: 5

@ -0,0 +1,143 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
format ref/hyp file for `utt text` format to compute CER/WER/MER.
norm:
BAC009S0764W0196 明确了发展目标和重点任务
BAC009S0764W0186 实现我国房地产市场的平稳运行
sclite:
加大对结构机械化环境和收集谈控机制力度(BAC009S0906W0240.wav)
河南省新乡市丰秋县刘光镇政府东五零左右(BAC009S0770W0441.wav)
"""
import argparse
import jsonlines
from paddlespeech.utils.argparse import print_arguments
def transform_hyp(origin, trans, trans_sclite):
"""
Args:
origin: The input json file which contains the model output
trans: The output file for caculate CER/WER
trans_sclite: The output file for caculate CER/WER using sclite
"""
input_dict = {}
with open(origin, "r+", encoding="utf8") as f:
for item in jsonlines.Reader(f):
input_dict[item["utt"]] = item["hyps"][0]
if trans:
with open(trans, "w+", encoding="utf8") as f:
for key in input_dict.keys():
f.write(key + " " + input_dict[key] + "\n")
print(f"transform_hyp output: {trans}")
if trans_sclite:
with open(trans_sclite, "w+") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
print(f"transform_hyp output: {trans_sclite}")
def transform_ref(origin, trans, trans_sclite):
"""
Args:
origin: The input json file which contains the model output
trans: The output file for caculate CER/WER
trans_sclite: The output file for caculate CER/WER using sclite
"""
input_dict = {}
with open(origin, "r", encoding="utf8") as f:
for item in jsonlines.Reader(f):
input_dict[item["utt"]] = item["text"]
if trans:
with open(trans, "w", encoding="utf8") as f:
for key in input_dict.keys():
f.write(key + " " + input_dict[key] + "\n")
print(f"transform_hyp output: {trans}")
if trans_sclite:
with open(trans_sclite, "w") as f:
for key in input_dict.keys():
line = input_dict[key] + "(" + key + ".wav" + ")" + "\n"
f.write(line)
print(f"transform_hyp output: {trans_sclite}")
def define_argparse():
parser = argparse.ArgumentParser(
prog='format ref/hyp file for compute CER/WER', add_help=True)
parser.add_argument(
'--origin_hyp', type=str, default="", help='origin hyp file')
parser.add_argument(
'--trans_hyp',
type=str,
default="",
help='hyp file for caculating CER/WER')
parser.add_argument(
'--trans_hyp_sclite',
type=str,
default="",
help='hyp file for caculating CER/WER by sclite')
parser.add_argument(
'--origin_ref', type=str, default="", help='origin ref file')
parser.add_argument(
'--trans_ref',
type=str,
default="",
help='ref file for caculating CER/WER')
parser.add_argument(
'--trans_ref_sclite',
type=str,
default="",
help='ref file for caculating CER/WER by sclite')
parser_args = parser.parse_args()
return parser_args
def format_result(origin_hyp="",
trans_hyp="",
trans_hyp_sclite="",
origin_ref="",
trans_ref="",
trans_ref_sclite=""):
if origin_hyp:
transform_hyp(
origin=origin_hyp, trans=trans_hyp, trans_sclite=trans_hyp_sclite)
if origin_ref:
transform_ref(
origin=origin_ref, trans=trans_ref, trans_sclite=trans_ref_sclite)
def main():
args = define_argparse()
print_arguments(args, globals())
format_result(**vars(args))
if __name__ == "__main__":
main()

@ -0,0 +1,110 @@
#!/bin/bash
stage=-1
stop_stage=100
unit_type=char
dict_dir=data/lang_char
source ${MAIN_ROOT}/utils/parse_options.sh
mkdir -p data
mkdir -p ${dict_dir}
TARGET_DIR=${MAIN_ROOT}/dataset
mkdir -p ${TARGET_DIR}
if [ ${stage} -le -1 ] && [ ${stop_stage} -ge -1 ]; then
# download data, generate manifests
python3 ${TARGET_DIR}/librispeech/librispeech.py \
--manifest_prefix="data/manifest" \
--target_dir="${TARGET_DIR}/librispeech" \
--full_download="False"
if [ $? -ne 0 ]; then
echo "Prepare LibriSpeech failed. Terminated."
exit 1
fi
for set in train-clean-100 dev-clean test-clean; do
mv data/manifest.${set} data/manifest.${set}.raw
done
rm -rf data/manifest.train.raw data/manifest.dev.raw data/manifest.test.raw
for set in train-clean-100; do
cat data/manifest.${set}.raw >> data/manifest.train.raw
done
for set in dev-clean; do
cat data/manifest.${set}.raw >> data/manifest.dev.raw
done
for set in test-clean; do
cat data/manifest.${set}.raw >> data/manifest.test.raw
done
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# compute mean and stddev for normalizer
num_workers=$(nproc)
python ${MAIN_ROOT}/utils/compute_mean_std.py \
--manifest_path="data/manifest.train.raw" \
--num_samples=2000 \
--spectrum_type="fbank" \
--feat_dim=161 \
--delta_delta=false \
--sample_rate=16000 \
--stride_ms=10 \
--window_ms=25 \
--use_dB_normalization=False \
--num_workers=${num_workers} \
--output_path="data/mean_std.json"
if [ $? -ne 0 ]; then
echo "Compute mean and stddev failed. Terminated."
exit 1
fi
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# build vocabulary
python3 ${MAIN_ROOT}/utils/build_vocab.py \
--unit_type ${unit_type} \
--count_threshold=0 \
--vocab_path="${dict_dir}/vocab.txt" \
--manifest_paths="data/manifest.train.raw"
if [ $? -ne 0 ]; then
echo "Build vocabulary failed. Terminated."
exit 1
fi
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# format manifest with tokenids, vocab size
for set in train dev test dev-clean test-clean; do
{
python3 ${MAIN_ROOT}/utils/format_data.py \
--cmvn_path "data/mean_std.json" \
--unit_type ${unit_type} \
--vocab_path="${dict_dir}/vocab.txt" \
--manifest_path="data/manifest.${set}.raw" \
--output_path="data/manifest.${set}"
if [ $? -ne 0 ]; then
echo "Formt manifest.${set} failed. Terminated."
exit 1
fi
}&
done
wait
fi
echo "LibriSpeech Data preparation done."
# if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# mkdir -p exp/hubert
# echo "Pretrained hubert model download"
# wget -P exp/hubert https://paddlespeech.bj.bcebos.com/hubert/hubert-large-lv60.pdparams
# fi
exit 0

@ -0,0 +1,83 @@
#!/bin/bash
set -e
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
expdir=exp
datadir=data
recog_set="test-clean test-other dev-clean dev-other"
recog_set="test-clean"
config_path=$1
decode_config_path=$2
ckpt_prefix=$3
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
# download language model
#bash local/download_lm_en.sh
#if [ $? -ne 0 ]; then
# exit 1
#fi
python3 format_rsl.py \
--origin_ref data/manifest.test-clean.raw \
--trans_ref data/manifest.test-clean.text
for type in ctc_greedy_search; do
echo "decoding ${type}"
batch_size=16
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
python3 format_rsl.py \
--origin_hyp ${ckpt_prefix}.${type}.rsl \
--trans_hyp ${ckpt_prefix}.${type}.rsl.text
python3 compute_wer.py --char=1 --v=1 \
data/manifest.test-clean.text ${ckpt_prefix}.${type}.rsl.text > ${ckpt_prefix}.${type}.error
echo "decoding ${type} done."
done
for type in ctc_prefix_beam_search; do
echo "decoding ${type}"
batch_size=1
python3 -u ${BIN_DIR}/test.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${ckpt_prefix}.${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
python3 format_rsl.py \
--origin_hyp ${ckpt_prefix}.${type}.rsl \
--trans_hyp ${ckpt_prefix}.${type}.rsl.text
python3 compute_wer.py --char=1 --v=1 \
data/manifest.test-clean.text ${ckpt_prefix}.${type}.rsl.text > ${ckpt_prefix}.${type}.error
echo "decoding ${type} done."
done
echo "Finished"
exit 0

@ -0,0 +1,58 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path decode_config_path ckpt_path_prefix audio_file"
exit -1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
decode_config_path=$2
ckpt_prefix=$3
audio_file=$4
mkdir -p data
wget -nc https://paddlespeech.bj.bcebos.com/datasets/single_wav/en/demo_002_en.wav -P data/
if [ $? -ne 0 ]; then
exit 1
fi
if [ ! -f ${audio_file} ]; then
echo "Plase input the right audio_file path"
exit 1
fi
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
chunk_mode=true
fi
# download language model
#bash local/download_lm_ch.sh
#if [ $? -ne 0 ]; then
# exit 1
#fi
for type in ctc_greedy_search; do
echo "decoding ${type}"
batch_size=1
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/test_wav.py \
--ngpu ${ngpu} \
--config ${config_path} \
--decode_cfg ${decode_config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decode.decoding_method ${type} \
--opts decode.decode_batch_size ${batch_size} \
--audio_file ${audio_file}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
done
exit 0

@ -0,0 +1,58 @@
#!/bin/bash
if [ $# -lt 2 ] && [ $# -gt 3 ];then
echo "usage: CUDA_VISIBLE_DEVICES=0 ${0} config_path ckpt_name ips(optional)"
exit -1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_name=$2
resume=$3
ips=$4
if [ ! $ips ];then
ips_config=
else
ips_config="--ips="${ips}
fi
mkdir -p exp
# seed may break model convergence
seed=1988
if [ ${seed} != 0 ]; then
export FLAGS_cudnn_deterministic=True
fi
# export FLAGS_cudnn_exhaustive_search=true
# export FLAGS_conv_workspace_size_limit=4000
export FLAGS_allocator_strategy=naive_best_fit
if [ ${ngpu} == 0 ]; then
python3 -u ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--seed ${seed} \
--resume ${resume}
else
python3 -m paddle.distributed.launch --gpus=${CUDA_VISIBLE_DEVICES} ${ips_config} ${BIN_DIR}/train.py \
--ngpu ${ngpu} \
--config ${config_path} \
--output exp/${ckpt_name} \
--seed ${seed} \
--resume ${resume}
fi
if [ ${seed} != 0 ]; then
unset FLAGS_cudnn_deterministic
fi
if [ $? -ne 0 ]; then
echo "Failed in training!"
exit 1
fi
exit 0

@ -0,0 +1,13 @@
export MAIN_ROOT=`realpath ${PWD}/../../../`
export PATH=${MAIN_ROOT}:${MAIN_ROOT}/tools/sctk/bin:${PWD}/utils:${PATH}
export LC_ALL=C
export PYTHONDONTWRITEBYTECODE=1
# Use UTF-8 in Python to avoid UnicodeDecodeError when LC_ALL=C
export PYTHONIOENCODING=UTF-8
# export PYTHONPATH=${MAIN_ROOT}:${PYTHONPATH}
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/local/lib/
export BIN_DIR=${MAIN_ROOT}/paddlespeech/s2t/exps/wavlm/bin

@ -0,0 +1,48 @@
#!/bin/bash
set -e
. ./path.sh || exit 1;
. ./cmd.sh || exit 1;
gpus=1,2,3
stage=0
stop_stage=3
conf_path=conf/wavlmASR.yaml
ips= #xx.xx.xx.xx,xx.xx.xx.xx
decode_conf_path=conf/tuning/decode.yaml
avg_num=3
resume= # xx e.g. 30
. ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
audio_file=data/demo_002_en.wav
# avg_ckpt=avg_${avg_num}
avg_ckpt=4
ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}')
echo "checkpoint name ${ckpt}"
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
bash ./local/data.sh || exit -1
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# train model, all `ckpt` under `exp` dir
CUDA_VISIBLE_DEVICES=${gpus} ./local/train.sh ${conf_path} ${ckpt} ${resume} ${ips}
fi
# if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# # avg n best model
# ./avg.sh best exp/${ckpt}/checkpoints ${avg_num}
# fi
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
# greedy search decoder
CUDA_VISIBLE_DEVICES=0 ./local/test.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} || exit -1
fi
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=0 ./local/test_wav.sh ${conf_path} ${decode_conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${audio_file} || exit -1
fi

@ -0,0 +1,108 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation for WavLM model."""
import cProfile
from yacs.config import CfgNode
from paddlespeech.s2t.exps.wavlm.model import WavLMASRTester as Tester
from paddlespeech.s2t.training.cli import default_argument_parser
# from paddlespeech.utils.argparse import print_arguments
import distutils.util
def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
def print_arguments(args, info=None):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
filename = ""
if info:
filename = info["__file__"]
filename = os.path.basename(filename)
print(f"----------- {filename} Configuration Arguments -----------")
for arg, value in sorted(vars(args).items()):
print("%s: %s" % (arg, value))
print("-----------------------------------------------------------")
def main_sp(config, args):
exp = Tester(config, args)
with exp.eval():
exp.setup()
exp.run_test()
def main(config, args):
main_sp(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
# save asr result to
parser.add_argument(
'--dict-path', type=str, default=None, help='dict path.')
parser.add_argument(
"--result_file", type=str, help="path of save the asr result")
args = parser.parse_args()
print_arguments(args, globals())
# https://yaml.org/type/float.html
config = CfgNode(new_allowed=True)
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
# Setting for profiling
pr = cProfile.Profile()
pr.runcall(main, config, args)
pr.dump_stats('test.profile')

@ -0,0 +1,125 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation for wavlm model."""
import os
import sys
from pathlib import Path
import paddle
import soundfile
from paddlenlp.transformers import AutoTokenizer
from yacs.config import CfgNode
from paddlespeech.s2t.frontend.featurizer.text_featurizer import TextFeaturizer
from paddlespeech.s2t.models.wavlm.wavlm_asr import WavLMASR
from paddlespeech.s2t.training.cli import default_argument_parser
from paddlespeech.s2t.utils.log import Log
from paddlespeech.s2t.utils.utility import UpdateConfig
logger = Log(__name__).getlog()
class Wav2vec2Infer():
def __init__(self, config, args):
self.args = args
self.config = config
self.audio_file = args.audio_file
self.tokenizer = config.get("tokenizer", None)
if self.tokenizer:
self.text_feature = AutoTokenizer.from_pretrained(
self.config.tokenizer)
else:
self.text_feature = TextFeaturizer(
unit_type=config.unit_type, vocab=config.vocab_filepath)
paddle.set_device('gpu' if self.args.ngpu > 0 else 'cpu')
# model
model_conf = config
with UpdateConfig(model_conf):
model_conf.output_dim = self.text_feature.vocab_size
model = WavLMASR.from_config(model_conf)
self.model = model
self.model.eval()
# load model
params_path = self.args.checkpoint_path + ".pdparams"
model_dict = paddle.load(params_path)
self.model.set_state_dict(model_dict)
def run(self):
check(args.audio_file)
with paddle.no_grad():
# read
audio, _ = soundfile.read(
self.audio_file, dtype="int16", always_2d=True)
logger.info(f"audio shape: {audio.shape}")
xs = paddle.to_tensor(audio, dtype='float32').unsqueeze(axis=0)
decode_config = self.config.decode
result_transcripts, result_tokenids = self.model.decode(
xs,
text_feature=self.text_feature,
decoding_method=decode_config.decoding_method,
beam_size=decode_config.beam_size,
tokenizer=self.tokenizer, )
rsl = result_transcripts[0]
utt = Path(self.audio_file).name
logger.info(f"hyp: {utt} {rsl}")
return rsl
def check(audio_file):
if not os.path.isfile(audio_file):
print("Please input the right audio file path")
sys.exit(-1)
logger.info("checking the audio file format......")
try:
sig, sample_rate = soundfile.read(audio_file)
except Exception as e:
logger.error(str(e))
logger.error(
"can not open the wav file, please check the audio file format")
sys.exit(-1)
logger.info("The sample rate is %d" % sample_rate)
assert (sample_rate == 16000)
logger.info("The audio file format is right")
def main(config, args):
Wav2vec2Infer(config, args).run()
if __name__ == "__main__":
parser = default_argument_parser()
# save asr result to
parser.add_argument(
"--result_file", type=str, help="path of save the asr result")
parser.add_argument(
"--audio_file", type=str, help="path of the input audio file")
args = parser.parse_args()
config = CfgNode(new_allowed=True)
if args.config:
config.merge_from_file(args.config)
if args.decode_cfg:
decode_confs = CfgNode(new_allowed=True)
decode_confs.merge_from_file(args.decode_cfg)
config.decode = decode_confs
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
main(config, args)

@ -0,0 +1,101 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Trainer for wavlm model."""
import cProfile
import os
from yacs.config import CfgNode
from paddlespeech.s2t.exps.wavlm.model import WavLMASRTrainer as Trainer
from paddlespeech.s2t.training.cli import default_argument_parser
# from paddlespeech.utils.argparse import print_arguments
import distutils.util
def add_arguments(argname, type, default, help, argparser, **kwargs):
"""Add argparse's argument.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
add_argument("name", str, "Jonh", "User name.", parser)
args = parser.parse_args()
"""
type = distutils.util.strtobool if type == bool else type
argparser.add_argument(
"--" + argname,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
def print_arguments(args, info=None):
"""Print argparse's arguments.
Usage:
.. code-block:: python
parser = argparse.ArgumentParser()
parser.add_argument("name", default="Jonh", type=str, help="User name.")
args = parser.parse_args()
print_arguments(args)
:param args: Input argparse.Namespace for printing.
:type args: argparse.Namespace
"""
filename = ""
if info:
filename = info["__file__"]
filename = os.path.basename(filename)
print(f"----------- {filename} Configuration Arguments -----------")
for arg, value in sorted(vars(args).items()):
print("%s: %s" % (arg, value))
print("-----------------------------------------------------------")
def main_sp(config, args):
exp = Trainer(config, args)
exp.setup()
exp.run()
def main(config, args):
main_sp(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
parser.add_argument(
'--resume', type=str, default="", nargs="?", help='resume ckpt path.')
args = parser.parse_args()
print_arguments(args, globals())
# https://yaml.org/type/float.html
config = CfgNode(new_allowed=True)
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
# Setting for profiling
pr = cProfile.Profile()
pr.runcall(main, config, args)
pr.dump_stats(os.path.join(args.output, 'train.profile'))

