[ASR]add squeezeformer model (#2755)
* add squeezeformer model * change CodeStyle, test=asr * change CodeStyle, test=asr * fix subsample rate error, test=asr * merge classes as required, test=asr * change CodeStyle, test=asr * fix missing code, test=asr * split code to new file, test=asr * remove rel_shift, test=asrpull/3056/head
parent
9bf5471613
commit
31a4562ae8
@ -0,0 +1,98 @@
|
|||||||
|
############################################
|
||||||
|
# Network Architecture #
|
||||||
|
############################################
|
||||||
|
cmvn_file:
|
||||||
|
cmvn_file_type: "json"
|
||||||
|
# encoder related
|
||||||
|
encoder: squeezeformer
|
||||||
|
encoder_conf:
|
||||||
|
encoder_dim: 256 # dimension of attention
|
||||||
|
output_size: 256 # dimension of output
|
||||||
|
attention_heads: 4
|
||||||
|
num_blocks: 12 # the number of encoder blocks
|
||||||
|
reduce_idx: 5
|
||||||
|
recover_idx: 11
|
||||||
|
feed_forward_expansion_factor: 8
|
||||||
|
input_dropout_rate: 0.1
|
||||||
|
feed_forward_dropout_rate: 0.1
|
||||||
|
attention_dropout_rate: 0.1
|
||||||
|
adaptive_scale: true
|
||||||
|
cnn_module_kernel: 31
|
||||||
|
normalize_before: false
|
||||||
|
activation_type: 'swish'
|
||||||
|
pos_enc_layer_type: 'rel_pos'
|
||||||
|
time_reduction_layer_type: 'stream'
|
||||||
|
causal: true
|
||||||
|
use_dynamic_chunk: true
|
||||||
|
use_dynamic_left_chunk: false
|
||||||
|
|
||||||
|
# decoder related
|
||||||
|
decoder: transformer
|
||||||
|
decoder_conf:
|
||||||
|
attention_heads: 4
|
||||||
|
linear_units: 2048
|
||||||
|
num_blocks: 6
|
||||||
|
dropout_rate: 0.1 # sublayer output dropout
|
||||||
|
positional_dropout_rate: 0.1
|
||||||
|
self_attention_dropout_rate: 0.0
|
||||||
|
src_attention_dropout_rate: 0.0
|
||||||
|
# hybrid CTC/attention
|
||||||
|
model_conf:
|
||||||
|
ctc_weight: 0.3
|
||||||
|
lsm_weight: 0.1 # label smoothing option
|
||||||
|
length_normalized_loss: false
|
||||||
|
init_type: 'kaiming_uniform' # !Warning: need to convergence
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Data #
|
||||||
|
###########################################
|
||||||
|
|
||||||
|
train_manifest: data/manifest.train
|
||||||
|
dev_manifest: data/manifest.dev
|
||||||
|
test_manifest: data/manifest.test
|
||||||
|
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Dataloader #
|
||||||
|
###########################################
|
||||||
|
|
||||||
|
vocab_filepath: data/lang_char/vocab.txt
|
||||||
|
spm_model_prefix: ''
|
||||||
|
unit_type: 'char'
|
||||||
|
preprocess_config: conf/preprocess.yaml
|
||||||
|
feat_dim: 80
|
||||||
|
stride_ms: 10.0
|
||||||
|
window_ms: 25.0
|
||||||
|
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
||||||
|
batch_size: 32
|
||||||
|
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
||||||
|
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
||||||
|
minibatches: 0 # for debug
|
||||||
|
batch_count: auto
|
||||||
|
batch_bins: 0
|
||||||
|
batch_frames_in: 0
|
||||||
|
batch_frames_out: 0
|
||||||
|
batch_frames_inout: 0
|
||||||
|
