Merge branch 'develop' of github.com:PaddlePaddle/DeepSpeech into merge_parakeet

pull/932/head
TianYuan 3 years ago
commit 2e9d9dc9a7

@ -233,7 +233,8 @@ def is_broadcastable(shp1, shp2):
def masked_fill(xs: paddle.Tensor,
mask: paddle.Tensor,
value: Union[float, int]):
assert is_broadcastable(xs.shape, mask.shape) is True
assert is_broadcastable(xs.shape, mask.shape) is True, (xs.shape,
mask.shape)
bshape = paddle.broadcast_shape(xs.shape, mask.shape)
mask = mask.broadcast_to(bshape)
trues = paddle.ones_like(xs) * value
@ -354,30 +355,153 @@ if not hasattr(paddle.Tensor, 'tolist'):
"register user tolist to paddle.Tensor, remove this when fixed!")
setattr(paddle.Tensor, 'tolist', tolist)
########### hack paddle.nn #############
from paddle.nn import Layer
from typing import Optional
from typing import Mapping
from typing import Iterable
from typing import Tuple
from typing import Iterator
from collections import OrderedDict, abc as container_abcs
class LayerDict(paddle.nn.Layer):
r"""Holds submodules in a dictionary.
:class:`~paddle.nn.LayerDict` can be indexed like a regular Python dictionary,
but modules it contains are properly registered, and will be visible by all
:class:`~paddle.nn.Layer` methods.
:class:`~paddle.nn.LayerDict` is an **ordered** dictionary that respects
* the order of insertion, and
* in :meth:`~paddle.nn.LayerDict.update`, the order of the merged
``OrderedDict``, ``dict`` (started from Python 3.6) or another
:class:`~paddle.nn.LayerDict` (the argument to
:meth:`~paddle.nn.LayerDict.update`).
Note that :meth:`~paddle.nn.LayerDict.update` with other unordered mapping
types (e.g., Python's plain ``dict`` before Python version 3.6) does not
preserve the order of the merged mapping.
Args:
modules (iterable, optional): a mapping (dictionary) of (string: module)
or an iterable of key-value pairs of type (string, module)
Example::
class MyModule(nn.Layer):
def __init__(self):
super(MyModule, self).__init__()
self.choices = nn.LayerDict({
'conv': nn.Conv2d(10, 10, 3),
'pool': nn.MaxPool2d(3)
})
self.activations = nn.LayerDict([
['lrelu', nn.LeakyReLU()],
['prelu', nn.PReLU()]
])
def forward(self, x, choice, act):
x = self.choices[choice](x)
x = self.activations[act](x)
return x
"""
def __init__(self, modules: Optional[Mapping[str, Layer]]=None) -> None:
super(LayerDict, self).__init__()
if modules is not None:
self.update(modules)
def __getitem__(self, key: str) -> Layer:
return self._modules[key]
def __setitem__(self, key: str, module: Layer) -> None:
self.add_module(key, module)
def __delitem__(self, key: str) -> None:
del self._modules[key]
def __len__(self) -> int:
return len(self._modules)
# hack loss
def ctc_loss(logits,
labels,
input_lengths,
label_lengths,
blank=0,
reduction='mean',
norm_by_times=True):
#logger.info("my ctc loss with norm by times")
## https://github.com/PaddlePaddle/Paddle/blob/f5ca2db2cc/paddle/fluid/operators/warpctc_op.h#L403
loss_out = paddle.fluid.layers.warpctc(logits, labels, blank, norm_by_times,
input_lengths, label_lengths)
loss_out = paddle.fluid.layers.squeeze(loss_out, [-1])
assert reduction in ['mean', 'sum', 'none']
if reduction == 'mean':
loss_out = paddle.mean(loss_out / label_lengths)
elif reduction == 'sum':
loss_out = paddle.sum(loss_out)
return loss_out
def __iter__(self) -> Iterator[str]:
return iter(self._modules)
def __contains__(self, key: str) -> bool:
return key in self._modules
def clear(self) -> None:
"""Remove all items from the LayerDict.
"""
self._modules.clear()
def pop(self, key: str) -> Layer:
r"""Remove key from the LayerDict and return its module.
Args:
key (string): key to pop from the LayerDict
"""
v = self[key]
del self[key]
return v
def keys(self) -> Iterable[str]:
r"""Return an iterable of the LayerDict keys.
"""
return self._modules.keys()
def items(self) -> Iterable[Tuple[str, Layer]]:
r"""Return an iterable of the LayerDict key/value pairs.
"""
return self._modules.items()
def values(self) -> Iterable[Layer]:
r"""Return an iterable of the LayerDict values.
"""
return self._modules.values()
def update(self, modules: Mapping[str, Layer]) -> None:
r"""Update the :class:`~paddle.nn.LayerDict` with the key-value pairs from a
mapping or an iterable, overwriting existing keys.