@ -0,0 +1,912 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Contains wavlm model."""
import json
import math
import os
import re
import time
from collections import OrderedDict
from contextlib import nullcontext
import jsonlines
import numpy as np
import paddle
from hyperpyyaml import load_hyperpyyaml
from paddle import distributed as dist
from paddlenlp.transformers import AutoTokenizer
from paddlespeech.s2t.frontend.featurizer import TextFeaturizer
from paddlespeech.s2t.io.dataloader import DataLoaderFactory
from paddlespeech.s2t.io.speechbrain import data_pipeline
from paddlespeech.s2t.io.speechbrain import dataio
from paddlespeech.s2t.io.speechbrain import dataset
from paddlespeech.s2t.io.speechbrain.dataloader import make_dataloader
from paddlespeech.s2t.models.wavlm.processing.speech_augmentation import TimeDomainSpecAugment
from paddlespeech.s2t.models.wavlm.wavlm_asr import WavLMASR
from paddlespeech.s2t.training.optimizer import OptimizerFactory
from paddlespeech.s2t.training.reporter import ObsScope
from paddlespeech.s2t.training.reporter import report
from paddlespeech.s2t.training.scheduler import LRSchedulerFactory
from paddlespeech.s2t.training.timer import Timer
from paddlespeech.s2t.training.trainer import Trainer
from paddlespeech.s2t.utils import error_rate
from paddlespeech.s2t.utils import layer_tools
from paddlespeech.s2t.utils import mp_tools
from paddlespeech.s2t.utils.log import Log
from paddlespeech.s2t.utils.utility import UpdateConfig
logger = Log(__name__).getlog()
def clip_grad_norm_(
parameters,
max_norm,
norm_type=2.0,
error_if_nonfinite=False, ):
r"""Clips gradient norm of the iteratable parameters.
Norms are calculated together on all gradients, just as they are
connected into one vector. The gradient will be modified in place.
This API can only run in dynamic graph mode, not static graph mode.
Args:
parameters (Iterable[paddle.Tensor] or paddle.Tensor): Tensors or a single Tensor
that will be normalized gradients
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be `inf` for
infinity norm.
error_if_nonfinite (bool): if True, throw an error if the total
norm of the gradients from :attr:`parameters` is `nan`,
`inf`, or `-inf`.
Returns:
Total norm of the parameter gradients (treated as a single vector).
Example:
.. code-block:: python
import paddle
x = paddle.uniform([10, 10], min=-1.0, max=1.0, dtype='float32')
max_norm = float(5.0)
linear = paddle.nn.Linear(in_features=10, out_features=10)
out = linear(x)
loss = paddle.mean(out)
loss.backward()
paddle.nn.utils.clip_grad_norm_(linear.parameters(), max_norm)
sdg = paddle.optimizer.SGD(learning_rate=0.1, parameters=linear.parameters())
sdg.step()
"""
if not paddle.in_dynamic_mode():
raise RuntimeError('this API can only run in dynamic mode.')
if isinstance(parameters, paddle.Tensor):
parameters = [parameters]
support_norm_type = [float("inf"), 0, 1, 2]
if norm_type not in support_norm_type:
raise ValueError(f'norm_type only support {support_norm_type}')
grads = [p.grad for p in parameters if p.grad is not None]
max_norm = float(max_norm)
norm_type = float(norm_type)
if len(grads) == 0:
return paddle.to_tensor(0.0)
if norm_type == float("inf"):
norms = [g.detach().abs().max() for g in grads]
total_norm = (norms[0]
if len(norms) == 1 else paddle.max(paddle.stack(norms)))
else:
total_norm = paddle.linalg.norm(
paddle.stack(
[paddle.linalg.norm(g.detach(), norm_type) for g in grads]),
norm_type, )
if error_if_nonfinite and paddle.logical_or(total_norm.isnan(),
total_norm.isinf()):
raise RuntimeError(
f'The total norm of {norm_type} order of the gradients from '
'`parameters` is non-finite, so it cannot be clipped. In any case, '
'disable this error and scale the gradient by non-finite norm, '
'set `error_if_nonfinite=False`')
clip_coef = max_norm / (total_norm + 1e-6)
# Note: when the coef is clamped to 1, it is redundant to multiply the clamped coef, but this
# avoids the `if clip_coef < 1:` condition.
clip_coef_clamped = paddle.clip(clip_coef, max=1.0)
with paddle.no_grad():
for _, p in enumerate(parameters):
g = p.grad
if g is not None:
p.grad = paddle.multiply(x=g, y=clip_coef_clamped)
return total_norm
class WavLMASRTrainer(Trainer):
def __init__(self, config, args):
super().__init__(config, args)
self.avg_train_loss = 0.0
self.loss_isfinite = True # while flag is 'False', loss in Nan or inf, and can not be avg
self.use_sb = True # whether use speech brain dataloader
def update_average(self, batch_index, loss):
"""Update running average of the loss.
Arguments
---------
batch_index : int
current batch index
loss : paddle.tensor
detached loss, a single float value.
"""
if math.isfinite(loss):
self.avg_train_loss -= self.avg_train_loss / (batch_index + 1)
self.avg_train_loss += loss / (batch_index + 1)
else:
self.loss_isfinite = False
logger.info('loss:{} in Nan or inf, error'.format(loss))
def before_train(self):
from_scratch = self.resume_or_scratch()
if from_scratch:
# scratch: save init model, i.e. 0 epoch
self.save(tag='init', infos=None)
else:
# resume: train next_epoch and next_iteration
self.epoch += 1
logger.info(
f"Resume train: epoch {self.epoch }, step {self.iteration}!")
self.maybe_batch_sampler_step()
def train_batch(self, batch_index, batch, msg):
train_conf = self.config
start = time.time()
# forward
## sb data pipeline
if self.use_sb:
wav, wavs_lens_rate = batch['sig']
target, target_lens_rate = batch['tokens']
target_lens = (target_lens_rate *
target.shape[1]).round().astype(paddle.int64)
else:
utt, wav, wavs_lens, target, target_lens = batch
wavs_lens_rate = wavs_lens / wav.shape[1]
wav = wav[:, :, 0]
if hasattr(train_conf, 'audio_augment'):
wav = self.speech_augmentation(wav, wavs_lens_rate)
loss = self.model(wav, wavs_lens_rate, target, target_lens)
# loss div by `batch_size * accum_grad`
loss /= train_conf.accum_grad
# update self.avg_train_loss
self.update_average(batch_index, float(loss))
# loss backward
if (batch_index + 1) % train_conf.accum_grad != 0:
# Disable gradient synchronizations across DDP processes.
# Within this context, gradients will be accumulated on module
# variables, which will later be synchronized.
# When using cpu w/o DDP, model does not have `no_sync`
context = self.model.no_sync if (hasattr(self.model, "no_sync") and
self.parallel) else nullcontext
else:
# Used for single gpu training and DDP gradient synchronization
# processes.
context = nullcontext
with context():
loss.backward()
layer_tools.print_grads(self.model, print_func=None)
# NOTE: the code below asserted that the backward() is problematic, and as more steps are accumulated, the output from wavlm alone will be the same for all frames
# optimizer step old
if (batch_index + 1) % train_conf.accum_grad == 0:
#do global grad clip
if train_conf.global_grad_clip != 0:
clip_grad_norm_(self.model.parameters(),
train_conf.global_grad_clip)
self.model_optimizer.step()
self.model_optimizer.clear_grad()
if not train_conf.freeze_wavlm:
self.wavlm_optimizer.step()
self.wavlm_optimizer.clear_grad()
if self.config.model_scheduler != 'newbobscheduler':
self.model_lr_scheduler.step()
if self.config.wavlm_scheduler != 'newbobscheduler':
if not train_conf.freeze_wavlm:
self.wavlm_lr_scheduler.step()
self.iteration += 1
losses_np = {'loss': self.avg_train_loss * train_conf.accum_grad}
iteration_time = time.time() - start
for k, v in losses_np.items():
report(k, v)
report("loss_whitoutavg", float(loss))
report("batch_size", self.config.batch_size)
report("accum", train_conf.accum_grad)
report("step_cost", iteration_time)
if (batch_index + 1) % train_conf.accum_grad == 0:
if dist.get_rank() == 0 and self.visualizer:
losses_np_v = losses_np.copy()
losses_np_v.update({
"model_lr": self.model_lr_scheduler(),
"wavlm_lr": self.wavlm_lr_scheduler()
})
for key, val in losses_np_v.items():
self.visualizer.add_scalar(
tag='train/' + key, value=val, step=self.iteration - 1)
@paddle.no_grad()
def valid(self):
self.model.eval()
if not self.use_streamdata:
logger.info(
f"Valid Total Examples: {len(self.valid_loader.dataset)}")
valid_losses = {}
step = 0
total_loss = 0.0
num_seen_utts = 1 # use update_average and no need for num_seen_utts here
for i, batch in enumerate(self.valid_loader):
if self.use_sb:
wav, wavs_lens_rate = batch['sig']
target, target_lens_rate = batch['tokens']
target_lens = (target_lens_rate *
target.shape[1]).round().astype(paddle.int64)
else:
utt, wav, wavs_lens, target, target_lens = batch
wavs_lens_rate = wavs_lens / wav.shape[1]
wav = wav[:, :, 0]
loss = self.model(wav, wavs_lens_rate, target, target_lens)
# use update_average
total_loss -= total_loss / (step + 1)
total_loss += loss / (step + 1)
if math.isfinite(float(loss)):
step += 1
valid_losses['val_loss'] = float(loss)
else:
logger.info('loss:{} in Nan or inf, error'.format(float(loss)))
if (i + 1) % self.config.log_interval == 0:
valid_losses['val_history_loss'] = float(total_loss)
# logging
msg = f"Valid: Rank: {dist.get_rank()}, "
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
if not self.use_streamdata:
msg += "batch: {}/{}, ".format(i + 1,
len(self.valid_loader))
msg += ', '.join('{}: {:>.6f}'.format(k, v)
for k, v in valid_losses.items())
logger.info(msg)
logger.info(
'Rank {} Val info val_loss {}'.format(dist.get_rank(), total_loss))
return total_loss, num_seen_utts
@mp_tools.rank_zero_only
def save(self, tag=None, infos: dict=None):
"""Save checkpoint (model parameters and optimizer states).
Args:
tag (int or str, optional): None for step, else using tag, e.g epoch. Defaults to None.
infos (dict, optional): meta data to save. Defaults to None.
"""
infos = infos if infos else dict()
infos.update({
"epoch": self.epoch,
"model_lr": self.model_optimizer.get_lr(),
"wavlm_lr": self.wavlm_optimizer.get_lr()
})
checkpoint_path = os.path.join(
self.checkpoint_dir,
"{}".format(self.iteration if tag is None else tag))
model_dict = self.model.state_dict()
params_path = checkpoint_path + ".pdparams"
paddle.save(model_dict, params_path)
logger.info("Saved model to {}".format(params_path))
model_opt_dict = self.model_optimizer.state_dict()
wavlm_opt_dict = self.wavlm_optimizer.state_dict()
opt_dict = {'model': model_opt_dict, 'wavlm': wavlm_opt_dict}
optimizer_path = checkpoint_path + ".pdopt"
paddle.save(opt_dict, optimizer_path)
logger.info("Saved optimzier state to {}".format(optimizer_path))
scheduler_dict = {}
if self.config.model_scheduler == 'newbobscheduler':
scheduler_dict['model'] = self.model_lr_scheduler.save()
if self.config.wavlm_scheduler == 'newbobscheduler':
scheduler_dict['wavlm'] = self.wavlm_lr_scheduler.save()
if scheduler_dict:
scheduler_path = checkpoint_path + ".pdlrs"
paddle.save(scheduler_dict, scheduler_path)
logger.info("Saved scheduler state to {}".format(scheduler_path))
info_path = re.sub('.pdparams$', '.json', params_path)
infos = {} if infos is None else infos
with open(info_path, 'w', encoding='utf8') as fout:
data = json.dumps(infos)
fout.write(data)
def resume_or_scratch(self):
"""Resume from latest checkpoint at checkpoints in the output
directory or load a specified checkpoint.
If ``args.checkpoint_path`` is not None, load the checkpoint, else
resume training.
"""
scratch = None
if self.args.resume:
# just restore ckpt
# lr will resotre from optimizer ckpt
resume_json_path = os.path.join(self.checkpoint_dir,
self.args.resume + '.json')
with open(resume_json_path, 'r', encoding='utf8') as f:
resume_json = json.load(f)
self.iteration = 0
self.epoch = resume_json["epoch"]
# resotre model from *.pdparams
params_path = os.path.join(self.checkpoint_dir,
"{}".format(self.epoch)) + '.pdparams'
model_dict = paddle.load(params_path)
self.model.set_state_dict(model_dict)
# resotre optimizer from *.pdopt
optimizer_path = os.path.join(self.checkpoint_dir,
"{}".format(self.epoch)) + '.pdopt'
optimizer_dict = paddle.load(optimizer_path)
self.model_optimizer.set_state_dict(optimizer_dict['model'])
self.wavlm_optimizer.set_state_dict(optimizer_dict['wavlm'])
# resotre lr_scheduler from *.pdlrs
scheduler_path = os.path.join(self.checkpoint_dir,
"{}".format(self.epoch)) + '.pdlrs'
if os.path.isfile(os.path.join(scheduler_path)):
scheduler_dict = paddle.load(scheduler_path)
if self.config.model_scheduler == 'newbobscheduler':
self.model_lr_scheduler.load(scheduler_dict['model'])
if self.config.wavlm_scheduler == 'newbobscheduler':
self.wavlm_lr_scheduler.load(scheduler_dict['wavlm'])
logger.info(
f"Restore ckpt: epoch {self.epoch }, step {self.iteration}!")
scratch = False
else:
self.iteration = 0
self.epoch = 0
scratch = True
logger.info("Init from scratch!")
return scratch
def do_train(self):
"""The training process control by step."""
# !!!IMPORTANT!!!
# Try to export the model by script, if fails, we should refine
# the code to satisfy the script export requirements
# script_model = paddle.jit.to_static(self.model)
# script_model_path = str(self.checkpoint_dir / 'init')
# paddle.jit.save(script_model, script_model_path)
self.before_train()
if not self.use_streamdata:
logger.info(
f"Train Total Examples: {len(self.train_loader.dataset)}")
while self.epoch < self.config.n_epoch:
with Timer("Epoch-Train Time Cost: {}"):
self.model.train()
try:
data_start_time = time.time()
for batch_index, batch in enumerate(self.train_loader):
dataload_time = time.time() - data_start_time
msg = "Train:"
observation = OrderedDict()
with ObsScope(observation):
report("Rank", dist.get_rank())
report("epoch", self.epoch)
report('step', self.iteration)
report("model_lr", self.model_optimizer.get_lr())
report("wavlm_lr",
self.wavlm_optimizer.get_lr())
self.train_batch(batch_index, batch, msg)
self.after_train_batch()
report('iter', batch_index + 1)
if not self.use_streamdata:
report('total', len(self.train_loader))
report('reader_cost', dataload_time)
observation['batch_cost'] = observation[
'reader_cost'] + observation['step_cost']
observation['samples'] = observation['batch_size']
observation['ips,samples/s'] = observation[
'batch_size'] / observation['batch_cost']
for k, v in observation.items():
msg += f" {k.split(',')[0]}: "
msg += f"{v:>.8f}" if isinstance(v,
float) else f"{v}"
msg += f" {k.split(',')[1]}" if len(
k.split(',')) == 2 else ""
msg += ","
msg = msg[:-1] # remove the last ","
if (batch_index + 1) % self.config.log_interval == 0:
logger.info(msg)
data_start_time = time.time()
except Exception as e:
logger.error(e)
raise e
with Timer("Eval Time Cost: {}"):
total_loss, num_seen_utts = self.valid()
if dist.get_world_size() > 1:
num_seen_utts = paddle.to_tensor(num_seen_utts)
dist.all_reduce(num_seen_utts)
total_loss = paddle.to_tensor(total_loss)
dist.all_reduce(total_loss)
cv_loss = total_loss / num_seen_utts
cv_loss = float(cv_loss)
else:
cv_loss = float(total_loss)
logger.info(
'Epoch {} Val info val_loss {}'.format(self.epoch, cv_loss))
if self.visualizer:
self.visualizer.add_scalar(
tag='eval/cv_loss', value=cv_loss, step=self.epoch)
self.visualizer.add_scalar(
tag='eval/model_lr',
value=self.model_lr_scheduler(),
step=self.epoch)
self.visualizer.add_scalar(
tag='eval/wavlm_lr',
value=self.wavlm_lr_scheduler(),
step=self.epoch)
if self.config.model_scheduler == 'newbobscheduler':
self.model_lr_scheduler.step(cv_loss)
if self.config.wavlm_scheduler == 'newbobscheduler':
if not self.config.freeze_wavlm:
self.wavlm_lr_scheduler.step(cv_loss)
self.save(tag=self.epoch, infos={'val_loss': cv_loss})
self.avg_train_loss = 0.0
self.new_epoch()
def dataio_prepare(self, hparams):
"""This function prepares the datasets to be used in the brain class.
It also defines the data processing pipeline through user-defined functions."""
data_folder = hparams["data_folder"]
train_data = dataset.DynamicItemDataset.from_csv(
csv_path=hparams["train_data"],
replacements={"data_root": data_folder}, )
if hparams["sorting"] == "ascending":
# we sort training data to speed up training and get better results.
train_data = train_data.filtered_sorted(sort_key="duration")
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "descending":
train_data = train_data.filtered_sorted(
sort_key="duration", reverse=True)
# when sorting do not shuffle in dataloader ! otherwise is pointless
hparams["train_dataloader_opts"]["shuffle"] = False
elif hparams["sorting"] == "random":
pass
else:
raise NotImplementedError(
"sorting must be random, ascending or descending")
valid_data = dataset.DynamicItemDataset.from_csv(
csv_path=hparams["valid_data"],
replacements={"data_root": data_folder}, )
valid_data = valid_data.filtered_sorted(sort_key="duration")
test_data = dataset.DynamicItemDataset.from_csv(
csv_path=hparams["test_data"],
replacements={"data_root": data_folder}, )
test_data = test_data.filtered_sorted(sort_key="duration")
datasets = [train_data, valid_data, test_data]
# Defining tokenizer and loading it
tokenizer = AutoTokenizer.from_pretrained('bert-base-chinese')
self.tokenizer = tokenizer
# 2. Define audio pipeline:
@data_pipeline.takes("wav")
@data_pipeline.provides("sig")
def audio_pipeline(wav):
sig = dataio.read_audio(wav)
return sig
dataset.add_dynamic_item(datasets, audio_pipeline)
# 3. Define text pipeline:
@data_pipeline.takes("transcript")
@data_pipeline.provides("wrd", "tokens_list", "tokens")
def text_pipeline(wrd):
wrd = "".join(wrd.split(" "))
yield wrd
tokens_list = tokenizer(wrd)["input_ids"]
yield tokens_list
tokens = np.array(tokens_list, dtype="int64")
# tokens = paddle.to_tensor(tokens_list, dtype="int64")
yield tokens
dataset.add_dynamic_item(datasets, text_pipeline)
# 4. Set output:
dataset.set_output_keys(
datasets,
["id", "sig", "wrd", "tokens"], )
# 5. If Dynamic Batching is used, we instantiate the needed samplers.
train_batch_sampler = None
valid_batch_sampler = None
if hparams["dynamic_batching"]:
from sampler import DynamicBatchSampler # noqa
dynamic_hparams = hparams["dynamic_batch_sampler"]
num_buckets = dynamic_hparams["num_buckets"]
train_batch_sampler = DynamicBatchSampler(
train_data,
dynamic_hparams["max_batch_len"],
num_buckets=num_buckets,
length_func=lambda x: x["duration"],
shuffle=dynamic_hparams["shuffle_ex"],
batch_ordering=dynamic_hparams["batch_ordering"], )
valid_batch_sampler = DynamicBatchSampler(
valid_data,
dynamic_hparams["max_batch_len"],
num_buckets=num_buckets,
length_func=lambda x: x["duration"],
shuffle=dynamic_hparams["shuffle_ex"],
batch_ordering=dynamic_hparams["batch_ordering"], )
return (train_data, valid_data, test_data, tokenizer,
train_batch_sampler, valid_batch_sampler, )
def setup_dataloader(self):
config = self.config.clone()
self.use_streamdata = config.get("use_stream_data", False)
self.use_sb = config.get("use_sb_pipeline", False)
if self.use_sb:
hparams_file = config.sb_pipeline_conf
with open(hparams_file, 'r', encoding='utf8') as fin:
hparams = load_hyperpyyaml(fin, None)
(train_data, valid_data, test_data, tokenizer, train_bsampler,
valid_bsampler, ) = self.dataio_prepare(hparams)
train_dataloader_opts = hparams["train_dataloader_opts"]
valid_dataloader_opts = hparams["valid_dataloader_opts"]
if train_bsampler is not None:
train_dataloader_opts = {
"batch_sampler": train_bsampler,
"num_workers": hparams["num_workers"],
}
if valid_bsampler is not None:
valid_dataloader_opts = {"batch_sampler": valid_bsampler}
if self.train:
self.train_loader = make_dataloader(
train_data, stage='train', **train_dataloader_opts)
self.valid_loader = make_dataloader(
valid_data,
stage='val',
**valid_dataloader_opts, )
logger.info("Setup train/valid Dataloader!")
else:
self.test_loader = make_dataloader(
test_data, stage='test', **hparams["test_dataloader_opts"])
else:
if self.train:
self.train_loader = DataLoaderFactory.get_dataloader(
'train', config, self.args)
self.valid_loader = DataLoaderFactory.get_dataloader(
'valid', config, self.args)
logger.info("Setup train/valid Dataloader!")
else:
decode_batch_size = config.get('decode', dict()).get(
'decode_batch_size', 1)
self.test_loader = DataLoaderFactory.get_dataloader(
'test', config, self.args)
self.align_loader = DataLoaderFactory.get_dataloader(
'align', config, self.args)
logger.info("Setup test/align Dataloader!")
def setup_model(self):
config = self.config
model_conf = config
with UpdateConfig(model_conf):
if self.use_sb:
model_conf.output_dim = self.tokenizer.vocab_size
else:
if self.train:
model_conf.input_dim = self.train_loader.feat_dim
model_conf.output_dim = self.train_loader.vocab_size
else:
model_conf.input_dim = self.test_loader.feat_dim
model_conf.output_dim = self.test_loader.vocab_size
model = WavLMASR.from_config(model_conf)
model_dict = paddle.load(config.wavlm_params_path)
model.wavlm.set_state_dict(model_dict)
if self.parallel:
model = paddle.DataParallel(model, find_unused_parameters=True)
layer_tools.print_params(model, logger.info)
self.model = model
logger.info("Setup model!")
# setup speech augmentation for wavlm
if hasattr(config, 'audio_augment') and self.train:
self.speech_augmentation = TimeDomainSpecAugment(
**config.audio_augment)
if not self.train:
return
train_config = config
model_optim_type = train_config.model_optim
model_optim_conf = train_config.model_optim_conf
logger.info("optim_model:{},{}", model_optim_type, model_optim_conf)
wavlm_optim_type = train_config.wavlm_optim
wavlm_optim_conf = train_config.wavlm_optim_conf
logger.info("optim_model:{},{}", wavlm_optim_type,
wavlm_optim_conf)
model_scheduler_type = train_config.model_scheduler
model_scheduler_conf = train_config.model_scheduler_conf
wavlm_scheduler_type = train_config.wavlm_scheduler
wavlm_scheduler_conf = train_config.wavlm_scheduler_conf
model_scheduler_args = dict(
**{"learning_rate": model_optim_conf.lr,
"verbose": False}, **(dict(model_scheduler_conf)))
wavlm_scheduler_args = dict(
**{"learning_rate": wavlm_optim_conf.lr,
"verbose": False}, **(dict(wavlm_scheduler_conf)))
model_lr_scheduler = LRSchedulerFactory.from_args(model_scheduler_type,
model_scheduler_args)
wavlm_lr_scheduler = LRSchedulerFactory.from_args(
wavlm_scheduler_type, wavlm_scheduler_args)
def optimizer_args(
config,
optim_type,
optim_conf,
parameters,
lr_scheduler=None, ):
optim_arg = dict(optim_conf)
optim_arg.update({
"learning_rate":
lr_scheduler if lr_scheduler else optim_conf.lr,
"parameters":
parameters
})
return optim_arg
model_optimizer_args = optimizer_args(
config, model_optim_type,
model_optim_conf,
[{'params': model._layers.enc.parameters()}, {'params': model._layers.ctc.parameters()}] if self.parallel else [{'params': model.enc.parameters()}, {'params': model.ctc.parameters()}],
model_lr_scheduler
)
# [{'params': model._layers.ctc.parameters()}] if self.parallel else [{'params': model.ctc.parameters()}], model_lr_scheduler)
wavlm_optimizer_args = optimizer_args(
config, wavlm_optim_type, wavlm_optim_conf,
model._layers.wavlm.parameters() if self.parallel else
model.wavlm.parameters(), wavlm_lr_scheduler)
model_optimizer = OptimizerFactory.from_args(model_optim_type,
model_optimizer_args)
wavlm_optimizer = OptimizerFactory.from_args(wavlm_optim_type,
wavlm_optimizer_args)
self.model_optimizer = model_optimizer
self.wavlm_optimizer = wavlm_optimizer
self.model_lr_scheduler = model_lr_scheduler
self.wavlm_lr_scheduler = wavlm_lr_scheduler
logger.info("Setup optimizer/lr_scheduler!")
class WavLMASRTester(WavLMASRTrainer):
def __init__(self, config, args):
super().__init__(config, args)
self.text_featurizer = TextFeaturizer(
unit_type=config.unit_type, vocab=config.vocab_filepath)
self.vocab_list = self.text_featurizer.vocab_list
def id2token(self, texts, texts_len):
""" ord() id to chr() chr """
trans = []
for text, n in zip(texts, texts_len):
n = n.numpy().item()
ids = text[:n]
trans.append(self.text_featurizer.defeaturize(ids.numpy().tolist()))
return trans
def compute_metrics(self, id, audio, audio_len, texts, texts_len,
fout=None):
decode_cfg = self.config.decode
errors_sum, len_refs, num_ins = 0.0, 0, 0
errors_func = error_rate.char_errors if decode_cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if decode_cfg.error_rate_type == 'cer' else error_rate.wer
start_time = time.time()
target_transcripts = self.id2token(texts, texts_len)
result_transcripts, result_tokenids = self.model.decode(
audio,
text_feature=self.text_featurizer,
decoding_method=decode_cfg.decoding_method,
beam_size=decode_cfg.beam_size)
decode_time = time.time() - start_time
for utt, target, result, rec_tids in zip(
id, target_transcripts, result_transcripts, result_tokenids):
errors, len_ref = errors_func(target, result)
errors_sum += errors
len_refs += len_ref
num_ins += 1
if fout:
fout.write({
"utt": utt,
"refs": [target],
"hyps": [result],
"hyps_tokenid": [rec_tids],
})
logger.info(f"Utt: {utt}")
logger.info(f"Ref: {target}")
logger.info(f"Hyp: {result}")
logger.info("One example error rate [%s] = %f" % (
decode_cfg.error_rate_type, error_rate_func(target, result)))
return dict(
errors_sum=errors_sum,
len_refs=len_refs,
num_ins=num_ins, # num examples
error_rate=errors_sum / len_refs,
error_rate_type=decode_cfg.error_rate_type,
num_frames=audio_len.sum().numpy().item(),
decode_time=decode_time)
def sb_compute_metrics(self, id, sig, wrd, tokens, fout=None):
decode_cfg = self.config.decode
errors_sum, len_refs, num_ins = 0.0, 0, 0
errors_func = error_rate.char_errors if decode_cfg.error_rate_type == 'cer' else error_rate.word_errors
error_rate_func = error_rate.cer if decode_cfg.error_rate_type == 'cer' else error_rate.wer
start_time = time.time()
target_transcripts = wrd
result_transcripts, result_tokenids = self.model.decode(
sig[0],
text_feature=self.tokenizer,
decoding_method=decode_cfg.decoding_method,
beam_size=decode_cfg.beam_size,
sb_pipeline=True)
decode_time = time.time() - start_time
for utt, target, result, rec_tids in zip(
id, target_transcripts, result_transcripts, result_tokenids):
errors, len_ref = errors_func(target, result)
errors_sum += errors
len_refs += len_ref
num_ins += 1
if fout:
fout.write({
"utt": utt,
"refs": [target],
"hyps": [result],
"hyps_tokenid": [rec_tids],
})
logger.info(f"Utt: {utt}")
logger.info(f"Ref: {target}")
logger.info(f"Hyp: {result}")
logger.info("One example error rate [%s] = %f" % (
decode_cfg.error_rate_type, error_rate_func(target, result)))
return dict(
errors_sum=errors_sum,
len_refs=len_refs,
num_ins=num_ins, # num examples
error_rate=errors_sum / len_refs,
error_rate_type=decode_cfg.error_rate_type,
num_frames=sig[1].sum().numpy().item(),
decode_time=decode_time)
@mp_tools.rank_zero_only
@paddle.no_grad()
def test(self):
logger.info(f"Test Total Examples: {len(self.test_loader.dataset)}")
self.model.eval()
error_rate_type = None
errors_sum, len_refs, num_ins = 0.0, 0, 0
num_frames = 0.0
num_time = 0.0
# Initialized the decoder in model
decode_cfg = self.config.decode
vocab_list = self.vocab_list
decode_batch_size = decode_cfg.decode_batch_size
with jsonlines.open(self.args.result_file, 'w') as fout:
for i, batch in enumerate(self.test_loader):
if self.use_sb:
metrics = self.sb_compute_metrics(**batch, fout=fout)
else:
metrics = self.compute_metrics(*batch, fout=fout)
num_frames += metrics['num_frames']
num_time += metrics["decode_time"]
errors_sum += metrics['errors_sum']
len_refs += metrics['len_refs']
num_ins += metrics['num_ins']
error_rate_type = metrics['error_rate_type']
rtf = num_time / (num_frames)
logger.info(
"RTF: %f, Error rate [%s] (%d/?) = %f" %
(rtf, error_rate_type, num_ins, errors_sum / len_refs))
# logging
msg = "Test: "
msg += "epoch: {}, ".format(self.epoch)
msg += "step: {}, ".format(self.iteration)
msg += "Final error rate [%s] (%d/%d) = %f" % (
error_rate_type, num_ins, num_ins, errors_sum / len_refs)
logger.info(msg)
err_meta_path = os.path.splitext(self.args.result_file)[0] + '.err'
err_type_str = "{}".format(error_rate_type)
with open(err_meta_path, 'w', encoding='utf8') as f:
data = json.dumps({
"epoch":
self.epoch,
"step":
self.iteration,
"rtf":
rtf,
error_rate_type:
errors_sum / len_refs,
"dataset_hour": (num_frames) / 1000.0 / 3600.0,
"process_hour":
num_time / 1000.0 / 3600.0,
"num_examples":
num_ins,
"err_sum":
errors_sum,
"ref_len":
len_refs,
"decode_method":
self.config.decode.decoding_method,
})
f.write(data + '\n')