num_workers: 2
|
||||||
|
subsampling_factor: 1
|
||||||
|
num_encs: 1
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Training #
|
||||||
|
###########################################
|
||||||
|
n_epoch: 240
|
||||||
|
accum_grad: 1
|
||||||
|
global_grad_clip: 5.0
|
||||||
|
dist_sampler: True
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.001
|
||||||
|
weight_decay: 1.0e-6
|
||||||
|
scheduler: warmuplr
|
||||||
|
scheduler_conf:
|
||||||
|
warmup_steps: 25000
|
||||||
|
lr_decay: 1.0
|
||||||
|
log_interval: 100
|
||||||
|
checkpoint:
|
||||||
|
kbest_n: 50
|
||||||
|
latest_n: 5
|
@ -0,0 +1,93 @@
|
|||||||
|
############################################
|
||||||
|
# Network Architecture #
|
||||||
|
############################################
|
||||||
|
cmvn_file:
|
||||||
|
cmvn_file_type: "json"
|
||||||
|
# encoder related
|
||||||
|
encoder: squeezeformer
|
||||||
|
encoder_conf:
|
||||||
|
encoder_dim: 256 # dimension of attention
|
||||||
|
output_size: 256 # dimension of output
|
||||||
|
attention_heads: 4
|
||||||
|
num_blocks: 12 # the number of encoder blocks
|
||||||
|
reduce_idx: 5
|
||||||
|
recover_idx: 11
|
||||||
|
feed_forward_expansion_factor: 8
|
||||||
|
input_dropout_rate: 0.1
|
||||||
|
feed_forward_dropout_rate: 0.1
|
||||||
|
attention_dropout_rate: 0.1
|
||||||
|
adaptive_scale: true
|
||||||
|
cnn_module_kernel: 31
|
||||||
|
normalize_before: false
|
||||||
|
activation_type: 'swish'
|
||||||
|
pos_enc_layer_type: 'rel_pos'
|
||||||
|
time_reduction_layer_type: 'conv1d'
|
||||||
|
|
||||||
|
# decoder related
|
||||||
|
decoder: transformer
|
||||||
|
decoder_conf:
|
||||||
|
attention_heads: 4
|
||||||
|
linear_units: 2048
|
||||||
|
num_blocks: 6
|
||||||
|
dropout_rate: 0.1
|
||||||
|
positional_dropout_rate: 0.1
|
||||||
|
self_attention_dropout_rate: 0.0
|
||||||
|
src_attention_dropout_rate: 0.0
|
||||||
|
|
||||||
|
# hybrid CTC/attention
|
||||||
|
model_conf:
|
||||||
|
ctc_weight: 0.3
|
||||||
|
lsm_weight: 0.1 # label smoothing option
|
||||||
|
length_normalized_loss: false
|
||||||
|
init_type: 'kaiming_uniform' # !Warning: need to convergence
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Data #
|
||||||
|
###########################################
|
||||||
|
train_manifest: data/manifest.train
|
||||||
|
dev_manifest: data/manifest.dev
|
||||||
|
test_manifest: data/manifest.test
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Dataloader #
|
||||||
|
###########################################
|
||||||
|
vocab_filepath: data/lang_char/vocab.txt
|
||||||
|
spm_model_prefix: ''
|
||||||
|
unit_type: 'char'
|
||||||
|
preprocess_config: conf/preprocess.yaml
|
||||||
|
feat_dim: 80
|
||||||
|
stride_ms: 10.0
|
||||||
|
window_ms: 25.0
|
||||||
|
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
||||||
|
batch_size: 32
|
||||||
|
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
||||||
|
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
||||||
|
minibatches: 0 # for debug
|
||||||
|
batch_count: auto
|
||||||
|
batch_bins: 0
|
||||||
|
batch_frames_in: 0
