fix utils for ngram and wfst

pull/1715/head
Hui Zhang 3 years ago
parent cf1a395e15
commit 37d9c08da5

6
.gitignore vendored

@ -33,6 +33,12 @@ tools/Miniconda3-latest-Linux-x86_64.sh
tools/activate_python.sh
tools/miniconda.sh
tools/CRF++-0.58/
tools/liblbfgs-1.10/
tools/srilm/
tools/env.sh
tools/openfst-1.8.1/
tools/libsndfile/
tools/python-soundfile/
speechx/fc_patch/

@ -0,0 +1,27 @@
# This contains the locations of binarys build required for running the examples.
SPEECHX_ROOT=$PWD/../../../
MAIN_ROOT=$SPEECHX_ROOT/../
SPEECHX_EXAMPLES=$SPEECHX_ROOT/build/examples
SPEECHX_TOOLS=$SPEECHX_ROOT/tools
TOOLS_BIN=$SPEECHX_TOOLS/valgrind/install/bin
[ -d $SPEECHX_EXAMPLES ] || { echo "Error: 'build/examples' directory not found. please ensure that the project build successfully"; }
export LC_AL=C
export PATH=$PATH:$TOOLS_BIN
# srilm
export LIBLBFGS=${MAIN_ROOT}/tools/liblbfgs-1.10
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-}:${LIBLBFGS}/lib/.libs
export SRILM=${MAIN_ROOT}/tools/srilm
export PATH=${PATH}:${SRILM}/bin:${SRILM}/bin/i686-m64
# Kaldi
export KALDI_ROOT=${MAIN_ROOT}/tools/kaldi
[ -f $KALDI_ROOT/tools/env.sh ] && . $KALDI_ROOT/tools/env.sh
export PATH=$PWD/utils/:$KALDI_ROOT/tools/openfst/bin:$PWD:$PATH
[ ! -f $KALDI_ROOT/tools/config/common_path.sh ] && echo >&2 "The standard file $KALDI_ROOT/tools/config/common_path.sh is not present, can not using Kaldi!"
[ -f $KALDI_ROOT/tools/config/common_path.sh ] && . $KALDI_ROOT/tools/config/common_path.sh

@ -0,0 +1,64 @@
#!/bin/bash
set -eo pipefail
. path.sh
stage=-1
stop_stage=100
corpus=aishell
lmtype=srilm
lexicon= # aishell/resource_aishell/lexicon.txt
text= # aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
source parse_options.sh
if [ ! which ngram-count ]; then
pushd $MAIN_ROOT/tools
make srilm.done
popd
fi
if [ ! which fstprint ]; then
pushd $MAIN_ROOT/tools
make kaldi.done
popd
fi
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# 7.1 Prepare dict
unit_file=data/vocab.txt
mkdir -p data/local/dict
cp $unit_file data/local/dict/units.txt
utils/fst/prepare_dict.py \
--unit_file $unit_file \
--in_lexicon ${lexicon} \
--out_lexicon data/local/dict/lexicon.txt
fi
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# 7.2 Train lm
lm=data/local/lm
mkdir -p data/train
mkdir -p $lm
utils/manifest_key_value.py \
--manifest_path data/manifest.train \
--output_path data/train
utils/filter_scp.pl data/train/text \
$text > $lm/text
if [ $lmtype == 'srilm' ];then
local/aishell_train_lms.sh
else
utils/ngram_train.sh --order 3 $lm/text $lm/lm.arpa
fi
fi
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
# 7.3 Build decoding TLG
utils/fst/compile_lexicon_token_fst.sh \
data/local/dict data/local/tmp data/local/lang
utils/fst/make_tlg.sh data/local/lm data/local/lang data/lang_test || exit 1;
fi
echo "Aishell build TLG done."
exit 0

@ -10,12 +10,18 @@ Other -> 0.00 % N=0 C=0 S=0 D=0 I=0
## CTC Prefix Beam Search w LM
LM: zh_giga.no_cna_cmn.prune01244.klm
```
Overall -> 7.86 % N=104768 C=96865 S=7573 D=330 I=327
Mandarin -> 7.86 % N=104768 C=96865 S=7573 D=330 I=327
Other -> 0.00 % N=0 C=0 S=0 D=0 I=0
```
## CTC WFST
LM: aishell train
```
Overall -> 11.14 % N=103017 C=93363 S=9583 D=71 I=1819
Mandarin -> 11.14 % N=103017 C=93363 S=9583 D=71 I=1818
Other -> 0.00 % N=0 C=0 S=0 D=0 I=1
```