@ -0,0 +1,88 @@
# Copyright 2020 The HuggingFace Team. All rights reserved.
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import paddle.nn.functional as F
def _gelu_python(x):
"""
Original Implementation of the GELU activation function in Google BERT repo when initially created. For
information: OpenAI GPT's GELU is slightly different (and gives slightly different results): 0.5 * x * (1 +
torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) This is now written in C in
torch.nn.functional Also see the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
return x * 0.5 * (1.0 + paddle.erf(x / math.sqrt(2.0)))
def gelu_new(x):
"""
Implementation of the GELU activation function currently in Google BERT repo (identical to OpenAI GPT). Also see
the Gaussian Error Linear Units paper: https://arxiv.org/abs/1606.08415
"""
return 0.5 * x * (1.0 + paddle.tanh(
math.sqrt(2.0 / math.pi) * (x + 0.044715 * paddle.pow(x, 3.0))))
def gelu_fast(x):
return 0.5 * x * (1.0 + paddle.tanh(x * 0.7978845608 *
(1.0 + 0.044715 * x * x)))
gelu = gelu_fast
def _silu_python(x):
"""
See Gaussian Error Linear Units (Hendrycks et al., https://arxiv.org/abs/1606.08415) where the SiLU (Sigmoid Linear
Unit) was originally introduced and coined, and see Sigmoid-Weighted Linear Units for Neural Network Function
Approximation in Reinforcement Learning (Elfwing et al., https://arxiv.org/abs/1702.03118) and Swish: a Self-Gated
Activation Function (Ramachandran et al., https://arxiv.org/abs/1710.05941v1) where the SiLU was experimented with
later.
"""
return x * paddle.nn.functional.sigmoid(x)
def mish(x):
return x * paddle.tanh(paddle.nn.functional.softplus(x))
def linear_act(x):
return x
ACT2FN = {
"relu": F.relu,
"silu": _silu_python,
"swish": _silu_python,
"gelu": gelu,
"tanh": paddle.tanh,
"gelu_new": gelu_new,
"gelu_fast": gelu_fast,
"mish": mish,
"linear": linear_act,
"sigmoid": paddle.nn.functional.sigmoid,
}
def get_activation(activation_string):
if activation_string in ACT2FN:
return ACT2FN[activation_string]
else:
raise KeyError(
f"function {activation_string} not found in ACT2FN mapping {list(ACT2FN.keys())}"
)

@ -0,0 +1,508 @@
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from typing import Optional, List, Tuple
import math
def _mha_shape_check(query: paddle.Tensor, key: paddle.Tensor, value: paddle.Tensor,
key_padding_mask: Optional[paddle.Tensor], attn_mask: Optional[paddle.Tensor], num_heads: int):
# Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
# and returns if the input is batched or not.
# Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
# Shape check.
if query.dim() == 3:
# Batched Inputs
is_batched = True
assert key.dim() == 3 and value.dim() == 3, \
("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
if key_padding_mask is not None:
assert key_padding_mask.dim() == 2, \
("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
f" but found {key_padding_mask.dim()}-D tensor instead")
if attn_mask is not None:
assert attn_mask.dim() in (2, 3), \
("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
f" but found {attn_mask.dim()}-D tensor instead")
elif query.dim() == 2:
# Unbatched Inputs
is_batched = False
assert key.dim() == 2 and value.dim() == 2, \
("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
if key_padding_mask is not None:
assert key_padding_mask.dim() == 1, \
("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
f" but found {key_padding_mask.dim()}-D tensor instead")
if attn_mask is not None:
assert attn_mask.dim() in (2, 3), \
("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
f" but found {attn_mask.dim()}-D tensor instead")
if attn_mask.dim() == 3:
expected_shape = (num_heads, query.shape[0], key.shape[0])
assert attn_mask.shape == expected_shape, \
(f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
else:
raise AssertionError(
f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
def masked_fill(x, mask, value):
y = paddle.full(x.shape, value)
def scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal):
"""
Scaled Dot-Product Attention
"""
d_key = k.shape[-1]
scaled_q = paddle.scale(x=q, scale=d_key ** -0.5)
product = paddle.matmul(x=scaled_q, y=k, transpose_y=True)
weights = paddle.nn.functional.softmax(x=product + attn_mask)
if dropout_p:
weights = paddle.fluid.layers.nn.dropout(
weights,
dropout_prob=dropout_p,
dropout_implementation="upscale_in_train",
is_test=False)
out = paddle.matmul(x=weights, y=v)
return out
def addr(input, vec1, vec2, beta=1, alpha=1, out=None):
row = vec1.shape[0]
column = vec2.shape[0]
vec1 = paddle.unsqueeze(vec1, 0)
vec1 = paddle.transpose(vec1, [1, 0])
vec1 = paddle.expand(vec1, [row, column])
new_vec2 = paddle.zeros([column, column], dtype=vec2.dtype)
new_vec2[0, :] = vec2
out = alpha * paddle.matmul(vec1, new_vec2)
out = beta * input + out
return out
def multi_head_attention_forward(
x: paddle.Tensor,
num_heads: int,
q_proj: nn.Linear,
k_proj: nn.Linear,
v_proj: nn.Linear,
c_proj: nn.Linear,
attn_mask: Optional[paddle.Tensor] = None,
):
max_len, batch_size, emb_dim = x.shape
head_dim = emb_dim // num_heads
scaling = float(head_dim) ** -0.5
q = q_proj(x) # L, N, E
k = k_proj(x) # L, N, E
v = v_proj(x) # L, N, E
v = v.reshape((-1, batch_size * num_heads, head_dim)).transpose((1, 0, 2))
k = k.reshape((-1, batch_size * num_heads, head_dim)).transpose((1, 0, 2))
q = q.reshape((-1, batch_size * num_heads, head_dim)).transpose((1, 0, 2))
q = q * scaling
qk = paddle.matmul(q, k, transpose_y=True)
if attn_mask is not None:
if attn_mask.ndim == 2:
attn_mask.unsqueeze_(0)
assert attn_mask.shape[0] == 1 and attn_mask.shape[1] == max_len and attn_mask.shape[2] == max_len
qk += attn_mask
qk = F.softmax(qk, axis=-1)
atten = paddle.bmm(qk, v)
atten = atten.transpose((1, 0, 2))
atten = atten.reshape((max_len, batch_size, emb_dim))
atten = c_proj(atten)
return atten
def linear(input, weight, bias=None):
# compute y = x A^T + b
# Input: (N, in_feature) paddle tensor
# weight: (out_feature, in_feature) paddle tensor
# bias: (out_feature) paddle tensor
if input.dim() == 2 and bias is not None:
# fused op is marginally faster
return paddle.addmm(bias, input, weight)
output = paddle.matmul(input, weight)
if bias is not None:
output += bias
return output
def _in_projection_packed(
q: paddle.Tensor,
k: paddle.Tensor,
v: paddle.Tensor,
w: paddle.Tensor,
b: Optional[paddle.Tensor] = None,
) -> List[paddle.Tensor]:
r"""
Performs the in-projection step of the attention operation, using packed weights.
Output is a triple containing projection tensors for query, key and value.
Args:
q, k, v: query, key and value tensors to be projected. For self-attention,
these are typically the same tensor; for encoder-decoder attention,
k and v are typically the same tensor. (We take advantage of these
identities for performance if they are present.) Regardless, q, k and v
must share a common embedding dimension; otherwise their shapes may vary.
w: projection weights for q, k and v, packed into a single tensor. Weights
are packed along dimension 0, in q, k, v order.
b: optional projection biases for q, k and v, packed into a single tensor
in q, k, v order.
Shape:
Inputs:
- q: :math:`(..., E)` where E is the embedding dimension
- k: :math:`(..., E)` where E is the embedding dimension
- v: :math:`(..., E)` where E is the embedding dimension
- w: :math:`(E * 3, E)` where E is the embedding dimension
- b: :math:`E * 3` where E is the embedding dimension
Output:
- in output list :math:`[q', k', v']`, each output tensor will have the
same shape as the corresponding input tensor.
"""
# E = q.size(-1)
E = q.shape[-1]
if k is v:
if q is k:
# self-attention
proj = linear(q, w, b)
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose([2, 1, 0]).squeeze(-2).contiguous()
return proj[0], proj[1], proj[2]
else:
# encoder-decoder attention
w_q, w_kv = w.split([E, E * 2])
if b is None:
b_q = b_kv = None
else:
b_q, b_kv = b.split([E, E * 2])
q_proj = linear(q, w_q, b_q)
kv_proj = linear(k, w_kv, b_kv)
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose([2, 1, 0]).squeeze(-2).contiguous()
return (q_proj, kv_proj[0], kv_proj[1])
else:
w_q, w_k, w_v = w.chunk(3)
if b is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = b.chunk(3)
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
def _in_projection(
q: paddle.Tensor,
k: paddle.Tensor,
v: paddle.Tensor,
w_q: paddle.Tensor,
w_k: paddle.Tensor,
w_v: paddle.Tensor,
b_q: Optional[paddle.Tensor] = None,
b_k: Optional[paddle.Tensor] = None,
b_v: Optional[paddle.Tensor] = None,
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor]:
A, B, C = linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
return A, B, C
# return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
def multi_head_attention_forward_paddle(
query: paddle.Tensor,
key: paddle.Tensor,
value: paddle.Tensor,
embed_dim_to_check: int,
num_heads: int,
in_proj_weight: Optional[paddle.Tensor],
in_proj_bias: Optional[paddle.Tensor],
bias_k: Optional[paddle.Tensor],
bias_v: Optional[paddle.Tensor],
add_zero_attn: bool,
dropout_p: float,
out_proj_weight: paddle.Tensor,
out_proj_bias: Optional[paddle.Tensor],
training: bool = True,
key_padding_mask: Optional[paddle.Tensor] = None,
need_weights: bool = True,
attn_mask: Optional[paddle.Tensor] = None,
use_separate_proj_weight: bool = False,
q_proj_weight: Optional[paddle.Tensor] = None,
k_proj_weight: Optional[paddle.Tensor] = None,
v_proj_weight: Optional[paddle.Tensor] = None,
static_k: Optional[paddle.Tensor] = None,
static_v: Optional[paddle.Tensor] = None,
average_attn_weights: bool = True,
is_causal: bool = False,
) -> Tuple[paddle.Tensor, Optional[paddle.Tensor]]:
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
embed_dim_to_check: total dimension of the model.
num_heads: parallel attention heads.
in_proj_weight, in_proj_bias: input projection weight and bias.
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
dropout_p: probability of an element to be zeroed.
out_proj_weight, out_proj_bias: the output projection weight and bias.
training: apply dropout if is ``True``.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
is_causal: If specified, applies a causal mask as attention mask, and ignores
attn_mask for computing scaled dot product attention.
Default: ``False``.
use_separate_proj_weight: the function accept the proj. weights for query, key,
and value in different forms. If false, in_proj_weight will be used, which is
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
static_k, static_v: static key and value used for attention operators.
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
when ``need_weights=True.``. Default: True
Shape:
Inputs:
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
If a FloatTensor is provided, it will be directly added to the value.
If a BoolTensor is provided, the positions with the
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
positions. If a BoolTensor is provided, positions with ``True``
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
is provided, it will be added to the attention weight.
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
Outputs:
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
"""
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
# is batched, run the computation and before returning squeeze the
# batch dimension so that the output doesn't carry this temporary batch dimension.
# if not is_batched:
# # unsqueeze if the input is unbatched
# query = query.unsqueeze(1)
# key = key.unsqueeze(1)
# value = value.unsqueeze(1)
# if key_padding_mask is not None:
# key_padding_mask = key_padding_mask.unsqueeze(0)
# set up shape vars
# import pdb; pdb.set_trace()
tgt_len, bsz, embed_dim = query.shape
# tgt_len, bsz, embed_dim = query.shape
src_len, _, _ = key.shape
if is_causal:
attn_mask = None
assert embed_dim == embed_dim_to_check, \
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
if isinstance(embed_dim, paddle.Tensor):
# embed_dim can be a tensor when JIT tracing
head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
else:
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
if use_separate_proj_weight:
# allow MHA to have different embedding dimensions when separate projection weights are used
assert key.shape[:2] == value.shape[:2], \
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
else:
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
#
# compute in-projection
#
if not use_separate_proj_weight:
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
else:
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
if in_proj_bias is None:
b_q = b_k = b_v = None
else:
b_q, b_k, b_v = in_proj_bias.chunk(3)
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
# prep attention mask
if attn_mask is not None:
# ensure attn_mask's dim is 3
if attn_mask.dim() == 2:
correct_2d_size = (tgt_len, src_len)
if attn_mask.shape != correct_2d_size:
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
attn_mask = attn_mask.unsqueeze(0)
elif attn_mask.dim() == 3:
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
if tuple(attn_mask.shape) != correct_3d_size:
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
else:
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
# add bias along batch dimension (currently second)
if bias_k is not None and bias_v is not None:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
# k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
k = paddle.concat([k, bias_k.repeat(1, bsz, 1)], axis=1)
# v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
v = paddle.concat([v, bias_v.repeat(1, bsz, 1)], axis=1)
if attn_mask is not None:
# attn_mask = pad(attn_mask, (0, 1))
# pad last dim with 0 on one side and 1 on the other
attn_mask = paddle.concat([attn_mask, paddle.zeros_like(attn_mask[:, :, -1:])], axis=2)
if key_padding_mask is not None:
# key_padding_mask = pad(key_padding_mask, (0, 1))
# pad last dim with 0 on one side and 1 on the other
key_padding_mask = paddle.concat([key_padding_mask, paddle.zeros_like(key_padding_mask[:, -1:])], axis=1)
else:
assert bias_k is None
assert bias_v is None
#
# reshape q, k, v for multihead attention and make em batch first
#
# q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
q = q.reshape([tgt_len, bsz * num_heads, head_dim]).transpose([1, 0, 2])
if static_k is None:
# k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
k = k.reshape([k.shape[0], bsz * num_heads, head_dim]).transpose([1, 0, 2])
else:
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
assert static_k.size(0) == bsz * num_heads, \
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
assert static_k.size(2) == head_dim, \
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
k = static_k
if static_v is None:
# v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
v = v.reshape([v.shape[0], bsz * num_heads, head_dim]).transpose([1, 0, 2])
else:
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
assert static_v.size(0) == bsz * num_heads, \
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
assert static_v.size(2) == head_dim, \
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
v = static_v
# add zero attention along batch dimension (now first)
if add_zero_attn:
zero_attn_shape = (bsz * num_heads, 1, head_dim)
# k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
k = paddle.concat([k, paddle.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], axis=1)
# v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
v = paddle.concat([v, paddle.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], axis=1)
if attn_mask is not None:
# attn_mask = pad(attn_mask, (0, 1))
attn_mask = paddle.concat([attn_mask, paddle.zeros_like(attn_mask[:, :, -1:])], axis=2)
if key_padding_mask is not None:
# key_padding_mask = pad(key_padding_mask, (0, 1))
key_padding_mask = paddle.concat([key_padding_mask, paddle.zeros_like(key_padding_mask[:, -1:])], axis=1)
# update source sequence length after adjustments
src_len = k.shape[1]
# merge key padding and attention masks
if key_padding_mask is not None:
assert key_padding_mask.shape == (bsz, src_len), \
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
# key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len).expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
key_padding_mask = key_padding_mask.reshape([bsz, 1, 1, src_len]).expand([-1, num_heads, -1, -1]).reshape([bsz * num_heads, 1, src_len])
if attn_mask is None:
attn_mask = key_padding_mask
else:
attn_mask = attn_mask + key_padding_mask
# adjust dropout probability
if not training:
dropout_p = 0.0
#
# (deep breath) calculate attention and out projection
#
if need_weights:
B, Nt, E = q.shape
q_scaled = q / math.sqrt(E)
if attn_mask is not None:
# attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
attn_output_weights = addr(q_scaled, k.transpose(-2, -1))
else:
# attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
attn_output_weights = paddle.bmm(q_scaled, k.transpose(0, 2, 1))
# attn_output_weights = softmax(attn_output_weights, dim=-1)
attn_output_weights = paddle.nn.functional.softmax(attn_output_weights, axis=-1)
if dropout_p > 0.0:
# attn_output_weights = dropout(attn_output_weights, p=dropout_p)
attn_output_weights = paddle.nn.functional.dropout(attn_output_weights, p=dropout_p)
# attn_output = torch.bmm(attn_output_weights, v)
attn_output = paddle.bmm(attn_output_weights, v)
attn_output = attn_output.transpose([1, 0, 2]).reshape([tgt_len * bsz, embed_dim])
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
attn_output = attn_output.reshape([tgt_len, bsz, attn_output.shape[1]])
# optionally average attention weights over heads
# attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
attn_output_weights = attn_output_weights.reshape([bsz, num_heads, tgt_len, src_len])
if average_attn_weights:
attn_output_weights = attn_output_weights.mean(dim=1)
if not is_batched:
# squeeze the output if input was unbatched
attn_output = attn_output.squeeze(1)
attn_output_weights = attn_output_weights.squeeze(0)
return attn_output, attn_output_weights
else:
# attn_mask can be either (L,S) or (N*num_heads, L, S)
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
# in order to match the input for SDPA of (N, num_heads, L, S)
if attn_mask is not None:
if attn_mask.shape[0] == 1 and attn_mask.dim() == 3:
attn_mask = attn_mask.unsqueeze(0)
else:
# attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
attn_mask = attn_mask.reshape([bsz, num_heads, -1, src_len])
q = q.reshape([bsz, num_heads, tgt_len, head_dim])
k = k.reshape([bsz, num_heads, src_len, head_dim])
v = v.reshape([bsz, num_heads, src_len, head_dim])
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
attn_output = attn_output.transpose(perm=[2, 0, 1, 3]).reshape([bsz * tgt_len, embed_dim])
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
attn_output = attn_output.reshape([tgt_len, bsz, attn_output.shape[1]])
# if not is_batched:
# # squeeze the output if input was unbatched
# attn_output = attn_output.squeeze(1)
return attn_output, None