|
||||||
|
batch_frames_out: 0
|
||||||
|
batch_frames_inout: 0
|
||||||
|
num_workers: 2
|
||||||
|
subsampling_factor: 1
|
||||||
|
num_encs: 1
|
||||||
|
|
||||||
|
###########################################
|
||||||
|
# Training #
|
||||||
|
###########################################
|
||||||
|
n_epoch: 150
|
||||||
|
accum_grad: 8
|
||||||
|
global_grad_clip: 5.0
|
||||||
|
dist_sampler: False
|
||||||
|
optim: adam
|
||||||
|
optim_conf:
|
||||||
|
lr: 0.002
|
||||||
|
weight_decay: 1.0e-6
|
||||||
|
scheduler: warmuplr
|
||||||
|
scheduler_conf:
|
||||||
|
warmup_steps: 25000
|
||||||
|
lr_decay: 1.0
|
||||||
|
log_interval: 100
|
||||||
|
checkpoint:
|
||||||
|
kbest_n: 50
|
||||||
|
latest_n: 5
|
@ -0,0 +1,62 @@
|
|||||||
|
from typing import Optional
|
||||||
|
from typing import Union
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import paddle.nn.functional as F
|
||||||
|
from paddle.nn.layer.conv import _ConvNd
|
||||||
|
|
||||||
|
__all__ = ['Conv2DValid']
|
||||||
|
|
||||||
|
|
||||||
|
class Conv2DValid(_ConvNd):
|
||||||
|
"""
|
||||||
|
Conv2d operator for VALID mode padding.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
in_channels: int,
|
||||||
|
out_channels: int,
|
||||||
|
kernel_size: int,
|
||||||
|
stride: int=1,
|
||||||
|
padding: Union[str, int]=0,
|
||||||
|
dilation: int=1,
|
||||||
|
groups: int=1,
|
||||||
|
padding_mode: str='zeros',
|
||||||
|
weight_attr=None,
|
||||||
|
bias_attr=None,
|
||||||
|
data_format="NCHW",
|
||||||
|
valid_trigx: bool=False,
|
||||||
|
valid_trigy: bool=False) -> None:
|
||||||
|
super(Conv2DValid, self).__init__(
|
||||||
|
in_channels,
|
||||||
|
out_channels,
|
||||||
|
kernel_size,
|
||||||
|
False,
|
||||||
|
2,
|
||||||
|
stride=stride,
|
||||||
|
padding=padding,
|
||||||
|
padding_mode=padding_mode,
|
||||||
|
dilation=dilation,
|
||||||
|
groups=groups,
|
||||||
|
weight_attr=weight_attr,
|
||||||
|
bias_attr=bias_attr,
|
||||||
|
data_format=data_format)
|
||||||
|
self.valid_trigx = valid_trigx
|
||||||
|
self.valid_trigy = valid_trigy
|
||||||
|
|
||||||
|
def _conv_forward(self,
|
||||||
|
input: paddle.Tensor,
|
||||||
|
weight: paddle.Tensor,
|
||||||
|
bias: Optional[paddle.Tensor]):
|
||||||
|
validx, validy = 0, 0
|
||||||
|
if self.valid_trigx:
|
||||||
|
validx = (input.shape[-2] *
|
||||||
|
(self._stride[-2] - 1) - 1 + self._kernel_size[-2]) // 2
|
||||||
|
if self.valid_trigy:
|
||||||
|
validy = (input.shape[-1] *
|
||||||
|
(self._stride[-1] - 1) - 1 + self._kernel_size[-1]) // 2
|
||||||
|
return F.conv2d(input, weight, bias, self._stride, (validx, validy),
|
||||||
|
self._dilation, self._groups)
|
||||||
|
|
||||||
|
def forward(self, input: paddle.Tensor) -> paddle.Tensor:
|
||||||
|
return self._conv_forward(input, self.weight, self.bias)
|
@ -0,0 +1,263 @@
|
|||||||
|
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
# Copyright 2019 Mobvoi Inc. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
# Modified from wenet(https://github.com/wenet-e2e/wenet)
|
||||||
|
"""Subsampling layer definition."""