.. note::
If :attr:`modules` is an ``OrderedDict``, a :class:`~paddle.nn.LayerDict`, or
an iterable of key-value pairs, the order of new elements in it is preserved.
Args:
modules (iterable): a mapping (dictionary) from string to :class:`~paddle.nn.Layer`,
or an iterable of key-value pairs of type (string, :class:`~paddle.nn.Layer`)
"""
if not isinstance(modules, container_abcs.Iterable):
raise TypeError("LayerDict.update should be called with an "
"iterable of key/value pairs, but got " + type(
modules).__name__)
if isinstance(modules,
(OrderedDict, LayerDict, container_abcs.Mapping)):
for key, module in modules.items():
self[key] = module
else:
# modules here can be a list with two items
for j, m in enumerate(modules):
if not isinstance(m, container_abcs.Iterable):
raise TypeError("LayerDict update sequence element "
"#" + str(j) + " should be Iterable; is" +
type(m).__name__)
if not len(m) == 2:
raise ValueError("LayerDict update sequence element "
"#" + str(j) + " has length " + str(
len(m)) + "; 2 is required")
# modules can be Mapping (what it's typed at), or a list: [(name1, module1), (name2, module2)]
# that's too cumbersome to type correctly with overloads, so we add an ignore here
self[m[0]] = m[1] # type: ignore[assignment]
# remove forward alltogether to fallback on Module's _forward_unimplemented
if not hasattr(paddle.nn, 'LayerDict'):
logger.debug(
"override ctc_loss of paddle.nn.functional if exists, remove this when fixed!"
)
F.ctc_loss = ctc_loss
"register user LayerDict to paddle.nn, remove this when fixed!")
setattr(paddle.nn, 'LayerDict', LayerDict)

@ -0,0 +1,17 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from .batch_beam_search import BatchBeamSearch
from .beam_search import beam_search
from .beam_search import BeamSearch
from .beam_search import Hypothesis

@ -0,0 +1,17 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class BatchBeamSearch():
pass

@ -0,0 +1,530 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Beam search module."""
from itertools import chain
from typing import Any
from typing import Dict
from typing import List
from typing import NamedTuple
from typing import Tuple
from typing import Union
import paddle
from ..scorers.scorer_interface import PartialScorerInterface
from ..scorers.scorer_interface import ScorerInterface
from ..utils import end_detect
from deepspeech.utils.log import Log
logger = Log(__name__).getlog()
class Hypothesis(NamedTuple):
"""Hypothesis data type."""
yseq: paddle.Tensor # (T,)
score: Union[float, paddle.Tensor] = 0
scores: Dict[str, Union[float, paddle.Tensor]] = dict()
states: Dict[str, Any] = dict()
def asdict(self) -> dict:
"""Convert data to JSON-friendly dict."""
return self._replace(
yseq=self.yseq.tolist(),
score=float(self.score),
scores={k: float(v)
for k, v in self.scores.items()}, )._asdict()
class BeamSearch(paddle.nn.Layer):
"""Beam search implementation."""
def __init__(
self,
scorers: Dict[str, ScorerInterface],
weights: Dict[str, float],
beam_size: int,
vocab_size: int,
sos: int,
eos: int,
token_list: List[str]=None,
pre_beam_ratio: float=1.5,
pre_beam_score_key: str=None, ):
"""Initialize beam search.
Args:
scorers (dict[str, ScorerInterface]): Dict of decoder modules
e.g., Decoder, CTCPrefixScorer, LM
The scorer will be ignored if it is `None`
weights (dict[str, float]): Dict of weights for each scorers
The scorer will be ignored if its weight is 0
beam_size (int): The number of hypotheses kept during search
vocab_size (int): The number of vocabulary
sos (int): Start of sequence id
eos (int): End of sequence id
token_list (list[str]): List of tokens for debug log
pre_beam_score_key (str): key of scores to perform pre-beam search
pre_beam_ratio (float): beam size in the pre-beam search
will be `int(pre_beam_ratio * beam_size)`
"""
super().__init__()
# set scorers
self.weights = weights
self.scorers = dict() # all = full + partial
self.full_scorers = dict() # full tokens
self.part_scorers = dict() # partial tokens
# this module dict is required for recursive cast
# `self.to(device, dtype)` in `recog.py`
self.nn_dict = paddle.nn.LayerDict() # nn.Layer
for k, v in scorers.items():
w = weights.get(k, 0)
if w == 0 or v is None:
continue
assert isinstance(
v, ScorerInterface
), f"{k} ({type(v)}) does not implement ScorerInterface"
self.scorers[k] = v
if isinstance(v, PartialScorerInterface):
self.part_scorers[k] = v
else:
self.full_scorers[k] = v
if isinstance(v, paddle.nn.Layer):
self.nn_dict[k] = v
# set configurations
self.sos = sos
self.eos = eos
self.token_list = token_list
# pre_beam_size > beam_size
self.pre_beam_size = int(pre_beam_ratio * beam_size)
self.beam_size = beam_size
self.n_vocab = vocab_size
if (pre_beam_score_key is not None and pre_beam_score_key != "full" and
pre_beam_score_key not in self.full_scorers):
raise KeyError(
f"{pre_beam_score_key} is not found in {self.full_scorers}")
# selected `key` scorer to do pre beam search
self.pre_beam_score_key = pre_beam_score_key
# do_pre_beam when need, valid and has part_scorers
self.do_pre_beam = (self.pre_beam_score_key is not None and
self.pre_beam_size < self.n_vocab and
len(self.part_scorers) > 0)
def init_hyp(self, x: paddle.Tensor) -> List[Hypothesis]:
"""Get an initial hypothesis data.