@ -0,0 +1,892 @@
# --------------------------------------------------------
# paddle: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
# Github source: https://github.com/microsoft/unilm/tree/master/paddle
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------
import math
import warnings
from typing import Dict, Optional, Tuple
from .functional import multi_head_attention_forward_paddle
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import Tensor
class TransposeLast(nn.Layer):
def __init__(self, deconstruct_idx=None):
super().__init__()
self.deconstruct_idx = deconstruct_idx
def forward(self, x):
if self.deconstruct_idx is not None:
x = x[self.deconstruct_idx]
return paddle.transpose(x, perm=[0, 2, 1])
class Fp32LayerNorm(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.layer_norm(
input.float(),
self.normalized_shape,
self.weight.float() if self.weight is not None else None,
self.bias.float() if self.bias is not None else None,
self.eps,
)
return output.type_as(input)
class Fp32GroupNorm(nn.GroupNorm):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
def forward(self, input):
output = F.group_norm(
input.float(),
self.num_groups,
self.weight.float() if self.weight is not None else None,
self.bias.float() if self.bias is not None else None,
self.eps,
)
return output.type_as(input)
# class GradMultiply(torch.autograd.Function):
# convert into paddle equivalent
# class GradMultiply(torch.autograd.Function):
# @staticmethod
# def forward(ctx, x, scale):
# ctx.scale = scale
# res = x.new(x)
# return res
# @staticmethod
# def backward(ctx, grad):
# return grad * ctx.scale, None
class SamePad(nn.Layer):
def __init__(self, kernel_size, causal=False):
super().__init__()
if causal:
self.remove = kernel_size - 1
else:
self.remove = 1 if kernel_size % 2 == 0 else 0
def forward(self, x):
if self.remove > 0:
x = x[:, :, : -self.remove]
return x
class Swish(nn.Layer):
"""Swish function
"""
def __init__(self):
"""Construct an MultiHeadedAttention object."""
super(Swish, self).__init__()
# self.act = torch.nn.Sigmoid()
self.act = nn.Sigmoid()
def forward(self, x):
return x * self.act(x)
class GLU_Linear(nn.Layer):
def __init__(self, input_dim, output_dim, glu_type="sigmoid", bias_in_glu=True):
super(GLU_Linear, self).__init__()
self.glu_type = glu_type
self.output_dim = output_dim
if glu_type == "sigmoid":
self.glu_act = nn.Sigmoid()
elif glu_type == "swish":
self.glu_act = Swish()
elif glu_type == "relu":
self.glu_act = nn.ReLU()
elif glu_type == "gelu":
self.glu_act = nn.GELU()
if bias_in_glu:
self.linear = nn.Linear(input_dim, output_dim * 2, True)
else:
self.linear = nn.Linear(input_dim, output_dim * 2, False)
def forward(self, x):
# to be consistent with GLU_Linear, we assume the input always has the #channel (#dim) in the last dimension of the tensor, so need to switch the dimension first for 1D-Conv case
x = self.linear(x)
if self.glu_type == "bilinear":
x = (x[:, :, 0:self.output_dim] * x[:, :, self.output_dim:self.output_dim * 2])
else:
x = (x[:, :, 0:self.output_dim] * self.glu_act(x[:, :, self.output_dim:self.output_dim * 2]))
return x
def gelu_accurate(x):
if not hasattr(gelu_accurate, "_a"):
gelu_accurate._a = math.sqrt(2 / math.pi)
return (
0.5 * x * (1 + paddle.tanh(gelu_accurate._a * (x + 0.044715 * paddle.pow(x, 3))))
)
def gelu(x: Tensor) -> Tensor:
return nn.functional.gelu(x.astype("float32")).astype(x.dtype)
def get_activation_fn(activation: str):
"""Returns the activation function corresponding to `activation`"""
if activation == "relu":
return F.relu
elif activation == "gelu":
return gelu
elif activation == "gelu_fast":
warnings.warn(
"--activation-fn=gelu_fast has been renamed to gelu_accurate"
)
return gelu_accurate
elif activation == "gelu_accurate":
return gelu_accurate
elif activation == "tanh":
# return torch.tanh
return paddle.tanh
elif activation == "linear":
return lambda x: x
elif activation == "glu":
return lambda x: x
else:
raise RuntimeError("--activation-fn {} not supported".format(activation))
def init_bert_params(module):
"""
Initialize the weights specific to the BERT Model.
This overrides the default initializations depending on the specified arguments.
1. If normal_init_linear_weights is set then weights of linear
layer will be initialized using the normal distribution and
bais will be set to the specified value.
2. If normal_init_embed_weights is set then weights of embedding
layer will be initialized using the normal distribution.
3. If normal_init_proj_weights is set then weights of
in_project_weight for MultiHeadAttention initialized using
the normal distribution (to be validated).
"""
def normal_(data):
# with FSDP, module params will be on CUDA, so we cast them back to CPU
# so that the RNG is consistent with and without FSDP
data.copy_(
data.cpu().normal_(mean=0.0, std=0.02).to(data.device)
)
if isinstance(module, nn.Linear):
# normal_(module.weight.data)
if module.bias is not None:
# module.bias.data.zero_()
pass
if isinstance(module, nn.Embedding):
# normal_(module.weight.data)
if module.padding_idx is not None:
# module.weight.data[module.padding_idx].zero_()
pass
if isinstance(module, MultiheadAttention):
pass
# normal_(module.q_proj.weight.data)
# normal_(module.k_proj.weight.data)
# normal_(module.v_proj.weight.data)
def quant_noise(module, p, block_size):
"""
Wraps modules and applies quantization noise to the weights for
subsequent quantization with Iterative Product Quantization as
described in "Training with Quantization Noise for Extreme Model Compression"
Args:
- module: nn.Layer
- p: amount of Quantization Noise
- block_size: size of the blocks for subsequent quantization with iPQ
Remarks:
- Module weights must have the right sizes wrt the block size
- Only Linear, Embedding and Conv2d modules are supported for the moment
- For more detail on how to quantize by blocks with convolutional weights,
see "And the Bit Goes Down: Revisiting the Quantization of Neural Networks"
- We implement the simplest form of noise here as stated in the paper
which consists in randomly dropping blocks
"""
# if no quantization noise, don't register hook
if p <= 0:
return module
# supported modules
assert isinstance(module, (nn.Linear, nn.Embedding, nn.Conv2d))
# test whether module.weight has the right sizes wrt block_size
is_conv = module.weight.ndim == 4
# 2D matrix
if not is_conv:
assert (
module.weight.size(1) % block_size == 0
), "Input features must be a multiple of block sizes"
# 4D matrix
else:
# 1x1 convolutions
if module.kernel_size == (1, 1):
assert (
module.in_channels % block_size == 0
), "Input channels must be a multiple of block sizes"
# regular convolutions
else:
k = module.kernel_size[0] * module.kernel_size[1]
assert k % block_size == 0, "Kernel size must be a multiple of block size"
def _forward_pre_hook(mod, input):
# no noise for evaluation
if mod.training:
if not is_conv:
# gather weight and sizes
weight = mod.weight
in_features = weight.size(1)
out_features = weight.size(0)
# split weight matrix into blocks and randomly drop selected blocks
mask = paddle.zeros(
in_features // block_size * out_features, device=weight.device
)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_features)
else:
# gather weight and sizes
weight = mod.weight
in_channels = mod.in_channels
out_channels = mod.out_channels
# split weight matrix into blocks and randomly drop selected blocks
if mod.kernel_size == (1, 1):
mask = paddle.zeros(
int(in_channels // block_size * out_channels),
device=weight.device,
)
mask.bernoulli_(p)
mask = mask.repeat_interleave(block_size, -1).view(-1, in_channels)
else:
mask = paddle.zeros(
weight.size(0), weight.size(1), device=weight.device
)
mask.bernoulli_(p)
mask = (
mask.unsqueeze(2)
.unsqueeze(3)
.repeat(1, 1, mod.kernel_size[0], mod.kernel_size[1])
)
# scale weights and apply mask
mask = mask.to(
# torch.bool
paddle.bool
) # x.bool() is not currently supported in TorchScript
s = 1 / (1 - p)
mod.weight.data = s * weight.masked_fill(mask, 0)
module.register_forward_pre_hook(_forward_pre_hook)
return module
class MultiheadAttention(nn.Layer):
"""Multi-headed attention.
See "Attention Is All You Need" for more details.
"""
def __init__(
self,
embed_dim,
num_heads,
kdim=None,
vdim=None,
dropout=0.0,
bias=True,
add_bias_kv=False,
add_zero_attn=False,
self_attention=False,
encoder_decoder_attention=False,
q_noise=0.0,
qn_block_size=8,
has_relative_attention_bias=True,
num_buckets=32,
max_distance=128,
gru_rel_pos=True,
rescale_init=False,
):
super().__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self.qkv_same_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout_module = nn.Dropout(dropout)
self.has_relative_attention_bias = has_relative_attention_bias
self.num_buckets = num_buckets
self.max_distance = max_distance
if self.has_relative_attention_bias:
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
self.head_dim = embed_dim // num_heads
self.q_head_dim = self.head_dim
self.k_head_dim = self.head_dim
assert (
self.head_dim * num_heads == self.embed_dim
), "embed_dim must be divisible by num_heads"
self.scaling = self.head_dim ** -0.5
self.self_attention = self_attention
self.encoder_decoder_attention = encoder_decoder_attention
assert not self.self_attention or self.qkv_same_dim, (
"Self-attention requires query, key and " "value to be of the same size"
)
k_bias = True
if rescale_init:
k_bias = False
k_embed_dim = embed_dim
q_embed_dim = embed_dim
self.k_proj = quant_noise(
nn.Linear(self.kdim, k_embed_dim, bias_attr=k_bias), q_noise, qn_block_size
)
self.v_proj = quant_noise(
nn.Linear(self.vdim, embed_dim, bias_attr=bias), q_noise, qn_block_size
)
self.q_proj = quant_noise(
nn.Linear(embed_dim, q_embed_dim, bias_attr=bias), q_noise, qn_block_size
)
self.out_proj = quant_noise(
nn.Linear(embed_dim, embed_dim, bias_attr=bias), q_noise, qn_block_size
)
if add_bias_kv:
self.bias_k = self.create_parameter(
shape=[1, 1, embed_dim], dtype="float32"
)
self.bias_v = self.create_parameter(
shape=[1, 1, embed_dim], dtype="float32"
)
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self.gru_rel_pos = gru_rel_pos
if self.gru_rel_pos:
self.grep_linear = nn.Linear(self.q_head_dim, 8)
# self.grep_a = nn.Parameter(torch.ones(1, num_heads, 1, 1))
self.grep_a = self.create_parameter(
shape=[1, num_heads, 1, 1], dtype="float32"
)
self.reset_parameters()
def reset_parameters(self):
pass
# if self.qkv_same_dim:
# # Empirically observed the convergence to be much better with
# # the scaled initialization
# # nn.init.xavier_uniform_(self.k_proj.weight, gain=1 / math.sqrt(2))
# # self.k_proj.weight.set_value(
# # paddle.nn.initializer.XavierUniform(1, 1)(self.k_proj.weight.shape)
# # )
# # self.v_proj.weight.set_value(
# # paddle.nn.initializer.XavierUniform(1, 1)(self.v_proj.weight.shape)
# # )
# # self.q_proj.weight.set_value(
# # paddle.nn.initializer.XavierUniform(1, 1)(self.q_proj.weight.shape)
# # )
# pass
# # nn.init.xavier_uniform_(self.v_proj.weight, gain=1 / math.sqrt(2))
# # nn.init.xavier_uniform_(self.q_proj.weight, gain=1 / math.sqrt(2))
# else:
# # nn.init.xavier_uniform_(self.k_proj.weight)
# # nn.init.xavier_uniform_(self.v_proj.weight)
# # nn.init.xavier_uniform_(self.q_proj.weight)
# # self.k_proj.weight.set_value(
# # paddle.nn.initializer.XavierUniform()(self.k_proj.weight.shape)
# # )
# # self.v_proj.weight.set_value(
# # paddle.nn.initializer.XavierUniform()(self.v_proj.weight.shape)
# # )
# # self.q_proj.weight.set_value(
# # paddle.nn.initializer.XavierUniform()(self.q_proj.weight.shape)
# # )
# pass
# nn.init.xavier_uniform_(self.out_proj.weight)
# if self.out_proj.bias is not None:
# nn.init.constant_(self.out_proj.bias, 0.0)
# if self.bias_k is not None:
# nn.init.xavier_normal_(self.bias_k)
# if self.bias_v is not None:
# nn.init.xavier_normal_(self.bias_v)
# if self.has_relative_attention_bias:
# nn.init.xavier_normal_(self.relative_attention_bias.weight)
def _relative_positions_bucket(self, relative_positions, bidirectional=True):
num_buckets = self.num_buckets
max_distance = self.max_distance
relative_buckets = 0
if bidirectional:
num_buckets = num_buckets // 2
relative_buckets += (relative_positions > 0).astype("int64") * num_buckets
relative_positions = paddle.abs(relative_positions)
else:
relative_positions = -paddle.minimum(relative_positions, paddle.zeros_like(relative_positions))
max_exact = num_buckets // 2
is_small = relative_positions < max_exact
relative_postion_if_large = max_exact + (
paddle.log(relative_positions.astype("float32") / max_exact)
/ math.log(max_distance / max_exact)
* (num_buckets - max_exact)
).astype("int64")
relative_postion_if_large = paddle.minimum(
relative_postion_if_large, paddle.full_like(relative_postion_if_large, num_buckets - 1)
)
relative_buckets += paddle.where(is_small, relative_positions, relative_postion_if_large)
return relative_buckets
def compute_bias(self, query_length, key_length):
context_position = paddle.arange(query_length, dtype="int64")[:, None]
memory_position = paddle.arange(key_length, dtype="int64")[None, :]
relative_position = memory_position - context_position
relative_position_bucket = self._relative_positions_bucket(
relative_position,
bidirectional=True
)
# relative_position_bucket = relative_position_bucket.to(self.relative_attention_bias.weight.device)
values = self.relative_attention_bias(relative_position_bucket)
values = values.transpose([2, 0, 1])
return values
def forward(
self,
query,
key: Optional[Tensor],
value: Optional[Tensor],
key_padding_mask: Optional[Tensor] = None,
incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]] = None,
need_weights: bool = True,
static_kv: bool = False,
attn_mask: Optional[Tensor] = None,
before_softmax: bool = False,
need_head_weights: bool = False,
position_bias: Optional[Tensor] = None
) -> Tuple[Tensor, Optional[Tensor], Optional[Tensor]]:
"""Input shape: Time x Batch x Channel
Args:
key_padding_mask (ByteTensor, optional): mask to exclude
keys that are pads, of shape `(batch, src_len)`, where
padding elements are indicated by 1s.
need_weights (bool, optional): return the attention weights,
averaged over heads (default: False).
attn_mask (ByteTensor, optional): typically used to
implement causal attention, where the mask prevents the
attention from looking forward in time (default: None).
before_softmax (bool, optional): return the raw attention
weights and values before the attention softmax.
need_head_weights (bool, optional): return the attention
weights for each head. Implies *need_weights*. Default:
return the average attention weights over all heads.
"""
if need_head_weights:
need_weights = True
tgt_len, bsz, embed_dim = query.shape
src_len = tgt_len
assert embed_dim == self.embed_dim
assert list(query.shape) == [tgt_len, bsz, embed_dim]
if key is not None:
src_len, key_bsz, _ = key.shape
if self.has_relative_attention_bias and position_bias is None:
position_bias = self.compute_bias(tgt_len, src_len)
position_bias_ = position_bias.unsqueeze(0)
position_bias = paddle.concat([position_bias_ for _ in range(bsz)], axis=0)
position_bias = position_bias.reshape([bsz * self.num_heads, tgt_len, src_len])
if (
# not is_tpu # don't use PyTorch version on TPUs
incremental_state is None
and not static_kv
and self.q_head_dim == self.head_dim
):
assert key is not None and value is not None
assert attn_mask is None
attn_mask_rel_pos = None
if position_bias is not None:
attn_mask_rel_pos = position_bias
if self.gru_rel_pos:
query_layer = query.transpose([1, 0, 2])
new_x_shape = query_layer.shape[:-1] + [self.num_heads, -1]
query_layer = query_layer.reshape(new_x_shape)
query_layer = query_layer.transpose([0, 2, 1, 3])
_B, _H, _L, __ = query_layer.shape
gate_a, gate_b = paddle.nn.functional.sigmoid(self.grep_linear(query_layer).reshape([_B, _H, _L, 2, 4]).sum(-1, keepdim=False)).chunk(2, axis=-1)
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
attn_mask_rel_pos = gate_a_1.reshape([bsz * self.num_heads, -1, 1]) * position_bias
attn_mask_rel_pos = attn_mask_rel_pos.reshape((-1, tgt_len, tgt_len))
k_proj_bias = self.k_proj.bias
if k_proj_bias is None:
k_proj_bias = paddle.zeros_like(self.q_proj.bias)
x, attn = multi_head_attention_forward_paddle(
query,
key,
value,
self.embed_dim,
self.num_heads,
paddle.empty([0]),
paddle.concat((self.q_proj.bias, self.k_proj.bias, self.v_proj.bias), axis=0),
self.bias_k,
self.bias_v,
self.add_zero_attn,
self.dropout_module.p,
self.out_proj.weight,
self.out_proj.bias,
self.training,
key_padding_mask,
need_weights,
attn_mask_rel_pos,
use_separate_proj_weight=True,
q_proj_weight=self.q_proj.weight,
k_proj_weight=self.k_proj.weight,
v_proj_weight=self.v_proj.weight,
)
return x, attn, position_bias
if incremental_state is not None:
saved_state = self._get_input_buffer(incremental_state)
if saved_state is not None and "prev_key" in saved_state:
# previous time steps are cached - no need to recompute
# key and value if they are static
if static_kv:
assert self.encoder_decoder_attention and not self.self_attention
key = value = None
else:
saved_state = None
if self.self_attention:
q = self.q_proj(query)
k = self.k_proj(query)
v = self.v_proj(query)
elif self.encoder_decoder_attention:
# encoder-decoder attention
q = self.q_proj(query)
if key is None:
assert value is None
k = v = None
else:
k = self.k_proj(key)
v = self.v_proj(key)
else:
assert key is not None and value is not None
q = self.q_proj(query)
k = self.k_proj(key)
v = self.v_proj(value)
q *= self.scaling
if self.bias_k is not None:
assert self.bias_v is not None
k = paddle.concat([k, self.bias_k.repeat(1, bsz, 1)], axis=0)
v = paddle.concat([v, self.bias_v.repeat(1, bsz, 1)], axis=0)
if attn_mask is not None:
attn_mask = paddle.concat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], axis=1
)
if key_padding_mask is not None:
key_padding_mask = paddle.concat(
[
key_padding_mask,
key_padding_mask.new_zeros(key_padding_mask.size(0), 1),
],
axis=1,
)
q = (
q.contiguous()
.view(tgt_len, bsz * self.num_heads, self.q_head_dim)
.transpose(0, 1)
)
if k is not None:
k = (
k.contiguous()
.view(-1, bsz * self.num_heads, self.k_head_dim)
.transpose(0, 1)
)
if v is not None:
v = (
v.contiguous()
.view(-1, bsz * self.num_heads, self.head_dim)
.transpose(0, 1)
)
if saved_state is not None:
# saved states are stored with shape (bsz, num_heads, seq_len, head_dim)
if "prev_key" in saved_state:
_prev_key = saved_state["prev_key"]
assert _prev_key is not None
prev_key = _prev_key.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
k = prev_key
else:
assert k is not None
k = paddle.concat([prev_key, k], axis=1)
src_len = k.size(1)
if "prev_value" in saved_state:
_prev_value = saved_state["prev_value"]
assert _prev_value is not None
prev_value = _prev_value.view(bsz * self.num_heads, -1, self.head_dim)
if static_kv:
v = prev_value
else:
assert v is not None
v = paddle.concat([prev_value, v], axis=1)
prev_key_padding_mask: Optional[Tensor] = None
if "prev_key_padding_mask" in saved_state:
prev_key_padding_mask = saved_state["prev_key_padding_mask"]
assert k is not None and v is not None
key_padding_mask = MultiheadAttention._append_prev_key_padding_mask(
key_padding_mask=key_padding_mask,
prev_key_padding_mask=prev_key_padding_mask,
batch_size=bsz,
src_len=k.size(1),
static_kv=static_kv,
)
saved_state["prev_key"] = k.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_value"] = v.view(bsz, self.num_heads, -1, self.head_dim)
saved_state["prev_key_padding_mask"] = key_padding_mask
# In this branch incremental_state is never None
assert incremental_state is not None
incremental_state = self._set_input_buffer(incremental_state, saved_state)
assert k is not None
assert k.size(1) == src_len
# This is part of a workaround to get around fork/join parallelism
# not supporting Optional types.
if key_padding_mask is not None and key_padding_mask.dim() == 0:
key_padding_mask = None
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
if self.add_zero_attn:
assert v is not None
src_len += 1
k = paddle.concat([k, k.new_zeros((k.size(0), 1) + k.shape[2:])], axis=1)
v = paddle.concat([v, v.new_zeros((v.size(0), 1) + v.shape[2:])], axis=1)
if attn_mask is not None:
attn_mask = paddle.concat(
[attn_mask, attn_mask.new_zeros(attn_mask.size(0), 1)], axis=1
)
if key_padding_mask is not None:
key_padding_mask = paddle.concat(
[
key_padding_mask,
paddle.zeros(key_padding_mask.size(0), 1).type_as(
key_padding_mask
),
],
axis=1,
)
# attn_weights = torch.bmm(q, k.transpose(1, 2))
attn_weights = paddle.bmm(q, k.transpose(1, 2))
attn_weights = self.apply_sparse_mask(attn_weights, tgt_len, src_len, bsz)
assert list(attn_weights.shape) == [bsz * self.num_heads, tgt_len, src_len]
if attn_mask is not None:
attn_mask = attn_mask.unsqueeze(0)
attn_weights += attn_mask
if key_padding_mask is not None:
# don't attend to padding symbols
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
if not is_tpu:
attn_weights = attn_weights.masked_fill(
# key_padding_mask.unsqueeze(1).unsqueeze(2).to(torch.bool),
key_padding_mask.unsqueeze(1).unsqueeze(2).to(paddle.bool),
float("-inf"),
)
else:
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.masked_fill(key_padding_mask, float("-inf"))
attn_weights = attn_weights.transpose(0, 2)
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
if before_softmax:
return attn_weights, v, position_bias
if position_bias is not None:
if self.gru_rel_pos == 1:
query_layer = q.view(bsz, self.num_heads, tgt_len, self.q_head_dim)
_B, _H, _L, __ = query_layer.shape
# gate_a, gate_b = torch.sigmoid(self.grep_linear(query_layer).view(
# _B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, dim=-1)
gate_a, gate_b = paddle.sigmoid(self.grep_linear(query_layer).view(
_B, _H, _L, 2, 4).sum(-1, keepdim=False)).chunk(2, axis=-1)
gate_a_1 = gate_a * (gate_b * self.grep_a - 1.0) + 2.0
position_bias = gate_a_1.view(bsz * self.num_heads, -1, 1) * position_bias
position_bias = position_bias.view(attn_weights.shape)
attn_weights = attn_weights + position_bias
attn_weights_float = F.softmax(
attn_weights, dim=-1
)
attn_weights = attn_weights_float.type_as(attn_weights)
attn_probs = self.dropout_module(attn_weights)
assert v is not None
# attn = torch.bmm(attn_probs, v)
attn = paddle.bmm(attn_probs, v)
assert list(attn.shape) == [bsz * self.num_heads, tgt_len, self.head_dim]
attn = attn.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn = self.out_proj(attn)
attn_weights: Optional[Tensor] = None
if need_weights:
attn_weights = attn_weights_float.view(
bsz, self.num_heads, tgt_len, src_len
).transpose(1, 0)
if not need_head_weights:
# average attention weights over heads
attn_weights = attn_weights.mean(dim=0)
return attn, attn_weights, position_bias
@staticmethod
def _append_prev_key_padding_mask(
key_padding_mask: Optional[Tensor],
prev_key_padding_mask: Optional[Tensor],
batch_size: int,
src_len: int,
static_kv: bool,
) -> Optional[Tensor]:
# saved key padding masks have shape (bsz, seq_len)
if prev_key_padding_mask is not None and static_kv:
new_key_padding_mask = prev_key_padding_mask
elif prev_key_padding_mask is not None and key_padding_mask is not None:
# new_key_padding_mask = torch.cat(
# [prev_key_padding_mask.float(), key_padding_mask.float()], dim=1
# )
new_key_padding_mask = paddle.concat(
[prev_key_padding_mask.float(), key_padding_mask.float()], axis=1
)
# During incremental decoding, as the padding token enters and
# leaves the frame, there will be a time when prev or current
# is None
elif prev_key_padding_mask is not None:
if src_len > prev_key_padding_mask.size(1):
# filler = torch.zeros(
# (batch_size, src_len - prev_key_padding_mask.size(1)),
# device=prev_key_padding_mask.device,
# )
filler = paddle.zeros(
(batch_size, src_len - prev_key_padding_mask.size(1)),
device=prev_key_padding_mask.device,
)
# new_key_padding_mask = torch.cat(
# [prev_key_padding_mask.float(), filler.float()], dim=1
# )
new_key_padding_mask = paddle.concat(
[prev_key_padding_mask.float(), filler.float()], axis=1
)
else:
new_key_padding_mask = prev_key_padding_mask.float()
elif key_padding_mask is not None:
if src_len > key_padding_mask.size(1):
# filler = torch.zeros(
# (batch_size, src_len - key_padding_mask.size(1)),
# device=key_padding_mask.device,
# )
filler = paddle.zeros(
(batch_size, src_len - key_padding_mask.size(1)),
device=key_padding_mask.device,
)
# new_key_padding_mask = torch.cat(
# [filler.float(), key_padding_mask.float()], dim=1
# )
new_key_padding_mask = paddle.concat(
[filler.float(), key_padding_mask.float()], axis=1
)
else:
new_key_padding_mask = key_padding_mask.float()
else:
new_key_padding_mask = prev_key_padding_mask
return new_key_padding_mask
def _get_input_buffer(
self, incremental_state: Optional[Dict[str, Dict[str, Optional[Tensor]]]]
) -> Dict[str, Optional[Tensor]]:
result = self.get_incremental_state(incremental_state, "attn_state")
if result is not None:
return result
else:
empty_result: Dict[str, Optional[Tensor]] = {}
return empty_result
def _set_input_buffer(
self,
incremental_state: Dict[str, Dict[str, Optional[Tensor]]],
buffer: Dict[str, Optional[Tensor]],
):
return self.set_incremental_state(incremental_state, "attn_state", buffer)
def apply_sparse_mask(self, attn_weights, tgt_len: int, src_len: int, bsz: int):
return attn_weights