@ -5,7 +5,10 @@ set -e
. path.sh
nj=40
stage=0
stop_stage=100
. utils/parse_options.sh
# 1. compile
if [ ! -d ${SPEECHX_EXAMPLES} ]; then
@ -26,102 +29,112 @@ vocb_dir=$ckpt_dir/data/lang_char/
mkdir -p exp
exp=$PWD/exp
aishell_wav_scp=aishell_test.scp
if [ ! -d $data/test ]; then
pushd $data
wget -c https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/aishell_test.zip
unzip aishell_test.zip
popd
realpath $data/test/*/*.wav > $data/wavlist
awk -F '/' '{ print $(NF) }' $data/wavlist | awk -F '.' '{ print $1 }' > $data/utt_id
paste $data/utt_id $data/wavlist > $data/$aishell_wav_scp
fi
if [ ! -d $ckpt_dir ]; then
mkdir -p $ckpt_dir
wget -P $ckpt_dir -c https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_ckpt_0.2.0.model.tar.gz
tar xzfv $model_dir/asr0_deepspeech2_online_aishell_ckpt_0.2.0.model.tar.gz -C $ckpt_dir
fi
lm=$data/zh_giga.no_cna_cmn.prune01244.klm
if [ ! -f $lm ]; then
pushd $data
wget -c https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm
popd
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ];then
aishell_wav_scp=aishell_test.scp
if [ ! -d $data/test ]; then
pushd $data
wget -c https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/aishell_test.zip
unzip aishell_test.zip
popd
realpath $data/test/*/*.wav > $data/wavlist
awk -F '/' '{ print $(NF) }' $data/wavlist | awk -F '.' '{ print $1 }' > $data/utt_id
paste $data/utt_id $data/wavlist > $data/$aishell_wav_scp
fi
if [ ! -d $ckpt_dir ]; then
mkdir -p $ckpt_dir
wget -P $ckpt_dir -c https://paddlespeech.bj.bcebos.com/s2t/aishell/asr0/asr0_deepspeech2_online_aishell_ckpt_0.2.0.model.tar.gz
tar xzfv $model_dir/asr0_deepspeech2_online_aishell_ckpt_0.2.0.model.tar.gz -C $ckpt_dir
fi
lm=$data/zh_giga.no_cna_cmn.prune01244.klm
if [ ! -f $lm ]; then
pushd $data
wget -c https://deepspeech.bj.bcebos.com/zh_lm/zh_giga.no_cna_cmn.prune01244.klm
popd
fi
fi
# 3. make feature
text=$data/test/text
label_file=./aishell_result
wer=./aishell_wer
export GLOG_logtostderr=1
# 3. gen linear feat
cmvn=$PWD/cmvn.ark
cmvn-json2kaldi --json_file=$ckpt_dir/data/mean_std.json --cmvn_write_path=$cmvn
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
# 3. gen linear feat
cmvn=$data/cmvn.ark
cmvn-json2kaldi --json_file=$ckpt_dir/data/mean_std.json --cmvn_write_path=$cmvn
./local/split_data.sh $data $data/$aishell_wav_scp $aishell_wav_scp $nj
./local/split_data.sh $data $data/$aishell_wav_scp $aishell_wav_scp $nj
utils/run.pl JOB=1:$nj $data/split${nj}/JOB/feat.log \
linear-spectrogram-wo-db-norm-ol \
--wav_rspecifier=scp:$data/split${nj}/JOB/${aishell_wav_scp} \
--feature_wspecifier=ark,scp:$data/split${nj}/JOB/feat.ark,$data/split${nj}/JOB/feat.scp \
--cmvn_file=$cmvn \
--streaming_chunk=0.36
text=$data/test/text
utils/run.pl JOB=1:$nj $data/split${nj}/JOB/feat.log \
linear-spectrogram-wo-db-norm-ol \
--wav_rspecifier=scp:$data/split${nj}/JOB/${aishell_wav_scp} \
--feature_wspecifier=ark,scp:$data/split${nj}/JOB/feat.ark,$data/split${nj}/JOB/feat.scp \
--cmvn_file=$cmvn \
--streaming_chunk=0.36
fi
# 4. recognizer
utils/run.pl JOB=1:$nj $data/split${nj}/JOB/recog.wolm.log \
ctc-prefix-beam-search-decoder-ol \
--feature_rspecifier=scp:$data/split${nj}/JOB/feat.scp \
--model_path=$model_dir/avg_1.jit.pdmodel \
--param_path=$model_dir/avg_1.jit.pdiparams \
--model_output_names=softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0 \
--dict_file=$vocb_dir/vocab.txt \
--result_wspecifier=ark,t:$data/split${nj}/JOB/result
cat $data/split${nj}/*/result > ${label_file}
utils/compute-wer.py --char=1 --v=1 ${label_file} $text > ${wer}
