|
|
|
@ -105,6 +105,51 @@ class TestDeepSpeech2ModelOnline(unittest.TestCase):
|
|
|
|
|
loss = model(self.audio, self.audio_len, self.text, self.text_len)
|
|
|
|
|
self.assertEqual(loss.numel(), 1)
|
|
|
|
|
|
|
|
|
|
def test_ds2_6(self):
|
|
|
|
|
model = DeepSpeech2ModelOnline(
|
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
|
dict_size=10,
|
|
|
|
|
num_conv_layers=2,
|
|
|
|
|
num_rnn_layers=1,
|
|
|
|
|
rnn_size=1024,
|
|
|
|
|
num_fc_layers=2,
|
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
|
use_gru=True)
|
|
|
|
|
model.eval()
|
|
|
|
|
paddle.device.set_device("cpu")
|
|
|
|
|
de_ch_size = 9
|
|
|
|
|
|
|
|
|
|
eouts, eouts_lens, final_state_list = model.encoder(
|
|
|
|
|
self.audio, self.audio_len)
|
|
|
|
|
eouts_by_chk_list, eouts_lens_by_chk_list, final_state_list_by_chk = model.encoder.forward_chunk_by_chunk(
|
|
|
|
|
self.audio, self.audio_len, de_ch_size)
|
|
|
|
|
eouts_by_chk = paddle.concat(eouts_by_chk_list, axis = 1)
|
|
|
|
|
eouts_lens_by_chk = paddle.add_n(eouts_lens_by_chk_list)
|
|
|
|
|
decode_max_len = eouts.shape[1]
|
|
|
|
|
print ("dml", decode_max_len)
|
|
|
|
|
eouts_by_chk = eouts_by_chk[:, :decode_max_len, :]
|
|
|
|
|
self.assertEqual(
|
|
|
|
|
paddle.sum(
|
|
|
|
|
paddle.abs(paddle.subtract(eouts_lens, eouts_lens_by_chk))), 0)
|
|
|
|
|
self.assertEqual(
|
|
|
|
|
paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk))), 0)
|
|
|
|
|
self.assertEqual(paddle.allclose(eouts_by_chk, eouts), True)
|
|
|
|
|
"""
|
|
|
|
|
print ("conv_x", conv_x)
|
|
|
|
|
print ("conv_x_by_chk", conv_x_by_chk)
|
|
|
|
|
print ("final_state_list", final_state_list)
|
|
|
|
|
#print ("final_state_list_by_chk", final_state_list_by_chk)
|
|
|
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,:de_ch_size,:], eouts_by_chk[:,:de_ch_size,:]))))
|
|
|
|
|
print (paddle.allclose(eouts[:,:de_ch_size,:], eouts_by_chk[:,:de_ch_size,:]))
|
|
|
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,de_ch_size:de_ch_size*2,:], eouts_by_chk[:,de_ch_size:de_ch_size*2,:]))))
|
|
|
|
|
print (paddle.allclose(eouts[:,de_ch_size:de_ch_size*2,:], eouts_by_chk[:,de_ch_size:de_ch_size*2,:]))
|
|
|
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,de_ch_size*2:de_ch_size*3,:], eouts_by_chk[:,de_ch_size*2:de_ch_size*3,:]))))
|
|
|
|
|
print (paddle.allclose(eouts[:,de_ch_size*2:de_ch_size*3,:], eouts_by_chk[:,de_ch_size*2:de_ch_size*3,:]))
|
|
|
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk))))
|
|
|
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk))))
|
|
|
|
|
print (paddle.allclose(eouts[:,:,:], eouts_by_chk[:,:,:]))
|
|
|
|
|
"""
|
|
|
|
|
"""
|
|
|
|
|
def split_into_chunk(self, x, x_lens, decoder_chunk_size, subsampling_rate,
|
|
|
|
|
receptive_field_length):
|
|
|
|
|
chunk_size = (decoder_chunk_size - 1
|
|
|
|
@ -134,7 +179,7 @@ class TestDeepSpeech2ModelOnline(unittest.TestCase):
|
|
|
|
|
|
|
|
|
|
return x_chunk_list, x_chunk_lens_list
|
|
|
|
|
|
|
|
|
|
def test_ds2_6(self):
|
|
|
|
|
def test_ds2_7(self):
|
|
|
|
|
model = DeepSpeech2ModelOnline(
|
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
|
dict_size=10,
|
|
|
|
@ -157,7 +202,7 @@ class TestDeepSpeech2ModelOnline(unittest.TestCase):
|
|
|
|
|
chunk_state_list = [None] * model.encoder.num_rnn_layers
