|
|
|
@ -12,7 +12,6 @@
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import argparse
|
|
|
|
|
import io
|
|
|
|
|
import os
|
|
|
|
|
import sys
|
|
|
|
|
from typing import List
|
|
|
|
@ -23,9 +22,9 @@ import librosa
|
|
|
|
|
import numpy as np
|
|
|
|
|
import paddle
|
|
|
|
|
import soundfile
|
|
|
|
|
import yaml
|
|
|
|
|
from yacs.config import CfgNode
|
|
|
|
|
|
|
|
|
|
from ..download import get_path_from_url
|
|
|
|
|
from ..executor import BaseExecutor
|
|
|
|
|
from ..log import logger
|
|
|
|
|
from ..utils import cli_register
|
|
|
|
@ -64,14 +63,47 @@ pretrained_models = {
|
|
|
|
|
'ckpt_path':
|
|
|
|
|
'exp/transformer/checkpoints/avg_10',
|
|
|
|
|
},
|
|
|
|
|
"deepspeech2offline_aishell-zh-16k": {
|
|
|
|
|
'url':
|
|
|
|
|
'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_aishell_ckpt_0.1.1.model.tar.gz',
|
|
|
|
|
'md5':
|
|
|
|
|
'932c3593d62fe5c741b59b31318aa314',
|
|
|
|
|
'cfg_path':
|
|
|
|
|
'model.yaml',
|
|
|
|
|
'ckpt_path':
|
|
|
|
|
'exp/deepspeech2/checkpoints/avg_1',
|
|
|
|
|
'lm_url':
|
|
|
|
|
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm',
|
|
|
|
|
'lm_md5':
|
|
|
|
|
'29e02312deb2e59b3c8686c7966d4fe3'
|
|
|
|
|
},
|
|
|
|
|
"deepspeech2online_aishell-zh-16k": {
|
|
|
|
|
'url':
|
|
|
|
|
'https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_ckpt_0.1.1.model.tar.gz',
|
|
|
|
|
'md5':
|
|
|
|
|
'd5e076217cf60486519f72c217d21b9b',
|
|
|
|
|
'cfg_path':
|
|
|
|
|
'model.yaml',
|
|
|
|
|
'ckpt_path':
|
|
|
|
|
'exp/deepspeech2_online/checkpoints/avg_1',
|
|
|
|
|
'lm_url':
|
|
|
|
|
'https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm',
|
|
|
|
|
'lm_md5':
|
|
|
|
|
'29e02312deb2e59b3c8686c7966d4fe3'
|
|
|
|
|
},
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
model_alias = {
|
|
|
|
|
"deepspeech2offline": "paddlespeech.s2t.models.ds2:DeepSpeech2Model",
|
|
|
|
|
"deepspeech2online": "paddlespeech.s2t.models.ds2_online:DeepSpeech2ModelOnline",
|
|
|
|
|
"conformer": "paddlespeech.s2t.models.u2:U2Model",
|
|
|
|
|
"transformer": "paddlespeech.s2t.models.u2:U2Model",
|
|
|
|
|
"wenetspeech": "paddlespeech.s2t.models.u2:U2Model",
|
|
|
|
|
"deepspeech2offline":
|
|
|
|
|
"paddlespeech.s2t.models.ds2:DeepSpeech2Model",
|
|
|
|
|
"deepspeech2online":
|
|
|
|
|
"paddlespeech.s2t.models.ds2_online:DeepSpeech2ModelOnline",
|
|
|
|
|
"conformer":
|
|
|
|
|
"paddlespeech.s2t.models.u2:U2Model",
|
|
|
|
|
"transformer":
|
|
|
|
|
"paddlespeech.s2t.models.u2:U2Model",
|
|
|
|
|
"wenetspeech":
|
|
|
|
|
"paddlespeech.s2t.models.u2:U2Model",
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@ -95,7 +127,8 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
'--lang',
|
|
|
|
|
type=str,
|
|
|
|
|
default='zh',
|
|
|
|
|
help='Choose model language. zh or en, zh:[conformer_wenetspeech-zh-16k], en:[transformer_librispeech-en-16k]')
|
|
|
|
|
help='Choose model language. zh or en, zh:[conformer_wenetspeech-zh-16k], en:[transformer_librispeech-en-16k]'
|
|
|
|
|
)
|
|
|
|
|
self.parser.add_argument(
|
|