# 4. decode with lm
utils/run.pl JOB=1:$nj $data/split${nj}/JOB/recog.lm.log \
ctc-prefix-beam-search-decoder-ol \
--feature_rspecifier=scp:$data/split${nj}/JOB/feat.scp \
--model_path=$model_dir/avg_1.jit.pdmodel \
--param_path=$model_dir/avg_1.jit.pdiparams \
--model_output_names=softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0 \
--dict_file=$vocb_dir/vocab.txt \
--lm_path=$lm \
--result_wspecifier=ark,t:$data/split${nj}/JOB/result_lm
cat $data/split${nj}/*/result_lm > ${label_file}_lm
utils/compute-wer.py --char=1 --v=1 ${label_file}_lm $text > ${wer}_lm
graph_dir=./aishell_graph
if [ ! -d $ ]; then
wget -c https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/aishell_graph.zip
unzip -d aishell_graph.zip
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ];then
# recognizer
utils/run.pl JOB=1:$nj $data/split${nj}/JOB/recog.wolm.log \
ctc-prefix-beam-search-decoder-ol \
--feature_rspecifier=scp:$data/split${nj}/JOB/feat.scp \
--model_path=$model_dir/avg_1.jit.pdmodel \
--param_path=$model_dir/avg_1.jit.pdiparams \
--model_output_names=softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0 \
--dict_file=$vocb_dir/vocab.txt \
--result_wspecifier=ark,t:$data/split${nj}/JOB/result
cat $data/split${nj}/*/result > $exp/${label_file}
utils/compute-wer.py --char=1 --v=1 $exp/${label_file} $text > $exp/${wer}
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ];then
# decode with lm
utils/run.pl JOB=1:$nj $data/split${nj}/JOB/recog.lm.log \
ctc-prefix-beam-search-decoder-ol \
--feature_rspecifier=scp:$data/split${nj}/JOB/feat.scp \
--model_path=$model_dir/avg_1.jit.pdmodel \
--param_path=$model_dir/avg_1.jit.pdiparams \
--model_output_names=softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0 \
--dict_file=$vocb_dir/vocab.txt \
--lm_path=$lm \
--result_wspecifier=ark,t:$data/split${nj}/JOB/result_lm
cat $data/split${nj}/*/result_lm > $exp/${label_file}_lm
utils/compute-wer.py --char=1 --v=1 $exp/${label_file}_lm $text > $exp/${wer}_lm
fi
# 5. test TLG decoder
utils/run.pl JOB=1:$nj $data/split${nj}/JOB/recog.wfst.log \
wfst-decoder-ol \
--feature_rspecifier=scp:$data/split${nj}/JOB/feat.scp \
--model_path=$model_dir/avg_1.jit.pdmodel \
--param_path=$model_dir/avg_1.jit.pdiparams \
--word_symbol_table=$graph_dir/words.txt \
--model_output_names=softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0 \
--graph_path=$graph_dir/TLG.fst --max_active=7500 \
--acoustic_scale=1.2 \
--result_wspecifier=ark,t:$data/split${nj}/JOB/result_tlg
wfst=$data/wfst/
mkdir -p $wfst
if [ ! -f $wfst/aishell_graph.zip ]; then
pushd $wfst
wget -c https://paddlespeech.bj.bcebos.com/s2t/paddle_asr_online/aishell_graph.zip
unzip aishell_graph.zip
popd
fi
cat $data/split${nj}/*/result_tlg > ${label_file}_tlg
utils/compute-wer.py --char=1 --v=1 ${label_file}_tlg $text > ${wer}_tlg
graph_dir=$wfst/aishell_graph
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
# TLG decoder
utils/run.pl JOB=1:$nj $data/split${nj}/JOB/recog.wfst.log \
wfst-decoder-ol \
--feature_rspecifier=scp:$data/split${nj}/JOB/feat.scp \
--model_path=$model_dir/avg_1.jit.pdmodel \
--param_path=$model_dir/avg_1.jit.pdiparams \
--word_symbol_table=$graph_dir/words.txt \
--model_output_names=softmax_0.tmp_0,tmp_5,concat_0.tmp_0,concat_1.tmp_0 \
--graph_path=$graph_dir/TLG.fst --max_active=7500 \
--acoustic_scale=1.2 \
--result_wspecifier=ark,t:$data/split${nj}/JOB/result_tlg
cat $data/split${nj}/*/result_tlg > $exp/${label_file}_tlg
utils/compute-wer.py --char=1 --v=1 $exp/${label_file}_tlg $text > $exp/${wer}_tlg
fi

