Merge branch 'develop' of https://github.com/PaddlePaddle/PaddleSpeech into rename_tacotron2

pull/1436/head
TianYuan 3 years ago
commit 30085ac229

@ -311,8 +311,10 @@ class ASRExecutor(BaseExecutor):
audio = audio[:, 0] audio = audio[:, 0]
# pcm16 -> pcm 32 # pcm16 -> pcm 32
audio = self._pcm16to32(audio) audio = self._pcm16to32(audio)
audio = librosa.resample(audio, audio_sample_rate, audio = librosa.resample(
self.sample_rate) audio,
orig_sr=audio_sample_rate,
target_sr=self.sample_rate)
audio_sample_rate = self.sample_rate audio_sample_rate = self.sample_rate
# pcm32 -> pcm 16 # pcm32 -> pcm 16
audio = self._pcm32to16(audio) audio = self._pcm32to16(audio)

@ -90,7 +90,8 @@ class SpeedPerturbation():
# Note1: resample requires the sampling-rate of input and output, # Note1: resample requires the sampling-rate of input and output,
# but actually only the ratio is used. # but actually only the ratio is used.
y = librosa.resample(x, ratio, 1, res_type=self.res_type) y = librosa.resample(
x, orig_sr=ratio, target_sr=1, res_type=self.res_type)
if self.keep_length: if self.keep_length:
diff = abs(len(x) - len(y)) diff = abs(len(x) - len(y))

@ -38,7 +38,7 @@ def stft(x,
x = np.stack( x = np.stack(
[ [
librosa.stft( librosa.stft(
x[:, ch], y=x[:, ch],
n_fft=n_fft, n_fft=n_fft,
hop_length=n_shift, hop_length=n_shift,
win_length=win_length, win_length=win_length,
@ -67,7 +67,7 @@ def istft(x, n_shift, win_length=None, window="hann", center=True):
x = np.stack( x = np.stack(
[ [
librosa.istft( librosa.istft(
x[:, ch].T, # [Time, Freq] -> [Freq, Time] y=x[:, ch].T, # [Time, Freq] -> [Freq, Time]
hop_length=n_shift, hop_length=n_shift,
win_length=win_length, win_length=win_length,
window=window, window=window,
@ -95,7 +95,8 @@ def stft2logmelspectrogram(x_stft,
# spc: (Time, Channel, Freq) or (Time, Freq) # spc: (Time, Channel, Freq) or (Time, Freq)
spc = np.abs(x_stft) spc = np.abs(x_stft)
# mel_basis: (Mel_freq, Freq) # mel_basis: (Mel_freq, Freq)
mel_basis = librosa.filters.mel(fs, n_fft, n_mels, fmin, fmax) mel_basis = librosa.filters.mel(
sr=fs, n_fft=n_fft, n_mels=n_mels, fmin=fmin, fmax=fmax)
# lmspc: (Time, Channel, Mel_freq) or (Time, Mel_freq) # lmspc: (Time, Channel, Mel_freq) or (Time, Mel_freq)
lmspc = np.log10(np.maximum(eps, np.dot(spc, mel_basis.T))) lmspc = np.log10(np.maximum(eps, np.dot(spc, mel_basis.T)))

@ -206,7 +206,8 @@ class SpeakerVerificationPreprocessor(object):
# Resample if numpy.array is passed and sr does not match # Resample if numpy.array is passed and sr does not match
if source_sr is not None and source_sr != self.sampling_rate: if source_sr is not None and source_sr != self.sampling_rate:
wav = librosa.resample(wav, source_sr, self.sampling_rate) wav = librosa.resample(
wav, orig_sr=source_sr, target_sr=self.sampling_rate)
# loudness normalization # loudness normalization
wav = normalize_volume( wav = normalize_volume(
@ -221,7 +222,7 @@ class SpeakerVerificationPreprocessor(object):
def melspectrogram(self, wav): def melspectrogram(self, wav):
mel = librosa.feature.melspectrogram( mel = librosa.feature.melspectrogram(
wav, y=wav,
sr=self.sampling_rate, sr=self.sampling_rate,
n_fft=self.n_fft, n_fft=self.n_fft,
hop_length=self.hop_length, hop_length=self.hop_length,

Loading…
Cancel
Save