|
||||||
|
from typing import Tuple
|
||||||
|
|
||||||
|
import paddle
|
||||||
|
import paddle.nn.functional as F
|
||||||
|
from paddle import nn
|
||||||
|
|
||||||
|
from paddlespeech.s2t import masked_fill
|
||||||
|
from paddlespeech.s2t.modules.align import Conv1D
|
||||||
|
from paddlespeech.s2t.modules.conv2d import Conv2DValid
|
||||||
|
from paddlespeech.s2t.utils.log import Log
|
||||||
|
|
||||||
|
logger = Log(__name__).getlog()
|
||||||
|
|
||||||
|
__all__ = [
|
||||||
|
"TimeReductionLayerStream", "TimeReductionLayer1D", "TimeReductionLayer2D"
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
|
class TimeReductionLayer1D(nn.Layer):
|
||||||
|
"""
|
||||||
|
Modified NeMo,
|
||||||
|
Squeezeformer Time Reduction procedure.
|
||||||
|
Downsamples the audio by `stride` in the time dimension.
|
||||||
|
Args:
|
||||||
|
channel (int): input dimension of
|
||||||
|
MultiheadAttentionMechanism and PositionwiseFeedForward
|
||||||
|
out_dim (int): Output dimension of the module.
|
||||||
|
kernel_size (int): Conv kernel size for
|
||||||
|
depthwise convolution in convolution module
|
||||||
|
stride (int): Downsampling factor in time dimension.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
channel: int,
|
||||||
|
out_dim: int,
|
||||||
|
kernel_size: int=5,
|
||||||
|
stride: int=2):
|
||||||
|
super(TimeReductionLayer1D, self).__init__()
|
||||||
|
|
||||||
|
self.channel = channel
|
||||||
|
self.out_dim = out_dim
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.stride = stride
|
||||||
|
self.padding = max(0, self.kernel_size - self.stride)
|
||||||
|
|
||||||
|
self.dw_conv = Conv1D(
|
||||||
|
in_channels=channel,
|
||||||
|
out_channels=channel,
|
||||||
|
kernel_size=kernel_size,
|
||||||
|
stride=stride,
|
||||||
|
padding=self.padding,
|
||||||
|
groups=channel, )
|
||||||
|
|
||||||
|
self.pw_conv = Conv1D(
|
||||||
|
in_channels=channel,
|
||||||
|
out_channels=out_dim,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
groups=1, )
|
||||||
|
|
||||||
|
self.init_weights()
|
||||||
|
|
||||||
|
def init_weights(self):
|
||||||
|
dw_max = self.kernel_size**-0.5
|
||||||
|
pw_max = self.channel**-0.5
|
||||||
|
self.dw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-dw_max, high=dw_max)
|
||||||
|
self.dw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-dw_max, high=dw_max)
|
||||||
|
self.pw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-pw_max, high=pw_max)
|
||||||
|
self.pw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-pw_max, high=pw_max)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
xs,
|
||||||
|
xs_lens: paddle.Tensor,
|
||||||
|
mask: paddle.Tensor=paddle.ones((0, 0, 0), dtype=paddle.bool),
|
||||||
|
mask_pad: paddle.Tensor=paddle.ones((0, 0, 0),
|
||||||
|
dtype=paddle.bool), ):
|
||||||
|
xs = xs.transpose([0, 2, 1]) # [B, C, T]
|
||||||
|
xs = masked_fill(xs, mask_pad.equal(0), 0.0)
|
||||||
|
|
||||||
|
xs = self.dw_conv(xs)
|
||||||
|
xs = self.pw_conv(xs)
|
||||||
|
|
||||||
|
xs = xs.transpose([0, 2, 1]) # [B, T, C]
|
||||||
|
|
||||||
|
B, T, D = xs.shape
|
||||||
|
mask = mask[:, ::self.stride, ::self.stride]
|
||||||
|
mask_pad = mask_pad[:, :, ::self.stride]
|
||||||
|
L = mask_pad.shape[-1]