|
|
|
|
|
for i, audio_chunk in enumerate(audio_chunk_list):
|
|
|
|
|
audio_chunk_lens = audio_chunk_lens_list[i]
|
|
|
|
|
probs_pre_chunks, eouts_prefix, eouts_lens_prefix, chunk_state_list = model.decode_prob_by_chunk(
|
|
|
|
|
eouts_prefix, eouts_lens_prefix, chunk_state_list = model.decode_prob_by_chunk(
|
|
|
|
|
audio_chunk, audio_chunk_lens, eouts_prefix, eouts_lens_prefix,
|
|
|
|
|
chunk_state_list)
|
|
|
|
|
# print (i, probs_pre_chunks.shape)
|
|
|
|
@ -168,52 +213,6 @@ class TestDeepSpeech2ModelOnline(unittest.TestCase):
|
|
|
|
|
decode_max_len = probs.shape[1]
|
|
|
|
|
probs_pre_chunks = probs_pre_chunks[:, :decode_max_len, :]
|
|
|
|
|
self.assertEqual(paddle.allclose(probs, probs_pre_chunks), True)
|
|
|
|
|
|
|
|
|
|
def test_ds2_7(self):
|
|
|
|
|
model = DeepSpeech2ModelOnline(
|
|
|
|
|
feat_size=self.feat_dim,
|
|
|
|
|
dict_size=10,
|
|
|
|
|
num_conv_layers=2,
|
|
|
|
|
num_rnn_layers=1,
|
|
|
|
|
rnn_size=1024,
|
|
|
|
|
num_fc_layers=2,
|
|
|
|
|
fc_layers_size_list=[512, 256],
|
|
|
|
|
use_gru=True)
|
|
|
|
|
model.eval()
|
|
|
|
|
paddle.device.set_device("cpu")
|
|
|
|
|
de_ch_size = 9
|
|
|
|
|
|
|
|
|
|
probs, eouts, eouts_lens, final_state_list = model.decode_prob(
|
|
|
|
|
self.audio, self.audio_len)
|
|
|
|
|
probs_by_chk, eouts_by_chk, eouts_lens_by_chk, final_state_list_by_chk = model.decode_prob_chunk_by_chunk(
|
|
|
|
|
self.audio, self.audio_len, de_ch_size)
|
|
|
|
|
decode_max_len = probs.shape[1]
|
|
|
|
|
probs_by_chk = probs_by_chk[:, :decode_max_len, :]
|
|
|
|
|
eouts_by_chk = eouts_by_chk[:, :decode_max_len, :]
|
|
|
|
|
self.assertEqual(
|
|
|
|
|
paddle.sum(
|
|
|
|
|
paddle.abs(paddle.subtract(eouts_lens, eouts_lens_by_chk))), 0)
|
|
|
|
|
self.assertEqual(
|
|
|
|
|
paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk))), 0)
|
|
|
|
|
self.assertEqual(
|
|
|
|
|
paddle.sum(
|
|
|
|
|
paddle.abs(paddle.subtract(probs, probs_by_chk))).numpy(), 0)
|
|
|
|
|
self.assertEqual(paddle.allclose(eouts_by_chk, eouts), True)
|
|
|
|
|
self.assertEqual(paddle.allclose(probs_by_chk, probs), True)
|
|
|
|
|
"""
|
|
|
|
|
print ("conv_x", conv_x)
|
|
|
|
|
print ("conv_x_by_chk", conv_x_by_chk)
|
|
|
|
|
print ("final_state_list", final_state_list)
|
|
|
|
|
#print ("final_state_list_by_chk", final_state_list_by_chk)
|
|
|
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,:de_ch_size,:], eouts_by_chk[:,:de_ch_size,:]))))
|
|
|
|
|
print (paddle.allclose(eouts[:,:de_ch_size,:], eouts_by_chk[:,:de_ch_size,:]))
|
|
|
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,de_ch_size:de_ch_size*2,:], eouts_by_chk[:,de_ch_size:de_ch_size*2,:]))))
|
|
|
|
|
print (paddle.allclose(eouts[:,de_ch_size:de_ch_size*2,:], eouts_by_chk[:,de_ch_size:de_ch_size*2,:]))
|
|
|
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts[:,de_ch_size*2:de_ch_size*3,:], eouts_by_chk[:,de_ch_size*2:de_ch_size*3,:]))))
|
|
|
|
|
print (paddle.allclose(eouts[:,de_ch_size*2:de_ch_size*3,:], eouts_by_chk[:,de_ch_size*2:de_ch_size*3,:]))
|
|
|
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk))))
|
|
|
|
|
print (paddle.sum(paddle.abs(paddle.subtract(eouts, eouts_by_chk))))
|
|
|
|
|
print (paddle.allclose(eouts[:,:,:], eouts_by_chk[:,:,:]))
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|