add voxceleb augment unit test, test=doc

pull/1523/head
xiongxinlei 3 years ago
parent 7db7eb8993
commit 386ef3f161

@ -178,6 +178,7 @@ class DropChunk(nn.Layer):
# Update waveform # Update waveform
if not self.noise_factor: if not self.noise_factor:
for j in range(drop_times[i]): for j in range(drop_times[i]):
if start[j] < end[j]:
dropped_waveform[i, start[j]:end[j]] = 0.0 dropped_waveform[i, start[j]:end[j]] = 0.0
else: else:
# Uniform distribution of -2 to +2 * avg amplitude should # Uniform distribution of -2 to +2 * avg amplitude should

@ -0,0 +1,11 @@
def pytest_addoption(parser):
parser.addoption("--device", action="store", default="cpu")
def pytest_generate_tests(metafunc):
# This is called for every test. Only get/set command line arguments
# if the argument is specified in the list of test "fixturenames".
option_value = metafunc.config.option.device
if "device" in metafunc.fixturenames and option_value is not None:
metafunc.parametrize("device", [option_value])

@ -0,0 +1,138 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.io import BatchSampler
from paddle.io import DataLoader
from paddle.io import Dataset
def test_add_noise(tmpdir, device):
paddle.device.set_device(device)
from paddlespeech.vector.io.augment import AddNoise
test_waveform = paddle.sin(
paddle.arange(16000.0, dtype="float32")).unsqueeze(0)
test_noise = paddle.cos(
paddle.arange(16000.0, dtype="float32")).unsqueeze(0)
wav_lens = paddle.ones([1], dtype="float32")
# Edge cases
no_noise = AddNoise(mix_prob=0.0)
assert no_noise(test_waveform, wav_lens).allclose(test_waveform)
def test_speed_perturb(device):
paddle.device.set_device(device)
from paddlespeech.vector.io.augment import SpeedPerturb
test_waveform = paddle.sin(
paddle.arange(16000.0, dtype="float32")).unsqueeze(0)
# Edge cases
no_perturb = SpeedPerturb(16000, perturb_prob=0.0)
assert no_perturb(test_waveform).allclose(test_waveform)
no_perturb = SpeedPerturb(16000, speeds=[100])
assert no_perturb(test_waveform).allclose(test_waveform)
# # Half speed
half_speed = SpeedPerturb(16000, speeds=[50])
assert half_speed(test_waveform).allclose(test_waveform[:, ::2], atol=3e-1)
def test_babble(device):
paddle.device.set_device(device)
from paddlespeech.vector.io.augment import AddBabble
test_waveform = paddle.stack(
(paddle.sin(paddle.arange(16000.0, dtype="float32")),
paddle.cos(paddle.arange(16000.0, dtype="float32")), ))
lengths = paddle.ones([2])
# Edge cases
no_babble = AddBabble(mix_prob=0.0)
assert no_babble(test_waveform, lengths).allclose(test_waveform)
no_babble = AddBabble(speaker_count=1, snr_low=1000, snr_high=1000)
assert no_babble(test_waveform, lengths).allclose(test_waveform)
# One babbler just averages the two speakers
babble = AddBabble(speaker_count=1).to(device)
expected = (test_waveform + test_waveform.roll(1, 0)) / 2
assert babble(test_waveform, lengths).allclose(expected, atol=1e-4)
def test_drop_freq(device):
paddle.device.set_device(device)
from paddlespeech.vector.io.augment import DropFreq
test_waveform = paddle.sin(
paddle.arange(16000.0, dtype="float32")).unsqueeze(0)
# Edge cases
no_drop = DropFreq(drop_prob=0.0)
assert no_drop(test_waveform).allclose(test_waveform)
no_drop = DropFreq(drop_count_low=0, drop_count_high=0)
assert no_drop(test_waveform).allclose(test_waveform)
# Check case where frequency range *does not* include signal frequency
drop_diff_freq = DropFreq(drop_freq_low=0.5, drop_freq_high=0.9)
assert drop_diff_freq(test_waveform).allclose(test_waveform, atol=1e-1)
# Check case where frequency range *does* include signal frequency
drop_same_freq = DropFreq(drop_freq_low=0.28, drop_freq_high=0.28)
assert drop_same_freq(test_waveform).allclose(
paddle.zeros([1, 16000]), atol=4e-1)
def test_drop_chunk(device):
paddle.device.set_device(device)
from paddlespeech.vector.io.augment import DropChunk
test_waveform = paddle.sin(
paddle.arange(16000.0, dtype="float32")).unsqueeze(0)
lengths = paddle.ones([1])
# Edge cases
no_drop = DropChunk(drop_prob=0.0)
assert no_drop(test_waveform, lengths).allclose(test_waveform)
no_drop = DropChunk(drop_length_low=0, drop_length_high=0)
assert no_drop(test_waveform, lengths).allclose(test_waveform)
no_drop = DropChunk(drop_count_low=0, drop_count_high=0)
assert no_drop(test_waveform, lengths).allclose(test_waveform)
no_drop = DropChunk(drop_start=0, drop_end=0)
assert no_drop(test_waveform, lengths).allclose(test_waveform)
# Specify all parameters to ensure it is deterministic
dropper = DropChunk(
drop_length_low=100,
drop_length_high=100,
drop_count_low=1,
drop_count_high=1,
drop_start=100,
drop_end=200,
noise_factor=0.0, )
expected_waveform = test_waveform.clone()
expected_waveform[:, 100:200] = 0.0
assert dropper(test_waveform, lengths).allclose(expected_waveform)
# Make sure amplitude is similar before and after
dropper = DropChunk(noise_factor=1.0)
drop_amplitude = dropper(test_waveform, lengths).abs().mean()
orig_amplitude = test_waveform.abs().mean()
assert drop_amplitude.allclose(orig_amplitude, atol=1e-2)
Loading…
Cancel
Save