@ -0,0 +1,251 @@
# Copyright (c) 2023 speechbrain Authors. All Rights Reserved.
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from speechbrain 2023 (https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/processing/signal_processing.py)
"""
Low level signal processing utilities
Authors
* Peter Plantinga 2020
* Francois Grondin 2020
* William Aris 2020
* Samuele Cornell 2020
* Sarthak Yadav 2022
"""
import numpy as np
import paddle
def blackman_window(window_length, periodic=True):
"""Blackman window function.
Arguments
---------
window_length : int
Controlling the returned window size.
periodic : bool
Determines whether the returned window trims off the
last duplicate value from the symmetric window
Returns
-------
A 1-D tensor of size (window_length) containing the window
"""
if window_length == 0:
return []
if window_length == 1:
return paddle.ones([1])
if periodic:
window_length += 1
window = paddle.arange(window_length) * (np.pi / (window_length - 1))
window = 0.08 * paddle.cos(window * 4) - 0.5 * paddle.cos(window * 2) + 0.42
return window[:-1] if periodic else window
def compute_amplitude(waveforms, lengths=None, amp_type="avg", scale="linear"):
"""Compute amplitude of a batch of waveforms.
Arguments
---------
waveform : tensor
The waveforms used for computing amplitude.
Shape should be `[time]` or `[batch, time]` or
`[batch, time, channels]`.
lengths : tensor
The lengths of the waveforms excluding the padding.
Shape should be a single dimension, `[batch]`.
amp_type : str
Whether to compute "avg" average or "peak" amplitude.
Choose between ["avg", "peak"].
scale : str
Whether to compute amplitude in "dB" or "linear" scale.
Choose between ["linear", "dB"].
Returns
-------
The average amplitude of the waveforms.
Example
-------
>>> signal = paddle.sin(paddle.arange(16000.0)).unsqueeze(0)
>>> compute_amplitude(signal, signal.size(1))
tensor([[0.6366]])
"""
if len(waveforms.shape) == 1:
waveforms = waveforms.unsqueeze(0)
assert amp_type in ["avg", "peak"]
assert scale in ["linear", "dB"]
if amp_type == "avg":
if lengths is None:
out = paddle.mean(paddle.abs(waveforms), axis=1, keepdim=True)
else:
wav_sum = paddle.sum(paddle.abs(waveforms), axis=1, keepdim=True)
out = wav_sum / lengths
elif amp_type == "peak":
out = paddle.max(paddle.abs(waveforms), axis=1, keepdim=True)[0]
else:
raise NotImplementedError
if scale == "linear":
return out
elif scale == "dB":
return paddle.clip(20 * paddle.log10(out), min=-80) # clamp zeros
else:
raise NotImplementedError
def convolve1d(
waveform,
kernel,
padding=0,
pad_type="constant",
stride=1,
groups=1,
use_fft=False,
rotation_index=0, ):
"""Use paddle.nn.functional to perform 1d padding and conv.
Arguments
---------
waveform : tensor
The tensor to perform operations on.
kernel : tensor
The filter to apply during convolution.
padding : int or tuple
The padding (pad_left, pad_right) to apply.
If an integer is passed instead, this is passed
to the conv1d function and pad_type is ignored.
pad_type : str
The type of padding to use. Passed directly to
`paddle.nn.functional.pad`, see Paddle documentation
for available options.
stride : int
The number of units to move each time convolution is applied.
Passed to conv1d. Has no effect if `use_fft` is True.
groups : int
This option is passed to `conv1d` to split the input into groups for
convolution. Input channels should be divisible by the number of groups.
use_fft : bool
When `use_fft` is passed `True`, then compute the convolution in the
spectral domain using complex multiply. This is more efficient on CPU
when the size of the kernel is large (e.g. reverberation). WARNING:
Without padding, circular convolution occurs. This makes little
difference in the case of reverberation, but may make more difference
with different kernels.
rotation_index : int
This option only applies if `use_fft` is true. If so, the kernel is
rolled by this amount before convolution to shift the output location.
Returns
-------
The convolved waveform.
Example
-------
>>> from speechbrain.dataio.dataio import read_audio
>>> signal = read_audio('tests/samples/single-mic/example1.wav')
>>> signal = signal.unsqueeze(0).unsqueeze(2)
>>> kernel = paddle.rand([1, 10, 1])
>>> signal = convolve1d(signal, kernel, padding=(9, 0))
"""
if len(waveform.shape) != 3:
raise ValueError("Convolve1D expects a 3-dimensional tensor")
# Move time dimension last, which pad and fft and conv expect.
waveform = waveform.transpose([0, 2, 1])
kernel = kernel.transpose([0, 2, 1])
# Padding can be a tuple (left_pad, right_pad) or an int
if isinstance(padding, tuple):
waveform = paddle.nn.functional.pad(
x=waveform, pad=padding, mode=pad_type, data_format='NCL')
# This approach uses FFT, which is more efficient if the kernel is large
if use_fft:
# Pad kernel to same length as signal, ensuring correct alignment
zero_length = waveform.shape[-1] - kernel.shape[-1]
# Handle case where signal is shorter
if zero_length < 0:
kernel = kernel[..., :zero_length]
zero_length = 0
# Perform rotation to ensure alignment
zeros = paddle.zeros(
[kernel.shape[0], kernel.shape[1], zero_length], dtype=kernel.dtype)
after_index = kernel[..., rotation_index:]
before_index = kernel[..., :rotation_index]
kernel = paddle.concat((after_index, zeros, before_index), axis=-1)
# Multiply in frequency domain to convolve in time domain
import paddle.fft as fft
result = fft.rfft(waveform) * fft.rfft(kernel)
convolved = fft.irfft(result, n=waveform.shape[-1])
# Use the implementation given by paddle, which should be efficient on GPU
else:
convolved = paddle.nn.functional.conv1d(
x=waveform,
weight=kernel,
stride=stride,
groups=groups,
padding=padding if not isinstance(padding, tuple) else 0, )
# Return time dimension to the second dimension.
return convolved.transpose([0, 2, 1])
def notch_filter(notch_freq, filter_width=101, notch_width=0.05):
"""Returns a notch filter constructed from a high-pass and low-pass filter.
(from https://tomroelandts.com/articles/
how-to-create-simple-band-pass-and-band-reject-filters)
Arguments
---------
notch_freq : float
frequency to put notch as a fraction of the
sampling rate / 2. The range of possible inputs is 0 to 1.
filter_width : int
Filter width in samples. Longer filters have
smaller transition bands, but are more inefficient.
notch_width : float
Width of the notch, as a fraction of the sampling_rate / 2.
"""
# Check inputs
assert 0 < notch_freq <= 1
assert filter_width % 2 != 0
pad = filter_width // 2
inputs = paddle.arange(filter_width) - pad
# Avoid frequencies that are too low
notch_freq += notch_width
# Define sinc function, avoiding division by zero
def sinc(x):
"Computes the sinc function."
def _sinc(x):
return paddle.sin(x) / x
# The zero is at the middle index
return paddle.concat(
[_sinc(x[:pad]), paddle.ones([1]), _sinc(x[pad + 1:])])
# Compute a low-pass filter with cutoff frequency notch_freq.
hlpf = sinc(3 * (notch_freq - notch_width) * inputs)
hlpf *= blackman_window(filter_width)
hlpf /= paddle.sum(hlpf)
# Compute a high-pass filter with cutoff frequency notch_freq.
hhpf = sinc(3 * (notch_freq + notch_width) * inputs)
hhpf *= blackman_window(filter_width)
hhpf /= -paddle.sum(hhpf)
hhpf[pad] += 1
# Adding filters creates notch filter
return (hlpf + hhpf).view(1, -1, 1)