@ -0,0 +1,57 @@
#!/bin/bash
# To be run from one directory above this script.
. ./path.sh
text=data/local/lm/text
lexicon=data/local/dict/lexicon.txt
for f in "$text" "$lexicon"; do
[ ! -f $x ] && echo "$0: No such file $f" && exit 1;
done
# Check SRILM tools
if ! which ngram-count > /dev/null; then
echo "srilm tools are not found, please download it and install it from: "
echo "http://www.speech.sri.com/projects/srilm/download.html"
echo "Then add the tools to your PATH"
exit 1
fi
# This script takes no arguments. It assumes you have already run
# aishell_data_prep.sh.
# It takes as input the files
# data/local/lm/text
# data/local/dict/lexicon.txt
dir=data/local/lm
mkdir -p $dir
cleantext=$dir/text.no_oov
cat $text | awk -v lex=$lexicon 'BEGIN{while((getline<lex) >0){ seen[$1]=1; } }
{for(n=1; n<=NF;n++) { if (seen[$n]) { printf("%s ", $n); } else {printf("<SPOKEN_NOISE> ");} } printf("\n");}' \
> $cleantext || exit 1;
cat $cleantext | awk '{for(n=2;n<=NF;n++) print $n; }' | sort | uniq -c | \
sort -nr > $dir/word.counts || exit 1;
# Get counts from acoustic training transcripts, and add one-count
# for each word in the lexicon (but not silence, we don't want it
# in the LM-- we'll add it optionally later).
cat $cleantext | awk '{for(n=2;n<=NF;n++) print $n; }' | \
cat - <(grep -w -v '!SIL' $lexicon | awk '{print $1}') | \
sort | uniq -c | sort -nr > $dir/unigram.counts || exit 1;
cat $dir/unigram.counts | awk '{print $2}' | cat - <(echo "<s>"; echo "</s>" ) > $dir/wordlist
heldout_sent=10000 # Don't change this if you want result to be comparable with
# kaldi_lm results
mkdir -p $dir
cat $cleantext | awk '{for(n=2;n<=NF;n++){ printf $n; if(n<NF) printf " "; else print ""; }}' | \
head -$heldout_sent > $dir/heldout
cat $cleantext | awk '{for(n=2;n<=NF;n++){ printf $n; if(n<NF) printf " "; else print ""; }}' | \
tail -n +$heldout_sent > $dir/train
ngram-count -text $dir/train -order 3 -limit-vocab -vocab $dir/wordlist -unk \
-map-unk "<UNK>" -kndiscount -interpolate -lm $dir/lm.arpa
ngram -lm $dir/lm.arpa -ppl $dir/heldout