|
||||||
|
# For JIT exporting, we remove F.pad operator.
|
||||||
|
if L - T < 0:
|
||||||
|
xs = xs[:, :L - T, :]
|
||||||
|
else:
|
||||||
|
dummy_pad = paddle.zeros([B, L - T, D], dtype=paddle.float32)
|
||||||
|
xs = paddle.concat([xs, dummy_pad], axis=1)
|
||||||
|
|
||||||
|
xs_lens = (xs_lens + 1) // 2
|
||||||
|
return xs, xs_lens, mask, mask_pad
|
||||||
|
|
||||||
|
|
||||||
|
class TimeReductionLayer2D(nn.Layer):
|
||||||
|
def __init__(self, kernel_size: int=5, stride: int=2, encoder_dim: int=256):
|
||||||
|
super(TimeReductionLayer2D, self).__init__()
|
||||||
|
self.encoder_dim = encoder_dim
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.dw_conv = Conv2DValid(
|
||||||
|
in_channels=encoder_dim,
|
||||||
|
out_channels=encoder_dim,
|
||||||
|
kernel_size=(kernel_size, 1),
|
||||||
|
stride=stride,
|
||||||
|
valid_trigy=True)
|
||||||
|
self.pw_conv = Conv2DValid(
|
||||||
|
in_channels=encoder_dim,
|
||||||
|
out_channels=encoder_dim,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
valid_trigx=False,
|
||||||
|
valid_trigy=False)
|
||||||
|
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.stride = stride
|
||||||
|
self.init_weights()
|
||||||
|
|
||||||
|
def init_weights(self):
|
||||||
|
dw_max = self.kernel_size**-0.5
|
||||||
|
pw_max = self.encoder_dim**-0.5
|
||||||
|
self.dw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-dw_max, high=dw_max)
|
||||||
|
self.dw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-dw_max, high=dw_max)
|
||||||
|
self.pw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-pw_max, high=pw_max)
|
||||||
|
self.pw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-pw_max, high=pw_max)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
xs: paddle.Tensor,
|
||||||
|
xs_lens: paddle.Tensor,
|
||||||
|
mask: paddle.Tensor=paddle.ones((0, 0, 0), dtype=paddle.bool),
|
||||||
|
mask_pad: paddle.Tensor=paddle.ones((0, 0, 0), dtype=paddle.bool),
|
||||||
|
) -> Tuple[paddle.Tensor, paddle.Tensor, paddle.Tensor, paddle.Tensor]:
|
||||||
|
xs = masked_fill(xs, mask_pad.transpose([0, 2, 1]).equal(0), 0.0)
|
||||||
|
xs = xs.unsqueeze(1)
|
||||||
|
padding1 = self.kernel_size - self.stride
|
||||||
|
xs = F.pad(
|
||||||
|
xs, (0, 0, 0, 0, 0, padding1, 0, 0), mode='constant', value=0.)
|
||||||
|
xs = self.dw_conv(xs.transpose([0, 3, 2, 1]))
|
||||||
|
xs = self.pw_conv(xs).transpose([0, 3, 2, 1]).squeeze(1)
|
||||||
|
tmp_length = xs.shape[1]
|
||||||
|
xs_lens = (xs_lens + 1) // 2
|
||||||
|
padding2 = max(0, (xs_lens.max() - tmp_length).item())
|
||||||
|
batch_size, hidden = xs.shape[0], xs.shape[-1]
|
||||||
|
dummy_pad = paddle.zeros(
|
||||||
|
[batch_size, padding2, hidden], dtype=paddle.float32)
|
||||||
|
xs = paddle.concat([xs, dummy_pad], axis=1)
|
||||||
|
mask = mask[:, ::2, ::2]
|
||||||
|
mask_pad = mask_pad[:, :, ::2]
|
||||||
|
return xs, xs_lens, mask, mask_pad
|
||||||
|
|
||||||
|
|
||||||
|
class TimeReductionLayerStream(nn.Layer):
|
||||||
|
"""
|
||||||
|
Squeezeformer Time Reduction procedure.