@ -0,0 +1,901 @@
# Copyright (c) 2023 speechbrain Authors. All Rights Reserved.
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from speechbrain(https://github.com/speechbrain/speechbrain/blob/develop/speechbrain/processing/speech_augmentation.py)
"""Classes for mutating speech data for data augmentation.
This module provides classes that produce realistic distortions of speech
data for the purpose of training speech processing models. The list of
distortions includes adding noise, adding reverberation, changing speed,
and more. All the classes are of type `torch.nn.Module`. This gives the
possibility to have end-to-end differentiability and
backpropagate the gradient through them. In addition, all operations
are expected to be performed on the GPU (where available) for efficiency.
Authors
* Peter Plantinga 2020
"""
import math
import paddle
import paddle.nn as nn
from .signal_processing import compute_amplitude
from .signal_processing import convolve1d
from .signal_processing import notch_filter
class SpeedPerturb(nn.Layer):
"""Slightly speed up or slow down an audio signal.
Resample the audio signal at a rate that is similar to the original rate,
to achieve a slightly slower or slightly faster signal. This technique is
outlined in the paper: "Audio Augmentation for Speech Recognition"
Arguments
---------
orig_freq : int
The frequency of the original signal.
speeds : list
The speeds that the signal should be changed to, as a percentage of the
original signal (i.e. `speeds` is divided by 100 to get a ratio).
perturb_prob : float
The chance that the batch will be speed-
perturbed. By default, every batch is perturbed.
Example
-------
>>> from speechbrain.dataio.dataio import read_audio
>>> signal = read_audio('tests/samples/single-mic/example1.wav')
>>> perturbator = SpeedPerturb(orig_freq=16000, speeds=[90])
>>> clean = signal.unsqueeze(0)
>>> perturbed = perturbator(clean)
>>> clean.shape
paddle.shape([1, 52173])
>>> perturbed.shape
paddle.shape([1, 46956])
"""
def __init__(
self,
orig_freq,
speeds=[90, 100, 110],
perturb_prob=1.0, ):
super().__init__()
self.orig_freq = orig_freq
self.speeds = speeds
self.perturb_prob = perturb_prob
# Initialize index of perturbation
self.samp_index = 0
# Initialize resamplers
self.resamplers = []
for speed in self.speeds:
config = {
"orig_freq": self.orig_freq,
"new_freq": self.orig_freq * speed // 100,
}
self.resamplers.append(Resample(**config))
def forward(self, waveform):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
lengths : tensor
Shape should be a single dimension, `[batch]`.
Returns
-------
Tensor of shape `[batch, time]` or `[batch, time, channels]`.
"""
# Don't perturb (return early) 1-`perturb_prob` portion of the batches
if paddle.rand([1]) > self.perturb_prob:
return waveform.clone()
# Perform a random perturbation
self.samp_index = paddle.randint(len(self.speeds), shape=(1, ))[0]
perturbed_waveform = self.resamplers[self.samp_index](waveform)
return perturbed_waveform
class Resample(nn.Layer):
"""This class resamples an audio signal using sinc-based interpolation.
It is a modification of the `resample` function from torchaudio
(https://pytorch.org/audio/stable/tutorials/audio_resampling_tutorial.html)
Arguments
---------
orig_freq : int
the sampling frequency of the input signal.
new_freq : int
the new sampling frequency after this operation is performed.
lowpass_filter_width : int
Controls the sharpness of the filter, larger numbers result in a
sharper filter, but they are less efficient. Values from 4 to 10 are allowed.
"""
def __init__(
self,
orig_freq=16000,
new_freq=16000,
lowpass_filter_width=6, ):
super().__init__()
self.orig_freq = orig_freq
self.new_freq = new_freq
self.lowpass_filter_width = lowpass_filter_width
# Compute rate for striding
self._compute_strides()
assert self.orig_freq % self.conv_stride == 0
assert self.new_freq % self.conv_transpose_stride == 0
def _compute_strides(self):
"""Compute the phases in polyphase filter.
(almost directly from torchaudio.compliance.kaldi)
"""
# Compute new unit based on ratio of in/out frequencies
base_freq = math.gcd(self.orig_freq, self.new_freq)
input_samples_in_unit = self.orig_freq // base_freq
self.output_samples = self.new_freq // base_freq
# Store the appropriate stride based on the new units
self.conv_stride = input_samples_in_unit
self.conv_transpose_stride = self.output_samples
def forward(self, waveforms):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
lengths : tensor
Shape should be a single dimension, `[batch]`.
Returns
-------
Tensor of shape `[batch, time]` or `[batch, time, channels]`.
"""
if not hasattr(self, "first_indices"):
self._indices_and_weights(waveforms)
# Don't do anything if the frequencies are the same
if self.orig_freq == self.new_freq:
return waveforms
unsqueezed = False
if len(waveforms.shape) == 2:
waveforms = waveforms.unsqueeze(1)
unsqueezed = True
elif len(waveforms.shape) == 3:
waveforms = waveforms.transpose([0, 2, 1])
else:
raise ValueError("Input must be 2 or 3 dimensions")
# Do resampling
resampled_waveform = self._perform_resample(waveforms)
if unsqueezed:
resampled_waveform = resampled_waveform.squeeze(1)
else:
resampled_waveform = resampled_waveform.transpose([0, 2, 1])
return resampled_waveform
def _perform_resample(self, waveforms):
"""Resamples the waveform at the new frequency.
This matches Kaldi's OfflineFeatureTpl ResampleWaveform which uses a
LinearResample (resample a signal at linearly spaced intervals to
up/downsample a signal). LinearResample (LR) means that the output
signal is at linearly spaced intervals (i.e the output signal has a
frequency of `new_freq`). It uses sinc/bandlimited interpolation to
upsample/downsample the signal.
(almost directly from torchaudio.compliance.kaldi)
https://ccrma.stanford.edu/~jos/resample/
Theory_Ideal_Bandlimited_Interpolation.html
https://github.com/kaldi-asr/kaldi/blob/master/src/feat/resample.h#L56
Arguments
---------
waveforms : tensor
The batch of audio signals to resample.
Returns
-------
The waveforms at the new frequency.
"""
# Compute output size and initialize
batch_size, num_channels, wave_len = waveforms.shape
window_size = self.weights.shape[1]
tot_output_samp = self._output_samples(wave_len)
resampled_waveform = paddle.zeros(
(batch_size, num_channels, tot_output_samp))
# self.weights = self.weights.to(waveforms.device)
# Check weights are on correct device
# if waveforms.device != self.weights.device:
# self.weights = self.weights.to(waveforms.device)
# eye size: (num_channels, num_channels, 1)
eye = paddle.eye(num_channels).unsqueeze(2)
# Iterate over the phases in the polyphase filter
for i in range(self.first_indices.shape[0]):
wave_to_conv = waveforms
first_index = int(self.first_indices[i].item())
if first_index >= 0:
# trim the signal as the filter will not be applied
# before the first_index
wave_to_conv = wave_to_conv[..., first_index:]
# pad the right of the signal to allow partial convolutions
# meaning compute values for partial windows (e.g. end of the
# window is outside the signal length)
max_index = (tot_output_samp - 1) // self.output_samples
end_index = max_index * self.conv_stride + window_size
current_wave_len = wave_len - first_index
right_padding = max(0, end_index + 1 - current_wave_len)
left_padding = max(0, -first_index)
wave_to_conv = paddle.nn.functional.pad(
wave_to_conv, (left_padding, right_padding), data_format='NCL')
conv_wave = paddle.nn.functional.conv1d(
x=wave_to_conv,
weight=self.weights[i].repeat(num_channels, 1, 1),
stride=self.conv_stride,
groups=num_channels, )
# we want conv_wave[:, i] to be at
# output[:, i + n*conv_transpose_stride]
dilated_conv_wave = paddle.nn.functional.conv1d_transpose(
conv_wave, eye, stride=self.conv_transpose_stride)
# pad dilated_conv_wave so it reaches the output length if needed.
left_padding = i
previous_padding = left_padding + dilated_conv_wave.shape[-1]
right_padding = max(0, tot_output_samp - previous_padding)
dilated_conv_wave = paddle.nn.functional.pad(
dilated_conv_wave, (left_padding, right_padding),
data_format='NCL')
dilated_conv_wave = dilated_conv_wave[..., :tot_output_samp]
resampled_waveform += dilated_conv_wave
return resampled_waveform
def _output_samples(self, input_num_samp):
"""Based on LinearResample::GetNumOutputSamples.
LinearResample (LR) means that the output signal is at
linearly spaced intervals (i.e the output signal has a
frequency of ``new_freq``). It uses sinc/bandlimited
interpolation to upsample/downsample the signal.
(almost directly from torchaudio.compliance.kaldi)
Arguments
---------
input_num_samp : int
The number of samples in each example in the batch.
Returns
-------
Number of samples in the output waveform.
"""
# For exact computation, we measure time in "ticks" of 1.0 / tick_freq,
# where tick_freq is the least common multiple of samp_in and
# samp_out.
samp_in = int(self.orig_freq)
samp_out = int(self.new_freq)
tick_freq = abs(samp_in * samp_out) // math.gcd(samp_in, samp_out)
ticks_per_input_period = tick_freq // samp_in
# work out the number of ticks in the time interval
# [ 0, input_num_samp/samp_in ).
interval_length = input_num_samp * ticks_per_input_period
if interval_length <= 0:
return 0
ticks_per_output_period = tick_freq // samp_out
# Get the last output-sample in the closed interval,
# i.e. replacing [ ) with [ ]. Note: integer division rounds down.
# See http://en.wikipedia.org/wiki/Interval_(mathematics) for an
# explanation of the notation.
last_output_samp = interval_length // ticks_per_output_period
# We need the last output-sample in the open interval, so if it
# takes us to the end of the interval exactly, subtract one.
if last_output_samp * ticks_per_output_period == interval_length:
last_output_samp -= 1
# First output-sample index is zero, so the number of output samples
# is the last output-sample plus one.
num_output_samp = last_output_samp + 1
return num_output_samp
def _indices_and_weights(self, waveforms):
"""Based on LinearResample::SetIndexesAndWeights
Retrieves the weights for resampling as well as the indices in which
they are valid. LinearResample (LR) means that the output signal is at
linearly spaced intervals (i.e the output signal has a frequency
of ``new_freq``). It uses sinc/bandlimited interpolation to
upsample/downsample the signal.
Returns
-------
- the place where each filter should start being applied
- the filters to be applied to the signal for resampling
"""
# Lowpass filter frequency depends on smaller of two frequencies
min_freq = min(self.orig_freq, self.new_freq)
lowpass_cutoff = 0.99 * 0.5 * min_freq
assert lowpass_cutoff * 2 <= min_freq
window_width = self.lowpass_filter_width / (2.0 * lowpass_cutoff)
assert lowpass_cutoff < min(self.orig_freq, self.new_freq) / 2
output_t = paddle.arange(start=0.0, end=self.output_samples)
output_t /= self.new_freq
min_t = output_t - window_width
max_t = output_t + window_width
min_input_index = paddle.ceil(min_t * self.orig_freq)
max_input_index = paddle.floor(max_t * self.orig_freq)
num_indices = max_input_index - min_input_index + 1
max_weight_width = num_indices.max()
j = paddle.arange(max_weight_width)
input_index = min_input_index.unsqueeze(1) + j.unsqueeze(0)
delta_t = (input_index / self.orig_freq) - output_t.unsqueeze(1)
weights = paddle.zeros_like(delta_t)
inside_window_indices = delta_t.abs() < (window_width)
# raised-cosine (Hanning) window with width `window_width`
weights[inside_window_indices] = 0.5 * (1 + paddle.cos(
2 * math.pi * lowpass_cutoff / self.lowpass_filter_width *
delta_t[inside_window_indices]))
t_eq_zero_indices = delta_t == 0.0
t_not_eq_zero_indices = ~t_eq_zero_indices
# sinc filter function
weights[t_not_eq_zero_indices] *= paddle.sin(
2 * math.pi * lowpass_cutoff * delta_t[t_not_eq_zero_indices]) / (
math.pi * delta_t[t_not_eq_zero_indices])
# limit of the function at t = 0
weights[t_eq_zero_indices] *= 2 * lowpass_cutoff
# size (output_samples, max_weight_width)
weights /= self.orig_freq
self.first_indices = min_input_index
self.weights = weights
class DropFreq(nn.Layer):
"""This class drops a random frequency from the signal.
The purpose of this class is to teach models to learn to rely on all parts
of the signal, not just a few frequency bands.
Arguments
---------
drop_freq_low : float
The low end of frequencies that can be dropped,
as a fraction of the sampling rate / 2.
drop_freq_high : float
The high end of frequencies that can be
dropped, as a fraction of the sampling rate / 2.
drop_count_low : int
The low end of number of frequencies that could be dropped.
drop_count_high : int
The high end of number of frequencies that could be dropped.
drop_width : float
The width of the frequency band to drop, as
a fraction of the sampling_rate / 2.
drop_prob : float
The probability that the batch of signals will have a frequency
dropped. By default, every batch has frequencies dropped.
Example
-------
>>> from speechbrain.dataio.dataio import read_audio
>>> dropper = DropFreq()
>>> signal = read_audio('tests/samples/single-mic/example1.wav')
>>> dropped_signal = dropper(signal.unsqueeze(0))
"""
def __init__(
self,
drop_freq_low=1e-14,
drop_freq_high=1,
drop_count_low=1,
drop_count_high=2,
drop_width=0.05,
drop_prob=1, ):
super().__init__()
self.drop_freq_low = drop_freq_low
self.drop_freq_high = drop_freq_high
self.drop_count_low = drop_count_low
self.drop_count_high = drop_count_high
self.drop_width = drop_width
self.drop_prob = drop_prob
def forward(self, waveforms):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
Returns
-------
Tensor of shape `[batch, time]` or `[batch, time, channels]`.
"""
# Don't drop (return early) 1-`drop_prob` portion of the batches
dropped_waveform = waveforms.clone()
if paddle.rand([1]) > self.drop_prob:
return dropped_waveform
# Add channels dimension
if len(waveforms.shape) == 2:
dropped_waveform = dropped_waveform.unsqueeze(-1)
# Pick number of frequencies to drop
drop_count = paddle.randint(
low=self.drop_count_low,
high=self.drop_count_high + 1,
shape=(1, ), )
# Filter parameters
filter_length = 101
pad = filter_length // 2
# Start with delta function
drop_filter = paddle.zeros([1, filter_length, 1])
drop_filter[0, pad, 0] = 1
if drop_count.shape == 0:
# Pick a frequency to drop
drop_range = self.drop_freq_high - self.drop_freq_low
drop_frequency = (
paddle.rand(drop_count) * drop_range + self.drop_freq_low)
# Subtract each frequency
for frequency in drop_frequency:
notch_kernel = notch_filter(
frequency,
filter_length,
self.drop_width, )
drop_filter = convolve1d(drop_filter, notch_kernel, pad)
# Apply filter
dropped_waveform = convolve1d(dropped_waveform, drop_filter, pad)
# Remove channels dimension if added
return dropped_waveform.squeeze(-1)
class DropChunk(nn.Layer):
"""This class drops portions of the input signal.
Using `DropChunk` as an augmentation strategy helps a models learn to rely
on all parts of the signal, since it can't expect a given part to be
present.
Arguments
---------
drop_length_low : int
The low end of lengths for which to set the
signal to zero, in samples.
drop_length_high : int
The high end of lengths for which to set the
signal to zero, in samples.
drop_count_low : int
The low end of number of times that the signal
can be dropped to zero.
drop_count_high : int
The high end of number of times that the signal
can be dropped to zero.
drop_start : int
The first index for which dropping will be allowed.
drop_end : int
The last index for which dropping will be allowed.
drop_prob : float
The probability that the batch of signals will
have a portion dropped. By default, every batch
has portions dropped.
noise_factor : float
The factor relative to average amplitude of an utterance
to use for scaling the white noise inserted. 1 keeps
the average amplitude the same, while 0 inserts all 0's.
Example
-------
>>> from speechbrain.dataio.dataio import read_audio
>>> dropper = DropChunk(drop_start=100, drop_end=200, noise_factor=0.)
>>> signal = read_audio('tests/samples/single-mic/example1.wav')
>>> signal = signal.unsqueeze(0) # [batch, time, channels]
>>> length = paddle.ones([1])
>>> dropped_signal = dropper(signal, length)
>>> float(dropped_signal[:, 150])
0.0
"""
def __init__(
self,
drop_length_low=100,
drop_length_high=1000,
drop_count_low=1,
drop_count_high=10,
drop_start=0,
drop_end=None,
drop_prob=1,
noise_factor=0.0, ):
super().__init__()
self.drop_length_low = drop_length_low
self.drop_length_high = drop_length_high
self.drop_count_low = drop_count_low
self.drop_count_high = drop_count_high
self.drop_start = drop_start
self.drop_end = drop_end
self.drop_prob = drop_prob
self.noise_factor = noise_factor
# Validate low < high
if drop_length_low > drop_length_high:
raise ValueError("Low limit must not be more than high limit")
if drop_count_low > drop_count_high:
raise ValueError("Low limit must not be more than high limit")
# Make sure the length doesn't exceed end - start
if drop_end is not None and drop_end >= 0:
if drop_start > drop_end:
raise ValueError("Low limit must not be more than high limit")
drop_range = drop_end - drop_start
self.drop_length_low = min(drop_length_low, drop_range)
self.drop_length_high = min(drop_length_high, drop_range)
def forward(self, waveforms, lengths):
"""
Arguments
---------
waveforms : tensor
Shape should be `[batch, time]` or `[batch, time, channels]`.
lengths : tensor
Shape should be a single dimension, `[batch]`.
Returns
-------
Tensor of shape `[batch, time]` or
`[batch, time, channels]`
"""
# Reading input list
lengths = (lengths * waveforms.shape[1]).long()
batch_size = waveforms.shape[0]
dropped_waveform = waveforms.clone()
# Don't drop (return early) 1-`drop_prob` portion of the batches
if paddle.rand([1]) > self.drop_prob:
return dropped_waveform
# Store original amplitude for computing white noise amplitude
clean_amplitude = compute_amplitude(waveforms, lengths.unsqueeze(1))
# Pick a number of times to drop
drop_times = paddle.randint(
low=self.drop_count_low,
high=self.drop_count_high + 1,
shape=(batch_size, ), )
# Iterate batch to set mask
for i in range(batch_size):
if drop_times[i] == 0:
continue
# Pick lengths
length = paddle.randint(
low=self.drop_length_low,
high=self.drop_length_high + 1,
shape=(drop_times[i], ), )
# Compute range of starting locations
start_min = self.drop_start
if start_min < 0:
start_min += lengths[i]
start_max = self.drop_end
if start_max is None:
start_max = lengths[i]
if start_max < 0:
start_max += lengths[i]
start_max = max(0, start_max - length.max())
# Pick starting locations
start = paddle.randint(
low=start_min,
high=start_max + 1,
shape=(drop_times[i], ), )
end = start + length
# Update waveform
if not self.noise_factor:
for j in range(drop_times[i]):
dropped_waveform[i, start[j]:end[j]] = 0.0
else:
# Uniform distribution of -2 to +2 * avg amplitude should
# preserve the average for normalization
noise_max = 2 * clean_amplitude[i] * self.noise_factor
for j in range(drop_times[i]):
# zero-center the noise distribution
noise_vec = paddle.rand([length[j]])
noise_vec = 2 * noise_max * noise_vec - noise_max
dropped_waveform[i, start[j]:end[j]] = noise_vec
return dropped_waveform
class SpecAugment(paddle.nn.Layer):
"""An implementation of the SpecAugment algorithm.
Reference:
https://arxiv.org/abs/1904.08779
Arguments
---------
time_warp : bool
Whether applying time warping.
time_warp_window : int
Time warp window.
time_warp_mode : str
Interpolation mode for time warping (default "bicubic").
freq_mask : bool
Whether applying freq mask.
freq_mask_width : int or tuple
Freq mask width range.
n_freq_mask : int
Number of freq mask.
time_mask : bool
Whether applying time mask.
time_mask_width : int or tuple
Time mask width range.
n_time_mask : int
Number of time mask.
replace_with_zero : bool
If True, replace masked value with 0, else replace masked value with mean of the input tensor.
Example
-------
>>> aug = SpecAugment()
>>> a = paddle.rand([8, 120, 80])
>>> a = aug(a)
>>> print(a.shape)
paddle.Size([8, 120, 80])
"""
def __init__(
self,
time_warp=True,
time_warp_window=5,
time_warp_mode="bicubic",
freq_mask=True,
freq_mask_width=(0, 20),
n_freq_mask=2,
time_mask=True,
time_mask_width=(0, 100),
n_time_mask=2,
replace_with_zero=True, ):
super().__init__()
assert (
time_warp or freq_mask or time_mask
), "at least one of time_warp, time_mask, or freq_mask should be applied"
self.apply_time_warp = time_warp
self.time_warp_window = time_warp_window
self.time_warp_mode = time_warp_mode
self.freq_mask = freq_mask
if isinstance(freq_mask_width, int):
freq_mask_width = (0, freq_mask_width)
self.freq_mask_width = freq_mask_width
self.n_freq_mask = n_freq_mask
self.time_mask = time_mask
if isinstance(time_mask_width, int):
time_mask_width = (0, time_mask_width)
self.time_mask_width = time_mask_width
self.n_time_mask = n_time_mask
self.replace_with_zero = replace_with_zero
def forward(self, x):
"""Takes in input a tensors and returns an augmented one."""
if self.apply_time_warp:
x = self.time_warp(x)
if self.freq_mask:
x = self.mask_along_axis(x, dim=2)
if self.time_mask:
x = self.mask_along_axis(x, dim=1)
return x
def time_warp(self, x):
"""Time warping with paddle.nn.functional.interpolate"""
original_size = x.shape
window = self.time_warp_window
# 2d interpolation requires 4D or higher dimension tensors
# x: (Batch, Time, Freq) -> (Batch, 1, Time, Freq)
if x.dim() == 3:
x = x.unsqueeze(1)
time = x.shape[2]
if time - window <= window:
return x.view(*original_size)
# compute center and corresponding window
c = paddle.randint(window, time - window, (1, ))[0]
w = paddle.randint(c - window, c + window, (1, ))[0] + 1
left = paddle.nn.functional.interpolate(
x[:, :, :c],
(w, x.shape[3]),
mode=self.time_warp_mode,
align_corners=True, )
right = paddle.nn.functional.interpolate(
x[:, :, c:],
(time - w, x.shape[3]),
mode=self.time_warp_mode,
align_corners=True, )
x[:, :, :w] = left
x[:, :, w:] = right
return x.view(*original_size)
def mask_along_axis(self, x, dim):
"""Mask along time or frequency axis.
Arguments
---------
x : tensor
Input tensor.
dim : int
Corresponding dimension to mask.
"""
original_size = x.shape
if x.dim() == 4:
x = x.view(-1, x.shape[2], x.shape[3])
batch, time, fea = x.shape
if dim == 1:
D = time
n_mask = self.n_time_mask
width_range = self.time_mask_width
else:
D = fea
n_mask = self.n_freq_mask
width_range = self.freq_mask_width
mask_len = paddle.randint(width_range[0], width_range[1],
(batch, n_mask)).unsqueeze(2)
mask_pos = paddle.randint(0, max(1, D - mask_len.max()),
(batch, n_mask)).unsqueeze(2)
# compute masks
arange = paddle.arange(end=D).view(1, 1, -1)
mask = (mask_pos <= arange) * (arange < (mask_pos + mask_len))
mask = mask.any(axis=1)
if dim == 1:
mask = mask.unsqueeze(2)
else:
mask = mask.unsqueeze(1)
if self.replace_with_zero:
val = 0.0
else:
val = x.mean()
# same to x.masked_fill_(mask, val)
y = paddle.full(x.shape, val, x.dtype)
x = paddle.where(mask, y, x)
return x.view(*original_size)
class TimeDomainSpecAugment(nn.Layer):
"""A time-domain approximation of the SpecAugment algorithm.
This augmentation module implements three augmentations in
the time-domain.
1. Drop chunks of the audio (zero amplitude or white noise)
2. Drop frequency bands (with band-drop filters)
3. Speed peturbation (via resampling to slightly different rate)
Arguments
---------
perturb_prob : float from 0 to 1
The probability that a batch will have speed perturbation applied.
drop_freq_prob : float from 0 to 1
The probability that a batch will have frequencies dropped.
drop_chunk_prob : float from 0 to 1
The probability that a batch will have chunks dropped.
speeds : list of ints
A set of different speeds to use to perturb each batch.
See ``speechbrain.processing.speech_augmentation.SpeedPerturb``
sample_rate : int
Sampling rate of the input waveforms.
drop_freq_count_low : int
Lowest number of frequencies that could be dropped.
drop_freq_count_high : int
Highest number of frequencies that could be dropped.
drop_chunk_count_low : int
Lowest number of chunks that could be dropped.
drop_chunk_count_high : int
Highest number of chunks that could be dropped.
drop_chunk_length_low : int
Lowest length of chunks that could be dropped.
drop_chunk_length_high : int
Highest length of chunks that could be dropped.
drop_chunk_noise_factor : float
The noise factor used to scale the white noise inserted, relative to
the average amplitude of the utterance. Default 0 (no noise inserted).
Example
-------
>>> inputs = paddle.randn([10, 16000])
>>> feature_maker = TimeDomainSpecAugment(speeds=[80])
>>> feats = feature_maker(inputs, paddle.ones(10))
>>> feats.shape
paddle.shape([10, 12800])
"""
def __init__(
self,
perturb_prob=1.0,
drop_freq_prob=1.0,
drop_chunk_prob=1.0,
speeds=[95, 100, 105],
sample_rate=16000,
drop_freq_count_low=0,
drop_freq_count_high=3,
drop_chunk_count_low=0,
drop_chunk_count_high=5,
drop_chunk_length_low=1000,
drop_chunk_length_high=2000,
drop_chunk_noise_factor=0, ):
super().__init__()
self.speed_perturb = SpeedPerturb(
perturb_prob=perturb_prob, orig_freq=sample_rate, speeds=speeds)
self.drop_freq = DropFreq(
drop_prob=drop_freq_prob,
drop_count_low=drop_freq_count_low,
drop_count_high=drop_freq_count_high, )
self.drop_chunk = DropChunk(
drop_prob=drop_chunk_prob,
drop_count_low=drop_chunk_count_low,
drop_count_high=drop_chunk_count_high,
drop_length_low=drop_chunk_length_low,
drop_length_high=drop_chunk_length_high,
noise_factor=drop_chunk_noise_factor, )
def forward(self, waveforms, lengths):
"""Returns the distorted waveforms.
Arguments
---------
waveforms : tensor
The waveforms to distort
"""
# Augmentation
with paddle.no_grad():
waveforms = self.speed_perturb(waveforms)
waveforms = self.drop_freq(waveforms)
waveforms = self.drop_chunk(waveforms, lengths)
return waveforms