Args:
x (paddle.Tensor): The encoder output feature, (T, D)
Returns:
Hypothesis: The initial hypothesis.
"""
init_states = dict()
init_scores = dict()
for k, d in self.scorers.items():
init_states[k] = d.init_state(x)
init_scores[k] = 0.0
return [
Hypothesis(
yseq=paddle.to_tensor([self.sos], place=x.place),
score=0.0,
scores=init_scores,
states=init_states, )
]
@staticmethod
def append_token(xs: paddle.Tensor,
x: Union[int, paddle.Tensor]) -> paddle.Tensor:
"""Append new token to prefix tokens.
Args:
xs (paddle.Tensor): The prefix token, (T,)
x (int): The new token to append
Returns:
paddle.Tensor: (T+1,), New tensor contains: xs + [x] with xs.dtype and xs.device
"""
x = paddle.to_tensor([x], dtype=xs.dtype) if isinstance(x, int) else x
return paddle.concat((xs, x))
def score_full(self, hyp: Hypothesis, x: paddle.Tensor
) -> Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]:
"""Score new hypothesis by `self.full_scorers`.
Args:
hyp (Hypothesis): Hypothesis with prefix tokens to score
x (paddle.Tensor): Corresponding input feature, (T, D)
Returns:
Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]: Tuple of
score dict of `hyp` that has string keys of `self.full_scorers`
and tensor score values of shape: `(self.n_vocab,)`,
and state dict that has string keys
and state values of `self.full_scorers`
"""
scores = dict()
states = dict()
for k, d in self.full_scorers.items():
# scores[k] shape (self.n_vocab,)
scores[k], states[k] = d.score(hyp.yseq, hyp.states[k], x)
return scores, states
def score_partial(self,
hyp: Hypothesis,
ids: paddle.Tensor,
x: paddle.Tensor
) -> Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]:
"""Score new hypothesis by `self.part_scorers`.
Args:
hyp (Hypothesis): Hypothesis with prefix tokens to score
ids (paddle.Tensor): 1D tensor of new partial tokens to score,
len(ids) < n_vocab
x (paddle.Tensor): Corresponding input feature, (T, D)
Returns:
Tuple[Dict[str, paddle.Tensor], Dict[str, Any]]: Tuple of
score dict of `hyp` that has string keys of `self.part_scorers`
and tensor score values of shape: `(len(ids),)`,
and state dict that has string keys
and state values of `self.part_scorers`
"""
scores = dict()
states = dict()
for k, d in self.part_scorers.items():
# scores[k] shape (len(ids),)
scores[k], states[k] = d.score_partial(hyp.yseq, ids, hyp.states[k],
x)
return scores, states
def beam(self, weighted_scores: paddle.Tensor,
ids: paddle.Tensor) -> Tuple[paddle.Tensor, paddle.Tensor]:
"""Compute topk full token ids and partial token ids.
Args:
weighted_scores (paddle.Tensor): The weighted sum scores for each tokens.
Its shape is `(self.n_vocab,)`.
ids (paddle.Tensor): The partial token ids(Global) to compute topk.
Returns:
Tuple[paddle.Tensor, paddle.Tensor]:
The topk full token ids and partial token ids.
Their shapes are `(self.beam_size,)`.
i.e. (global ids, global relative local ids).
"""
# no pre beam performed, `ids` equal to `weighted_scores`
if weighted_scores.size(0) == ids.size(0):
top_ids = weighted_scores.topk(
self.beam_size)[1] # index in n_vocab
return top_ids, top_ids
# mask pruned in pre-beam not to select in topk
tmp = weighted_scores[ids]
weighted_scores[:] = -float("inf")
weighted_scores[ids] = tmp
# top_ids no equal to local_ids, since ids shape not same
top_ids = weighted_scores.topk(self.beam_size)[1] # index in n_vocab
local_ids = weighted_scores[ids].topk(
self.beam_size)[1] # index in len(ids)
return top_ids, local_ids
@staticmethod
def merge_scores(
prev_scores: Dict[str, float],
next_full_scores: Dict[str, paddle.Tensor],
full_idx: int,
next_part_scores: Dict[str, paddle.Tensor],
part_idx: int, ) -> Dict[str, paddle.Tensor]:
"""Merge scores for new hypothesis.