@ -0,0 +1,20 @@
# This contains the locations of binarys build required for running the examples.
SPEECHX_ROOT=$PWD/../../../
MAIN_ROOT=$SPEECHX_ROOT/../
SPEECHX_EXAMPLES=$SPEECHX_ROOT/build/examples
SPEECHX_TOOLS=$SPEECHX_ROOT/tools
TOOLS_BIN=$SPEECHX_TOOLS/valgrind/install/bin
[ -d $SPEECHX_EXAMPLES ] || { echo "Error: 'build/examples' directory not found. please ensure that the project build successfully"; }
export LC_AL=C
export PATH=$PATH:$TOOLS_BIN
# srilm
export LIBLBFGS=${MAIN_ROOT}/tools/liblbfgs-1.10
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH:-}:${LIBLBFGS}/lib/.libs
export SRILM=${MAIN_ROOT}/tools/srilm
export PATH=${PATH}:${SRILM}/bin:${SRILM}/bin/i686-m64

@ -0,0 +1,61 @@
#!/bin/bash
set -eo pipefail
. path.sh
stage=-1
stop_stage=100
corpus=aishell
unit=data/vocab.txt # vocab
lexicon= # aishell/resource_aishell/lexicon.txt
text= # aishell/data_aishell/transcript/aishell_transcript_v0.8.txt
. parse_options.sh
data=$PWD/data
mkdir -p $data
if [ ! -f $unit ]; then
echo "$0: No such file $unit"
exit 1;
fi
if [ ! which ngram-count ]; then
pushd $MAIN_ROOT/tools
make srilm.done
popd
fi
if [ ! which fstaddselfloops ]; then
pushd $MAIN_ROOT/tools
make kaldi.done
popd
fi
mkdir -p data/local/dict
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# 7.1 Prepare dict
cp $unit data/local/dict/units.txt
utils/fst/prepare_dict.py \
--unit_file $unit \
--in_lexicon ${lexicon} \
--out_lexicon data/local/dict/lexicon.txt
fi
lm=data/local/lm
mkdir -p data/train
mkdir -p $lm
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
# 7.2 Train lm
utils/manifest_key_value.py \
--manifest_path data/manifest.train \
--output_path data/train
utils/filter_scp.pl data/train/text \
$text > $lm/text
local/aishell_train_lms.sh
fi
echo "build LM done."
exit 0

@ -0,0 +1 @@
../../../utils/

@ -1,97 +0,0 @@
#!/usr/bin/env bash
current_path=`pwd`
current_dir=`basename "$current_path"`
if [ "tools" != "$current_dir" ]; then
echo "You should run this script in tools/ directory!!"
exit 1
fi
if [ ! -d liblbfgs-1.10 ]; then
echo Installing libLBFGS library to support MaxEnt LMs
bash extras/install_liblbfgs.sh || exit 1
fi
! command -v gawk > /dev/null && \
echo "GNU awk is not installed so SRILM will probably not work correctly: refusing to install" && exit 1;
if [ $# -ne 3 ]; then
echo "SRILM download requires some information about you"
echo
echo "Usage: $0 <name> <organization> <email>"
exit 1
fi
srilm_url="http://www.speech.sri.com/projects/srilm/srilm_download.php"
post_data="WWW_file=srilm-1.7.3.tar.gz&WWW_name=$1&WWW_org=$2&WWW_email=$3"
if ! wget --post-data "$post_data" -O ./srilm.tar.gz "$srilm_url"; then
echo 'There was a problem downloading the file.'
echo 'Check you internet connection and try again.'
exit 1
fi
mkdir -p srilm
cd srilm
if [ -f ../srilm.tgz ]; then
tar -xvzf ../srilm.tgz # Old SRILM format
elif [ -f ../srilm.tar.gz ]; then
tar -xvzf ../srilm.tar.gz # Changed format type from tgz to tar.gz
fi
major=`gawk -F. '{ print $1 }' RELEASE`
minor=`gawk -F. '{ print $2 }' RELEASE`
micro=`gawk -F. '{ print $3 }' RELEASE`
if [ $major -le 1 ] && [ $minor -le 7 ] && [ $micro -le 1 ]; then
echo "Detected version 1.7.1 or earlier. Applying patch."
patch -p0 < ../extras/srilm.patch
fi
# set the SRILM variable in the top-level Makefile to this directory.
cp Makefile tmpf
cat tmpf | gawk -v pwd=`pwd` '/SRILM =/{printf("SRILM = %s\n", pwd); next;} {print;}' \
> Makefile || exit 1
rm tmpf
mtype=`sbin/machine-type`
echo HAVE_LIBLBFGS=1 >> common/Makefile.machine.$mtype
grep ADDITIONAL_INCLUDES common/Makefile.machine.$mtype | \
sed 's|$| -I$(SRILM)/../liblbfgs-1.10/include|' \
>> common/Makefile.machine.$mtype
grep ADDITIONAL_LDFLAGS common/Makefile.machine.$mtype | \
sed 's|$| -L$(SRILM)/../liblbfgs-1.10/lib/ -Wl,-rpath -Wl,$(SRILM)/../liblbfgs-1.10/lib/|' \
>> common/Makefile.machine.$mtype
make || exit
cd ..
(
[ ! -z "${SRILM}" ] && \
echo >&2 "SRILM variable is aleady defined. Undefining..." && \
unset SRILM
[ -f ./env.sh ] && . ./env.sh
[ ! -z "${SRILM}" ] && \
echo >&2 "SRILM config is already in env.sh" && exit
wd=`pwd`
wd=`readlink -f $wd || pwd`
echo "export SRILM=$wd/srilm"
dirs="\${PATH}"
for directory in $(cd srilm && find bin -type d ) ; do
dirs="$dirs:\${SRILM}/$directory"
done
echo "export PATH=$dirs"
) >> env.sh
echo >&2 "Installation of SRILM finished successfully"
echo >&2 "Please source the tools/env.sh in your path.sh to enable it"

