|
|
|
@ -1,28 +1,53 @@
|
|
|
|
|
import numpy as np
|
|
|
|
|
import logging
|
|
|
|
|
import argparse
|
|
|
|
|
import asyncio
|
|
|
|
|
import codecs
|
|
|
|
|
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
|
#
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
|
#
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
#
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
import json
|
|
|
|
|
import logging
|
|
|
|
|
import os
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import soundfile
|
|
|
|
|
import websockets
|
|
|
|
|
|
|
|
|
|
from paddlespeech.cli.log import logger
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ASRAudioHandler:
|
|
|
|
|
def __init__(self, url="127.0.0.1", port=8090):
|
|
|
|
|
"""PaddleSpeech Online ASR Server Client audio handler
|
|
|
|
|
Online asr server use the websocket protocal
|
|
|
|
|
Args:
|
|
|
|
|
url (str, optional): the server ip. Defaults to "127.0.0.1".
|
|
|
|
|
port (int, optional): the server port. Defaults to 8090.
|
|
|
|
|
"""
|
|
|
|
|
self.url = url
|
|
|
|
|
self.port = port
|
|
|
|
|
self.url = "ws://" + self.url + ":" + str(self.port) + "/ws/asr"
|
|
|
|
|
|
|
|
|
|
def read_wave(self, wavfile_path: str):
|
|
|
|
|
"""read the audio file from specific wavfile path
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
wavfile_path (str): the audio wavfile,
|
|
|
|
|
we assume that audio sample rate matches the model
|
|
|
|
|
|
|
|
|
|
Yields:
|
|
|
|
|
numpy.array: the samall package audio pcm data
|
|
|
|
|
"""
|
|
|
|
|
samples, sample_rate = soundfile.read(wavfile_path, dtype='int16')
|
|
|
|
|
x_len = len(samples)
|
|
|
|
|
|
|
|
|
|
chunk_size = 85 * 16 #80ms, sample_rate = 16kHz
|
|
|
|
|
if x_len % chunk_size!= 0:
|
|
|
|
|
if x_len % chunk_size != 0:
|
|
|
|
|
padding_len_x = chunk_size - x_len % chunk_size
|
|
|
|
|
else:
|
|
|
|
|
padding_len_x = 0
|
|
|
|
@ -40,11 +65,19 @@ class ASRAudioHandler:
|
|
|
|
|
yield x_chunk
|
|
|
|
|
|
|
|
|
|
async def run(self, wavfile_path: str):
|
|
|
|
|
"""Send a audio file to online server
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
wavfile_path (str): audio path
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
str: the final asr result
|
|
|
|
|
"""
|
|
|
|
|
logging.info("send a message to the server")
|
|
|
|
|
# self.read_wave()
|
|
|
|
|
# send websocket handshake protocal
|
|
|
|
|
|
|
|
|
|
# 1. send websocket handshake protocal
|
|
|
|
|
async with websockets.connect(self.url) as ws:
|
|
|
|
|
# server has already received handshake protocal
|
|
|
|
|
# 2. server has already received handshake protocal
|
|
|
|
|
# client start to send the command
|
|
|
|
|
audio_info = json.dumps(
|
|
|
|
|
{
|
|
|
|
@ -59,14 +92,14 @@ class ASRAudioHandler:
|
|
|
|
|
msg = await ws.recv()
|
|
|
|
|
logger.info("receive msg={}".format(msg))
|
|
|
|
|
|
|
|
|
|
# send chunk audio data to engine
|
|
|
|
|
# 3. send chunk audio data to engine
|
|
|
|
|
for chunk_data in self.read_wave(wavfile_path):
|
|
|
|
|
await ws.send(chunk_data.tobytes())
|
|
|
|
|
msg = await ws.recv()
|
|
|
|
|
msg = json.loads(msg)
|
|
|
|
|
logger.info("receive msg={}".format(msg))
|
|
|
|
|
|
|
|
|
|
# finished
|
|
|
|
|
# 4. we must send finished signal to the server
|
|
|
|
|
audio_info = json.dumps(
|
|
|
|
|
{
|
|
|
|
|
"name": "test.wav",
|
|
|
|
@ -79,7 +112,7 @@ class ASRAudioHandler:
|
|
|
|
|
await ws.send(audio_info)
|
|
|
|
|
msg = await ws.recv()
|
|
|
|
|
|
|
|
|
|
# decode the bytes to str
|
|
|
|
|
# 5. decode the bytes to str
|
|
|
|
|
msg = json.loads(msg)
|
|
|
|
|
logger.info("final receive msg={}".format(msg))
|
|
|
|
|
result = msg
|
|
|
|
|