|
||||||
|
Downsamples the audio by `stride` in the time dimension.
|
||||||
|
Args:
|
||||||
|
channel (int): input dimension of
|
||||||
|
MultiheadAttentionMechanism and PositionwiseFeedForward
|
||||||
|
out_dim (int): Output dimension of the module.
|
||||||
|
kernel_size (int): Conv kernel size for
|
||||||
|
depthwise convolution in convolution module
|
||||||
|
stride (int): Downsampling factor in time dimension.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self,
|
||||||
|
channel: int,
|
||||||
|
out_dim: int,
|
||||||
|
kernel_size: int=1,
|
||||||
|
stride: int=2):
|
||||||
|
super(TimeReductionLayerStream, self).__init__()
|
||||||
|
|
||||||
|
self.channel = channel
|
||||||
|
self.out_dim = out_dim
|
||||||
|
self.kernel_size = kernel_size
|
||||||
|
self.stride = stride
|
||||||
|
|
||||||
|
self.dw_conv = Conv1D(
|
||||||
|
in_channels=channel,
|
||||||
|
out_channels=channel,
|
||||||
|
kernel_size=kernel_size,
|
||||||
|
stride=stride,
|
||||||
|
padding=0,
|
||||||
|
groups=channel)
|
||||||
|
|
||||||
|
self.pw_conv = Conv1D(
|
||||||
|
in_channels=channel,
|
||||||
|
out_channels=out_dim,
|
||||||
|
kernel_size=1,
|
||||||
|
stride=1,
|
||||||
|
padding=0,
|
||||||
|
groups=1)
|
||||||
|
self.init_weights()
|
||||||
|
|
||||||
|
def init_weights(self):
|
||||||
|
dw_max = self.kernel_size**-0.5
|
||||||
|
pw_max = self.channel**-0.5
|
||||||
|
self.dw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-dw_max, high=dw_max)
|
||||||
|
self.dw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-dw_max, high=dw_max)
|
||||||
|
self.pw_conv._param_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-pw_max, high=pw_max)
|
||||||
|
self.pw_conv._bias_attr = paddle.nn.initializer.Uniform(
|
||||||
|
low=-pw_max, high=pw_max)
|
||||||
|
|
||||||
|
def forward(
|
||||||
|
self,
|
||||||
|
xs,
|
||||||
|
xs_lens: paddle.Tensor,
|
||||||
|
mask: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool),
|
||||||
|
mask_pad: paddle.Tensor=paddle.ones([0, 0, 0], dtype=paddle.bool)):
|
||||||
|
xs = xs.transpose([0, 2, 1]) # [B, C, T]
|
||||||
|
xs = masked_fill(xs, mask_pad.equal(0), 0.0)
|
||||||
|
|
||||||
|
xs = self.dw_conv(xs)
|
||||||
|
xs = self.pw_conv(xs)
|
||||||
|
|
||||||
|
xs = xs.transpose([0, 2, 1]) # [B, T, C]
|
||||||
|
|
||||||
|
B, T, D = xs.shape
|
||||||
|
mask = mask[:, ::self.stride, ::self.stride]
|
||||||
|
mask_pad = mask_pad[:, :, ::self.stride]
|
||||||
|
L = mask_pad.shape[-1]
|
||||||
|
# For JIT exporting, we remove F.pad operator.
|
||||||
|
if L - T < 0:
|
||||||
|
xs = xs[:, :L - T, :]
|
||||||
|
else:
|
||||||
|
dummy_pad = paddle.zeros([B, L - T, D], dtype=paddle.float32)
|
||||||
|
xs = paddle.concat([xs, dummy_pad], axis=1)
|
||||||
|
|
||||||
|
xs_lens = (xs_lens + 1) // 2
|
||||||
|
return xs, xs_lens, mask, mask_pad
|
Loading…
Reference in new issue