@ -25,7 +25,7 @@ clean:
apt.done:
apt update -y
apt install -y bc flac jq vim tig tree pkg-config libsndfile1 libflac-dev libogg-dev libvorbis-dev libboost-dev swig python3-dev
apt install -y bc flac jq vim tig tree sox pkg-config libsndfile1 libflac-dev libogg-dev libvorbis-dev libboost-dev swig python3-dev
echo "check_certificate = off" >> ~/.wgetrc
touch apt.done
@ -50,7 +50,7 @@ openblas.done:
bash extras/install_openblas.sh
touch openblas.done
kaldi.done: openblas.done
kaldi.done: apt.done openblas.done
bash extras/install_kaldi.sh
touch kaldi.done
@ -58,6 +58,11 @@ sctk.done:
./extras/install_sclite.sh
touch sctk.done
srilm.done:
./extras/install_liblbfgs.sh
extras/install_srilm.sh
touch srilm.done
######################
dev: python conda_packages.done sctk.done

@ -7,8 +7,9 @@ set -x
# openfst
openfst=openfst-1.8.1
shared=true
WGET="wget -c --no-check-certificate"
test -e ${openfst}.tar.gz || wget http://www.openfst.org/twiki/pub/FST/FstDownload/${openfst}.tar.gz
test -e ${openfst}.tar.gz || $WGET http://www.openfst.org/twiki/pub/FST/FstDownload/${openfst}.tar.gz
test -d ${openfst} || tar -xvf ${openfst}.tar.gz && chown -R root:root ${openfst}

@ -26,23 +26,38 @@ def main(args):
with wav_scp.open('w') as fwav, dur_scp.open('w') as fdur, text_scp.open(
'w') as ftxt:
for line_json in manifest_jsons:
# utt:str
# utt2spk:str
# input: [{name:str, shape:[dur_in_sec, feat_dim], feat:str, filetype:str}, ]
# output: [{name:str, shape:[tokenlen, vocab_dim], text:str, token:str, tokenid:str}, ]
utt = line_json['utt']
feat = line_json['feat']
utt2spk = line_json['utt2spk']
# input
assert(len(line_json['input']) == 1), "only support one input now"
input_json = line_json['input'][0]
feat = input_json['feat']
feat_shape = input_json['shape']
file_type = input_json['filetype']
file_ext = Path(feat).suffix # .wav
text = line_json['text']
feat_shape = line_json['feat_shape']
dur = feat_shape[0]
feat_dim = feat_shape[1]
if 'token' in line_json:
tokens = line_json['token']
tokenids = line_json['token_id']
token_shape = line_json['token_shape']
token_len = token_shape[0]
vocab_dim = token_shape[1]
if file_ext == '.wav':
fwav.write(f"{utt} {feat}\n")
fdur.write(f"{utt} {dur}\n")
# output
assert(len(line_json['output']) == 1), "only support one output now"
output_json = line_json['output'][0]
text = output_json['text']
if 'token' in output_json:
tokens = output_json['token']
tokenids = output_json['tokenid']
token_shape = output_json['shape']
token_len = token_shape[0]
vocab_dim = token_shape[1]
ftxt.write(f"{utt} {text}\n")
count += 1

Loading…
Cancel
Save