|
|
|
"--sample_rate",
|
|
|
|
|
type=int,
|
|
|
|
@ -111,7 +144,10 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
'--decode_method',
|
|
|
|
|
type=str,
|
|
|
|
|
default='attention_rescoring',
|
|
|
|
|
choices=['ctc_greedy_search', 'ctc_prefix_beam_search', 'attention', 'attention_rescoring'],
|
|
|
|
|
choices=[
|
|
|
|
|
'ctc_greedy_search', 'ctc_prefix_beam_search', 'attention',
|
|
|
|
|
'attention_rescoring'
|
|
|
|
|
],
|
|
|
|
|
help='only support transformer and conformer model')
|
|
|
|
|
self.parser.add_argument(
|
|
|
|
|
'--ckpt_path',
|
|
|
|
@ -187,13 +223,21 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
if "deepspeech2online" in model_type or "deepspeech2offline" in model_type:
|
|
|
|
|
from paddlespeech.s2t.io.collator import SpeechCollator
|
|
|
|
|
self.vocab = self.config.vocab_filepath
|
|
|
|
|
self.config.decode.lang_model_path = os.path.join(res_path, self.config.decode.lang_model_path)
|
|
|
|
|
self.config.decode.lang_model_path = os.path.join(
|
|
|
|
|
MODEL_HOME, 'language_model',
|
|
|
|
|
self.config.decode.lang_model_path)
|
|
|
|
|
self.collate_fn_test = SpeechCollator.from_config(self.config)
|
|
|
|
|
self.text_feature = TextFeaturizer(
|
|
|
|
|
unit_type=self.config.unit_type,
|
|
|
|
|
vocab=self.vocab)
|
|
|
|
|
unit_type=self.config.unit_type, vocab=self.vocab)
|
|
|
|
|
lm_url = pretrained_models[tag]['lm_url']
|
|
|
|
|
lm_md5 = pretrained_models[tag]['lm_md5']
|
|
|
|
|
self.download_lm(
|
|
|
|
|
lm_url,
|
|
|
|
|
os.path.dirname(self.config.decode.lang_model_path), lm_md5)
|
|
|
|
|
|
|
|
|
|
elif "conformer" in model_type or "transformer" in model_type or "wenetspeech" in model_type:
|
|
|
|
|
self.config.spm_model_prefix = os.path.join(self.res_path, self.config.spm_model_prefix)
|
|
|
|
|
self.config.spm_model_prefix = os.path.join(
|
|
|
|
|
self.res_path, self.config.spm_model_prefix)
|
|
|
|
|
self.text_feature = TextFeaturizer(
|
|
|
|
|
unit_type=self.config.unit_type,
|
|
|
|
|
vocab=self.config.vocab_filepath,
|
|
|
|
@ -319,6 +363,13 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
"""
|
|
|
|
|
return self._outputs["result"]
|
|
|
|
|
|
|
|
|
|
def download_lm(self, url, lm_dir, md5sum):
|
|
|
|
|
download_path = get_path_from_url(
|
|
|
|
|
url=url,
|
|
|
|
|
root_dir=lm_dir,
|
|
|
|
|
md5sum=md5sum,
|
|
|
|
|
decompress=False, )
|
|
|
|
|
|
|
|
|
|
def _pcm16to32(self, audio):
|
|
|
|
|
assert (audio.dtype == np.int16)
|
|
|
|
|
audio = audio.astype("float32")
|
|
|
|
@ -435,7 +486,8 @@ class ASRExecutor(BaseExecutor):
|
|
|
|
|
audio_file = os.path.abspath(audio_file)
|
|
|
|
|
self._check(audio_file, sample_rate, force_yes)
|
|
|
|
|
paddle.set_device(device)
|
|
|
|
|
self._init_from_path(model, lang, sample_rate, config, decode_method, ckpt_path)
|
|
|
|
|
self._init_from_path(model, lang, sample_rate, config, decode_method,
|
|
|
|
|
ckpt_path)
|
|
|
|
|
self.preprocess(model, audio_file)
|
|
|
|
|
self.infer(model)
|
|
|
|
|
res = self.postprocess() # Retrieve result of asr.
|
|
|
|
|