@ -0,0 +1,323 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import defaultdict
from typing import Dict
from typing import List
from typing import Tuple
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddlespeech.s2t.models.wav2vec2.modules.VanillaNN import VanillaNN
from paddlespeech.s2t.models.wav2vec2.processing.speech_augmentation import SpecAugment
from paddlespeech.s2t.modules.ctc import CTCDecoderBase as CTC
from paddlespeech.s2t.modules.initializer import DefaultInitializerContext
from paddlespeech.s2t.utils.ctc_utils import remove_duplicates_and_blank
from paddlespeech.s2t.utils.utility import log_add
from .wavlm_paddle import WavLM, WavLMConfig
class WavLMASR(nn.Layer):
def __init__(self, config: dict):
super().__init__()
init_type = config.get("init_type", None)
with DefaultInitializerContext(init_type):
self.config = config
wavlm_config = WavLMConfig(config)
wavlm = WavLM(wavlm_config)
self.normalize_wav = config.normalize_wav
self.output_norm = config.output_norm
if hasattr(config, 'spec_augment'):
self.spec_augment = SpecAugment(**config.spec_augment)
if config.freeze_wavlm:
wavlm.eval()
for parm in wavlm.parameters():
parm.trainable = False
self.wavlm = wavlm
self.enc = VanillaNN(**config.enc)
self.ctc = CTC(**config.ctc,
odim=config.output_dim,
batch_average=False,
reduction='mean')
def forward(self, wav, wavs_lens_rate, target, target_lens):
if self.normalize_wav:
wav = F.layer_norm(wav, wav.shape)
# Extract wav2vec output
out = self.wavlm(wav)
# We normalize the output if required
if self.output_norm:
out = F.layer_norm(out, out.shape)
if self.training and hasattr(self.config, 'spec_augment'):
feats = self.spec_augment(out)
else:
feats = out
x = self.enc(feats)
# x = feats
x_lens = (wavs_lens_rate * x.shape[1]).round().astype(paddle.int64)
target_lens = target_lens.astype(paddle.int64)
# target = target.astype(paddle.int32)
ctc_loss = self.ctc(x, x_lens, target, target_lens)
return ctc_loss
@paddle.no_grad()
def decode(self,
feats: paddle.Tensor,
text_feature: Dict[str, int],
decoding_method: str,
beam_size: int,
tokenizer: str=None,
sb_pipeline=False):
batch_size = feats.shape[0]
if decoding_method == 'ctc_prefix_beam_search' and batch_size > 1:
print(
f"decoding mode {decoding_method} must be running with batch_size == 1"
)
print(f"current batch_size is {batch_size}")
if decoding_method == 'ctc_greedy_search':
if tokenizer is None and sb_pipeline is False:
hyps = self.ctc_greedy_search(feats)
res = [text_feature.defeaturize(hyp) for hyp in hyps]
res_tokenids = [hyp for hyp in hyps]
else:
if sb_pipeline is True:
hyps = self.ctc_greedy_search(feats.unsqueeze(-1))
else:
hyps = self.ctc_greedy_search(feats)
res = []
res_tokenids = []
for sequence in hyps:
# Decode token terms to words
predicted_tokens = text_feature.convert_ids_to_tokens(
sequence)
tmp_res = []
tmp_res_tokenids = []
for c in predicted_tokens:
if c == "[CLS]":
continue
elif c == "[SEP]" or c == "[PAD]":
break
else:
tmp_res.append(c)
tmp_res_tokenids.append(text_feature.vocab[c])
res.append(''.join(tmp_res))
res_tokenids.append(tmp_res_tokenids)
# ctc_prefix_beam_search and attention_rescoring only return one
# result in List[int], change it to List[List[int]] for compatible
# with other batch decoding mode
elif decoding_method == 'ctc_prefix_beam_search':
assert feats.shape[0] == 1
if tokenizer is None and sb_pipeline is False:
hyp = self.ctc_prefix_beam_search(feats, beam_size)
res = [text_feature.defeaturize(hyp)]
res_tokenids = [hyp]
else:
if sb_pipeline is True:
hyp = self.ctc_prefix_beam_search(
feats.unsqueeze(-1), beam_size)
else:
hyp = self.ctc_prefix_beam_search(feats, beam_size)
res = []
res_tokenids = []
predicted_tokens = text_feature.convert_ids_to_tokens(hyp)
tmp_res = []
tmp_res_tokenids = []
for c in predicted_tokens:
if c == "[CLS]":
continue
elif c == "[SEP]" or c == "[PAD]":
break
else:
tmp_res.append(c)
tmp_res_tokenids.append(text_feature.vocab[c])
res.append(''.join(tmp_res))
res_tokenids.append(tmp_res_tokenids)
else:
raise ValueError(
f"WavLM not support decoding method: {decoding_method}")
return res, res_tokenids
@classmethod
def from_config(cls, config):
model = cls(config)
return model
def ctc_greedy_search(self, wav) -> List[List[int]]:
""" Apply CTC greedy search
Args:
speech (paddle.Tensor): (batch, max_len)
speech_length (paddle.Tensor): (batch, )
Returns:
List[List[int]]: best path result
"""
batch_size = wav.shape[0]
wav = wav[:, :, 0]
if self.normalize_wav:
wav = F.layer_norm(wav, wav.shape[1:])
# Extract wavlm output
out = self.wavlm(wav)
# We normalize the output if required
if self.output_norm:
out = F.layer_norm(out, out.shape[1:])
feats = out
x = self.enc(feats)
x_lens = x.shape[1]
ctc_probs = self.ctc.log_softmax(x) # (B, maxlen, vocab_size)
topk_prob, topk_index = ctc_probs.topk(1, axis=2) # (B, maxlen, 1)
topk_index = topk_index.view(batch_size, x_lens) # (B, maxlen)
hyps = [hyp.tolist() for hyp in topk_index]
hyps = [remove_duplicates_and_blank(hyp) for hyp in hyps]
return hyps
def _ctc_prefix_beam_search(
self,
wav,
beam_size,
blank_id: int=0, ) -> Tuple[List[Tuple[int, float]], paddle.Tensor]:
""" CTC prefix beam search inner implementation
Args:
speech (paddle.Tensor): (batch, max_len, feat_dim)
speech_length (paddle.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
List[Tuple[int, float]]: nbest results, (N,1), (text, likelihood)
paddle.Tensor: encoder output, (1, max_len, encoder_dim),
it will be used for rescoring in attention rescoring mode
"""
wav = wav[:, :, 0]
if self.normalize_wav:
wav = F.layer_norm(wav, wav.shape[1:])
# Extract wavlm output
out = self.wavlm(wav)
# We normalize the output if required
if self.output_norm:
out = F.layer_norm(out, out.shape[1:])
feats = out
x = self.enc(feats)
maxlen = x.shape[1]
ctc_probs = self.ctc.log_softmax(x) # (1, maxlen, vocab_size)
ctc_probs = ctc_probs.squeeze(0)
# cur_hyps: (prefix, (blank_ending_score, none_blank_ending_score))
# blank_ending_score and none_blank_ending_score in ln domain
cur_hyps = [(tuple(), (0.0, -float('inf')))]
# 2. CTC beam search step by step
for t in range(0, maxlen):
logp = ctc_probs[t] # (vocab_size,)
# key: prefix, value (pb, pnb), default value(-inf, -inf)
next_hyps = defaultdict(lambda: (-float('inf'), -float('inf')))
# 2.1 First beam prune: select topk best
top_k_logp, top_k_index = logp.topk(beam_size) # (beam_size,)
for s in top_k_index:
s = s.item()
ps = logp[s].item()
for prefix, (pb, pnb) in cur_hyps:
last = prefix[-1] if len(prefix) > 0 else None
if s == blank_id: # blank
n_pb, n_pnb = next_hyps[prefix]
n_pb = log_add([n_pb, pb + ps, pnb + ps])
next_hyps[prefix] = (n_pb, n_pnb)
elif s == last:
# Update *ss -> *s;
n_pb, n_pnb = next_hyps[prefix]
n_pnb = log_add([n_pnb, pnb + ps])
next_hyps[prefix] = (n_pb, n_pnb)
# Update *s-s -> *ss, - is for blank
n_prefix = prefix + (s, )
n_pb, n_pnb = next_hyps[n_prefix]
n_pnb = log_add([n_pnb, pb + ps])
next_hyps[n_prefix] = (n_pb, n_pnb)
else:
n_prefix = prefix + (s, )
n_pb, n_pnb = next_hyps[n_prefix]
n_pnb = log_add([n_pnb, pb + ps, pnb + ps])
next_hyps[n_prefix] = (n_pb, n_pnb)
# 2.2 Second beam prune
next_hyps = sorted(
next_hyps.items(),
key=lambda x: log_add(list(x[1])),
reverse=True)
cur_hyps = next_hyps[:beam_size]
hyps = [(y[0], log_add([y[1][0], y[1][1]])) for y in cur_hyps]
return hyps
def ctc_prefix_beam_search(self, wav, beam_size) -> List[int]:
""" Apply CTC prefix beam search
Args:
speech (paddle.Tensor): (batch, max_len, feat_dim)
speech_length (paddle.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
List[int]: CTC prefix beam search nbest results
"""
hyps = self._ctc_prefix_beam_search(wav, beam_size)
return hyps[0][0]
class WavLMBase(nn.Layer):
"""WavLM model"""
def __init__(self, config: dict):
super().__init__()
wavlm_config = WavLMConfig(config)
wavlm = WavLM(wavlm_config)
self.wavlm = wavlm
@classmethod
def from_config(cls, configs: dict):
"""init model.
Args:
configs (dict): config dict.
Raises:
ValueError: raise when using not support encoder type.
Returns:
nn.Layer: WavLMBase
"""
model = cls(configs)
return model
def forward(self, wav):
out = self.wavlm(wav)
return out

@ -0,0 +1,757 @@
# --------------------------------------------------------
# WavLM: Large-Scale Self-Supervised Pre-training for Full Stack Speech Processing (https://arxiv.org/abs/2110.13900.pdf)
# Github source: https://github.com/microsoft/unilm/tree/master/wavlm
# Copyright (c) 2021 Microsoft
# Licensed under The MIT License [see LICENSE for details]
# Based on fairseq code bases
# https://github.com/pytorch/fairseq
# --------------------------------------------------------
import math
import logging
from typing import List, Optional, Tuple
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import LayerNorm
from paddle import Tensor
from .modules.modules import (
MultiheadAttention,
SamePad,
init_bert_params,
get_activation_fn,
TransposeLast,
GLU_Linear,
)
logger = logging.getLogger(__name__)
def compute_mask_indices(
shape: Tuple[int, int],
padding_mask: Optional[Tensor],
mask_prob: float,
mask_length: int,
mask_type: str = "static",
mask_other: float = 0.0,
min_masks: int = 0,
no_overlap: bool = False,
min_space: int = 0,
) -> np.ndarray:
"""
Computes random mask spans for a given shape
Args:
shape: the the shape for which to compute masks.
should be of size 2 where first element is batch size and 2nd is timesteps
padding_mask: optional padding mask of the same size as shape, which will prevent masking padded elements
mask_prob: probability for each token to be chosen as start of the span to be masked. this will be multiplied by
number of timesteps divided by length of mask span to mask approximately this percentage of all elements.
however due to overlaps, the actual number will be smaller (unless no_overlap is True)
mask_type: how to compute mask lengths
static = fixed size
uniform = sample from uniform distribution [mask_other, mask_length*2]
normal = sample from normal distribution with mean mask_length and stdev mask_other. mask is min 1 element
poisson = sample from possion distribution with lambda = mask length
min_masks: minimum number of masked spans
no_overlap: if false, will switch to an alternative recursive algorithm that prevents spans from overlapping
min_space: only used if no_overlap is True, this is how many elements to keep unmasked between spans
"""
bsz, all_sz = shape
mask = np.full((bsz, all_sz), False)
all_num_mask = int(
# add a random number for probabilistic rounding
mask_prob * all_sz / float(mask_length)
+ np.random.rand()
)
all_num_mask = max(min_masks, all_num_mask)
mask_idcs = []
for i in range(bsz):
if padding_mask is not None:
sz = all_sz - padding_mask[i].long().sum().item()
num_mask = int(
# add a random number for probabilistic rounding
mask_prob * sz / float(mask_length)
+ np.random.rand()
)
num_mask = max(min_masks, num_mask)
else:
sz = all_sz
num_mask = all_num_mask
if mask_type == "static":
lengths = np.full(num_mask, mask_length)
elif mask_type == "uniform":
lengths = np.random.randint(mask_other, mask_length * 2 + 1, size=num_mask)
elif mask_type == "normal":
lengths = np.random.normal(mask_length, mask_other, size=num_mask)
lengths = [max(1, int(round(x))) for x in lengths]
elif mask_type == "poisson":
lengths = np.random.poisson(mask_length, size=num_mask)
lengths = [int(round(x)) for x in lengths]
else:
raise Exception("unknown mask selection " + mask_type)
if sum(lengths) == 0:
lengths[0] = min(mask_length, sz - 1)
if no_overlap:
mask_idc = []
def arrange(s, e, length, keep_length):
span_start = np.random.randint(s, e - length)
mask_idc.extend(span_start + i for i in range(length))
new_parts = []
if span_start - s - min_space >= keep_length:
new_parts.append((s, span_start - min_space + 1))
if e - span_start - keep_length - min_space > keep_length:
new_parts.append((span_start + length + min_space, e))
return new_parts
parts = [(0, sz)]
min_length = min(lengths)
for length in sorted(lengths, reverse=True):
lens = np.fromiter(
(e - s if e - s >= length + min_space else 0 for s, e in parts),
np.int,
)
l_sum = np.sum(lens)
if l_sum == 0:
break
probs = lens / np.sum(lens)
c = np.random.choice(len(parts), p=probs)
s, e = parts.pop(c)
parts.extend(arrange(s, e, length, min_length))
mask_idc = np.asarray(mask_idc)
else:
min_len = min(lengths)
if sz - min_len <= num_mask:
min_len = sz - num_mask - 1
mask_idc = np.random.choice(sz - min_len, num_mask, replace=False)
mask_idc = np.asarray(
[
mask_idc[j] + offset
for j in range(len(mask_idc))
for offset in range(lengths[j])
]
)
mask_idcs.append(np.unique(mask_idc[mask_idc < sz]))
min_len = min([len(m) for m in mask_idcs])
for i, mask_idc in enumerate(mask_idcs):
if len(mask_idc) > min_len:
mask_idc = np.random.choice(mask_idc, min_len, replace=False)
mask[i, mask_idc] = True
return mask
class WavLMConfig:
def __init__(self, cfg=None):
self.extractor_mode: str = "default" # mode for feature extractor. default has a single group norm with d groups in the first conv block, whereas layer_norm has layer norms in every block (meant to use with normalize=True)
self.encoder_layers: int = 12 # num encoder layers in the transformer
self.encoder_embed_dim: int = 768 # encoder embedding dimension
self.encoder_ffn_embed_dim: int = 3072 # encoder embedding dimension for FFN
self.encoder_attention_heads: int = 12 # num encoder attention heads
self.activation_fn: str = "gelu" # activation function to use
self.layer_norm_first: bool = False # apply layernorm first in the transformer
self.conv_feature_layers: str = "[(512,10,5)] + [(512,3,2)] * 4 + [(512,2,2)] * 2" # string describing convolutional feature extraction layers in form of a python list that contains [(dim, kernel_size, stride), ...]
self.conv_bias: bool = False # include bias in conv encoder
self.feature_grad_mult: float = 1.0 # multiply feature extractor var grads by this
self.normalize: bool = False # normalize input to have 0 mean and unit variance during training
# dropouts
self.dropout: float = 0.1 # dropout probability for the transformer
self.attention_dropout: float = 0.1 # dropout probability for attention weights
self.activation_dropout: float = 0.0 # dropout probability after activation in FFN
self.encoder_layerdrop: float = 0.0 # probability of dropping a tarnsformer layer
self.dropout_input: float = 0.0 # dropout to apply to the input (after feat extr)
self.dropout_features: float = 0.0 # dropout to apply to the features (after feat extr)
# masking
self.mask_length: int = 10 # mask length
self.mask_prob: float = 0.65 # probability of replacing a token with mask
self.mask_selection: str = "static" # how to choose mask length
self.mask_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indicesh
self.no_mask_overlap: bool = False # whether to allow masks to overlap
self.mask_min_space: int = 1 # min space between spans (if no overlap is enabled)
# channel masking
self.mask_channel_length: int = 10 # length of the mask for features (channels)
self.mask_channel_prob: float = 0.0 # probability of replacing a feature with 0
self.mask_channel_selection: str = "static" # how to choose mask length for channel masking
self.mask_channel_other: float = 0 # secondary mask argument (used for more complex distributions), see help in compute_mask_indices
self.no_mask_channel_overlap: bool = False # whether to allow channel masks to overlap
self.mask_channel_min_space: int = 1 # min space between spans (if no overlap is enabled)
# positional embeddings
self.conv_pos: int = 128 # number of filters for convolutional positional embeddings
self.conv_pos_groups: int = 16 # number of groups for convolutional positional embedding
# relative position embedding
self.relative_position_embedding: bool = True # apply relative position embedding
self.num_buckets: int = 320 # number of buckets for relative position embedding
self.max_distance: int = 1280 # maximum distance for relative position embedding
self.gru_rel_pos: bool = True # apply gated relative position embedding
if cfg is not None:
self.update(cfg)
def update(self, cfg: dict):
self.__dict__.update(cfg)
class WavLM(nn.Layer):
def __init__(
self,
cfg: WavLMConfig,
) -> None:
super().__init__()
logger.info(f"WavLM Config: {cfg.__dict__}")
self.cfg = cfg
feature_enc_layers = eval(cfg.conv_feature_layers)
self.embed = feature_enc_layers[-1][0]
self.feature_extractor = ConvFeatureExtractionModel(
conv_layers=feature_enc_layers,
dropout=0.0,
mode=cfg.extractor_mode,
conv_bias=cfg.conv_bias,
)
self.post_extract_proj = (
nn.Linear(self.embed, cfg.encoder_embed_dim)
if self.embed != cfg.encoder_embed_dim
else None
)
self.mask_prob = cfg.mask_prob
self.mask_selection = cfg.mask_selection
self.mask_other = cfg.mask_other
self.mask_length = cfg.mask_length
self.no_mask_overlap = cfg.no_mask_overlap
self.mask_min_space = cfg.mask_min_space
self.mask_channel_prob = cfg.mask_channel_prob
self.mask_channel_selection = cfg.mask_channel_selection
self.mask_channel_other = cfg.mask_channel_other
self.mask_channel_length = cfg.mask_channel_length
self.no_mask_channel_overlap = cfg.no_mask_channel_overlap
self.mask_channel_min_space = cfg.mask_channel_min_space
self.dropout_input = nn.Dropout(cfg.dropout_input)
self.dropout_features = nn.Dropout(cfg.dropout_features)
self.feature_grad_mult = cfg.feature_grad_mult
self.mask_emb = self.create_parameter(
shape=[cfg.encoder_embed_dim],
default_initializer=nn.initializer.Uniform(),
)
self.encoder = TransformerEncoder(cfg)
self.layer_norm = LayerNorm(self.embed)
def apply_mask(self, x, padding_mask):
B, T, C = x.shape
if self.mask_prob > 0:
mask_indices = compute_mask_indices(
(B, T),
padding_mask,
self.mask_prob,
self.mask_length,
self.mask_selection,
self.mask_other,
min_masks=2,
no_overlap=self.no_mask_overlap,
min_space=self.mask_min_space,
)
# mask_indices = torch.from_numpy(mask_indices).to(x.device)
mask_indices = paddle.to_tensor(mask_indices, dtype='int64')
x[mask_indices] = self.mask_emb
else:
mask_indices = None
if self.mask_channel_prob > 0:
mask_channel_indices = compute_mask_indices(
(B, C),
None,
self.mask_channel_prob,
self.mask_channel_length,
self.mask_channel_selection,
self.mask_channel_other,
no_overlap=self.no_mask_channel_overlap,
min_space=self.mask_channel_min_space,
)
mask_channel_indices = (
# torch.from_numpy(mask_channel_indices)
paddle.to_tensor(mask_channel_indices, dtype='int64')
.to(x.device)
.unsqueeze(1)
.expand(-1, T, -1)
)
x[mask_channel_indices] = 0
return x, mask_indices
def forward_padding_mask(
self, features: Tensor, padding_mask: Tensor,
) -> Tensor:
extra = padding_mask.size(1) % features.size(1)
if extra > 0:
padding_mask = padding_mask[:, :-extra]
padding_mask = padding_mask.view(
padding_mask.size(0), features.size(1), -1
)
padding_mask = padding_mask.all(-1)
return padding_mask
def extract_features(
self,
source: Tensor,
padding_mask: Optional[Tensor] = None,
mask: bool = False,
ret_conv: bool = False,
output_layer: Optional[int] = None,
ret_layer_results: bool = False,
):
if self.feature_grad_mult > 0:
features = self.feature_extractor(source)
# if self.feature_grad_mult != 1.0:
# features = GradMultiply.apply(features, self.feature_grad_mult)
else:
# with torch.no_grad():
with paddle.no_grad():
features = self.feature_extractor(source)
features = features.transpose([0, 2, 1]) # [1, 49, 512]
features = self.layer_norm(features)
if padding_mask is not None:
padding_mask = self.forward_padding_mask(features, padding_mask)
if self.post_extract_proj is not None:
features = self.post_extract_proj(features)
# [1, 49, 768]
features = self.dropout_input(features)
if mask:
x, mask_indices = self.apply_mask(
features, padding_mask
)
else:
x = features
# feature: (B, T, D), float
# target: (B, T), long
# x: (B, T, D), float
# padding_mask: (B, T), bool
# mask_indices: (B, T), bool
x, layer_results = self.encoder(
x,
padding_mask=padding_mask,
layer=None if output_layer is None else output_layer - 1
)
# print(f"Debugging: x.shape: {x.shape}, x.mean(): {x.mean()}, x.std(): {x.std()}")
res = {"x": x, "padding_mask": padding_mask, "features": features, "layer_results": layer_results}
feature = res["features"] if ret_conv else res["x"]
if ret_layer_results:
feature = (feature, res["layer_results"])
return feature, res["padding_mask"]
def forward(self, x):
return self.extract_features(x)[0]
class ConvFeatureExtractionModel(nn.Layer):
def __init__(
self,
conv_layers: List[Tuple[int, int, int]],
dropout: float = 0.0,
mode: str = "default",
conv_bias: bool = False,
conv_type: str = "default"
):
super().__init__()
assert mode in {"default", "layer_norm"}
def block(
n_in,
n_out,
k,
stride,
is_layer_norm=False,
is_group_norm=False,
conv_bias=False,
):
def make_conv():
conv = nn.Conv1D(n_in, n_out, k, stride=stride, bias_attr=conv_bias,
weight_attr=nn.initializer.KaimingNormal())
# nn.init.kaiming_normal_(conv.weight)
return conv
assert (
is_layer_norm and is_group_norm
) == False, "layer norm and group norm are exclusive"
if is_layer_norm:
return nn.Sequential(
make_conv(),
nn.Dropout(p=dropout),
nn.Sequential(
TransposeLast(),
nn.LayerNorm(normalized_shape=dim, epsilon=1e-5),
TransposeLast(),
),
nn.GELU(),
)
elif is_group_norm:
return nn.Sequential(
make_conv(),
nn.Dropout(p=dropout),
nn.GroupNorm(num_groups=dim, num_channels=dim, epsilon=1e-5),
nn.GELU(),
)
else:
return nn.Sequential(make_conv(), nn.Dropout(p=dropout), nn.GELU())
self.conv_type = conv_type
if self.conv_type == "default":
in_d = 1
self.conv_layers = nn.LayerList()
for i, cl in enumerate(conv_layers):
assert len(cl) == 3, "invalid conv definition: " + str(cl)
(dim, k, stride) = cl
self.conv_layers.append(
block(
in_d,
dim,
k,
stride,
is_layer_norm=mode == "layer_norm",
is_group_norm=mode == "default" and i == 0,
conv_bias=conv_bias,
)
)
in_d = dim
elif self.conv_type == "conv2d":
in_d = 1
self.conv_layers = nn.LayerList()
for i, cl in enumerate(conv_layers):
assert len(cl) == 3
(dim, k, stride) = cl
self.conv_layers.append(
paddle.nn.Conv2D(in_d, dim, k, stride)
)
self.conv_layers.append(paddle.nn.ReLU())
in_d = dim
elif self.conv_type == "custom":
in_d = 1
idim = 80
self.conv_layers = nn.LayerList()
for i, cl in enumerate(conv_layers):
assert len(cl) == 3
(dim, k, stride) = cl
self.conv_layers.append(
paddle.nn.Conv2D(in_d, dim, k, stride, padding=1)
)
self.conv_layers.append(
paddle.nn.LayerNorm([dim, idim])
)
self.conv_layers.append(paddle.nn.ReLU())
in_d = dim
if (i + 1) % 2 == 0:
self.conv_layers.append(
paddle.nn.MaxPool2D(2, stride=2, ceil_mode=True)
)
idim = int(math.ceil(idim / 2))
else:
pass
def forward(self, x, mask=None):
# BxT -> BxCxT
x = x.unsqueeze(1)
if self.conv_type == "custom":
for conv in self.conv_layers:
if isinstance(conv, nn.LayerNorm):
x = x.transpose([0, 2, 1])
x = conv(x).transpose([0, 2, 1])
else:
x = conv(x)
x = x.transpose([0, 1, 3, 2]).contiguous()
x = x.view(x.size(0), -1, x.size(-1))
else:
for conv in self.conv_layers:
x = conv(x)
if self.conv_type == "conv2d":
b, c, t, f = x.size()
# x = x.transpose(2, 3).contiguous().view(b, c * f, t)
x = x.transpose([0, 1, 3, 2]).contiguous().view(b, c * f, t)
return x
class TransformerEncoder(nn.Layer):
def __init__(self, args):
super().__init__()
self.dropout = args.dropout
self.embedding_dim = args.encoder_embed_dim
dropout = 0
std = math.sqrt((4 * (1.0 - dropout)) / (args.conv_pos * self.embedding_dim))
self.pos_conv = nn.Conv1D(
self.embedding_dim,
self.embedding_dim,
kernel_size=args.conv_pos,
padding=args.conv_pos // 2,
groups=args.conv_pos_groups,
weight_attr=nn.initializer.Normal(mean=0, std=std),
bias_attr=True
)
# nn.init.normal_(self.pos_conv.weight, mean=0, std=std)
# nn.init.constant_(self.pos_conv.bias, 0)
# self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
# self.pos_conv.weight_g = self.pos_conv.weight_g.unsqueeze(0).unsqueeze(0)
self.pos_conv = nn.utils.weight_norm(self.pos_conv, name="weight", dim=2)
self.pos_conv = nn.Sequential(self.pos_conv, SamePad(args.conv_pos), nn.GELU())
if hasattr(args, "relative_position_embedding"):
self.relative_position_embedding = args.relative_position_embedding
self.num_buckets = args.num_buckets
self.max_distance = args.max_distance
else:
self.relative_position_embedding = False
self.num_buckets = 0
self.max_distance = 0
self.layers = nn.LayerList(
[
TransformerSentenceEncoderLayer(
embedding_dim=self.embedding_dim,
ffn_embedding_dim=args.encoder_ffn_embed_dim,
num_attention_heads=args.encoder_attention_heads,
dropout=self.dropout,
attention_dropout=args.attention_dropout,
activation_dropout=args.activation_dropout,
activation_fn=args.activation_fn,
layer_norm_first=args.layer_norm_first,
has_relative_attention_bias=(self.relative_position_embedding and i == 0),
num_buckets=self.num_buckets,
max_distance=self.max_distance,
gru_rel_pos=args.gru_rel_pos,
)
for i in range(args.encoder_layers)
]
)
self.layer_norm_first = args.layer_norm_first
self.layer_norm = LayerNorm(self.embedding_dim)
self.layerdrop = args.encoder_layerdrop
# self.apply(init_bert_params)
def forward(self, x, padding_mask=None, streaming_mask=None, layer=None):
x, layer_results = self.extract_features(x, padding_mask, streaming_mask, layer)
# print("x.shape", x.shape)
if self.layer_norm_first and layer is None:
x = self.layer_norm(x)
return x, layer_results
def extract_features(self, x, padding_mask=None, streaming_mask=None, tgt_layer=None):
if padding_mask is not None:
x[padding_mask] = 0
x_conv = self.pos_conv(x.transpose([0, 2, 1]))
x_conv = x_conv.transpose([0, 2, 1])
x += x_conv
if not self.layer_norm_first:
x = self.layer_norm(x)
x = F.dropout(x, p=self.dropout, training=self.training)
# B x T x C -> T x B x C
# x = x.transpose(0, 1)
x = x.transpose([1, 0, 2])
layer_results = []
z = None
if tgt_layer is not None:
layer_results.append((x, z))
r = None
pos_bias = None
for i, layer in enumerate(self.layers):
dropout_probability = np.random.random()
if not self.training or (dropout_probability > self.layerdrop):
x, z, pos_bias = layer(x, self_attn_padding_mask=padding_mask, need_weights=False,self_attn_mask=streaming_mask, pos_bias=pos_bias)
if tgt_layer is not None:
layer_results.append((x, z))
if i == tgt_layer:
r = x
break
if r is not None:
x = r
# T x B x C -> B x T x C
# x = x.transpose(0, 1)
x = x.transpose([1, 0, 2])
return x, layer_results
class TransformerSentenceEncoderLayer(nn.Layer):
"""
Implements a Transformer Encoder Layer used in BERT/XLM style pre-trained
models.
"""
def __init__(
self,
embedding_dim: float = 768,
ffn_embedding_dim: float = 3072,
num_attention_heads: float = 8,
dropout: float = 0.1,
attention_dropout: float = 0.1,
activation_dropout: float = 0.1,
activation_fn: str = "relu",
layer_norm_first: bool = False,
has_relative_attention_bias: bool = True,
num_buckets: int = 0,
max_distance: int = 0,
rescale_init: bool = False,
gru_rel_pos: bool = True,
) -> None:
super().__init__()
# Initialize parameters
self.embedding_dim = embedding_dim
self.dropout = dropout
self.activation_dropout = activation_dropout
# Initialize blocks
self.activation_name = activation_fn
self.activation_fn = get_activation_fn(activation_fn)
self.self_attn = MultiheadAttention(
self.embedding_dim,
num_attention_heads,
dropout=attention_dropout,
self_attention=True,
has_relative_attention_bias=has_relative_attention_bias,
num_buckets=num_buckets,
max_distance=max_distance,
rescale_init=rescale_init,
gru_rel_pos=gru_rel_pos,
)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(self.activation_dropout)
self.dropout3 = nn.Dropout(dropout)
self.layer_norm_first = layer_norm_first
# layer norm associated with the self attention layer
self.self_attn_layer_norm = LayerNorm(self.embedding_dim)
if self.activation_name == "glu":
self.fc1 = GLU_Linear(self.embedding_dim, ffn_embedding_dim, "swish")
else:
self.fc1 = nn.Linear(self.embedding_dim, ffn_embedding_dim)
self.fc2 = nn.Linear(ffn_embedding_dim, self.embedding_dim)
# layer norm associated with the position wise feed-forward NN
self.final_layer_norm = LayerNorm(self.embedding_dim)
def forward(
self,
x: Tensor,
self_attn_mask: Tensor = None,
self_attn_padding_mask: Tensor = None,
need_weights: bool = False,
pos_bias=None
):
"""
LayerNorm is applied either before or after the self-attention/ffn
modules similar to the original Transformer imlementation.
"""
residual = x
if self.layer_norm_first:
x = self.self_attn_layer_norm(x)
x, attn, pos_bias = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
need_weights=False,
attn_mask=self_attn_mask,
position_bias=pos_bias
)
# import pdb; pdb.set_trace()
x = self.dropout1(x)
x = residual + x
residual = x
x = self.final_layer_norm(x)
if self.activation_name == "glu":
x = self.fc1(x)
else:
x = self.activation_fn(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
x = self.dropout3(x)
x = residual + x
else:
x, attn, pos_bias = self.self_attn(
query=x,
key=x,
value=x,
key_padding_mask=self_attn_padding_mask,
need_weights=need_weights,
attn_mask=self_attn_mask,
position_bias=pos_bias
)
x = self.dropout1(x)
x = residual + x
x = self.self_attn_layer_norm(x)
residual = x
if self.activation_name == "glu":
x = self.fc1(x)
else:
x = self.activation_fn(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
x = self.dropout3(x)
x = residual + x
x = self.final_layer_norm(x)
return x, attn, pos_bias
Loading…
Cancel
Save