Args:
prev_scores (Dict[str, float]):
The previous hypothesis scores by `self.scorers`
next_full_scores (Dict[str, paddle.Tensor]): scores by `self.full_scorers`
full_idx (int): The next token id for `next_full_scores`
next_part_scores (Dict[str, paddle.Tensor]):
scores of partial tokens by `self.part_scorers`
part_idx (int): The new token id for `next_part_scores`
Returns:
Dict[str, paddle.Tensor]: The new score dict.
Its keys are names of `self.full_scorers` and `self.part_scorers`.
Its values are scalar tensors by the scorers.
"""
new_scores = dict()
for k, v in next_full_scores.items():
new_scores[k] = prev_scores[k] + v[full_idx]
for k, v in next_part_scores.items():
new_scores[k] = prev_scores[k] + v[part_idx]
return new_scores
def merge_states(self, states: Any, part_states: Any, part_idx: int) -> Any:
"""Merge states for new hypothesis.
Args:
states: states of `self.full_scorers`
part_states: states of `self.part_scorers`
part_idx (int): The new token id for `part_scores`
Returns:
Dict[str, paddle.Tensor]: The new score dict.
Its keys are names of `self.full_scorers` and `self.part_scorers`.
Its values are states of the scorers.
"""
new_states = dict()
for k, v in states.items():
new_states[k] = v
for k, d in self.part_scorers.items():
new_states[k] = d.select_state(part_states[k], part_idx)
return new_states
def search(self, running_hyps: List[Hypothesis],
x: paddle.Tensor) -> List[Hypothesis]:
"""Search new tokens for running hypotheses and encoded speech x.
Args:
running_hyps (List[Hypothesis]): Running hypotheses on beam
x (paddle.Tensor): Encoded speech feature (T, D)
Returns:
List[Hypotheses]: Best sorted hypotheses
"""
best_hyps = []
part_ids = paddle.arange(self.n_vocab) # no pre-beam
for hyp in running_hyps:
# scoring
weighted_scores = paddle.zeros([self.n_vocab], dtype=x.dtype)
scores, states = self.score_full(hyp, x)
for k in self.full_scorers:
weighted_scores += self.weights[k] * scores[k]
# partial scoring
if self.do_pre_beam:
pre_beam_scores = (weighted_scores
if self.pre_beam_score_key == "full" else
scores[self.pre_beam_score_key])
part_ids = paddle.topk(pre_beam_scores, self.pre_beam_size)[1]
part_scores, part_states = self.score_partial(hyp, part_ids, x)
for k in self.part_scorers:
weighted_scores[part_ids] += self.weights[k] * part_scores[k]
# add previous hyp score
weighted_scores += hyp.score
# update hyps
for j, part_j in zip(*self.beam(weighted_scores, part_ids)):
# `part_j` is `j` relative id in `part_scores`
# will be (2 x beam at most)
best_hyps.append(
Hypothesis(
score=weighted_scores[j],
yseq=self.append_token(hyp.yseq, j),
scores=self.merge_scores(hyp.scores, scores, j,
part_scores, part_j),
states=self.merge_states(states, part_states, part_j),
))
# sort and prune 2 x beam -> beam
best_hyps = sorted(
best_hyps, key=lambda x: x.score,
reverse=True)[:min(len(best_hyps), self.beam_size)]
return best_hyps
def forward(self,
x: paddle.Tensor,
maxlenratio: float=0.0,
minlenratio: float=0.0) -> List[Hypothesis]:
"""Perform beam search.
Args:
x (paddle.Tensor): Encoded speech feature (T, D)
maxlenratio (float): Input length ratio to obtain max output length.
If maxlenratio=0.0 (default), it uses a end-detect function
to automatically find maximum hypothesis lengths
If maxlenratio<0.0, its absolute value is interpreted
as a constant max output length.
minlenratio (float): Input length ratio to obtain min output length.
Returns:
list[Hypothesis]: N-best decoding results
"""
# set length bounds
if maxlenratio == 0:
maxlen = x.shape[0]
elif maxlenratio < 0:
maxlen = -1 * int(maxlenratio)
else:
maxlen = max(1, int(maxlenratio * x.size(0)))
minlen = int(minlenratio * x.size(0))
logger.info("decoder input length: " + str(x.shape[0]))
logger.info("max output length: " + str(maxlen))
logger.info("min output length: " + str(minlen))
# main loop of prefix search
running_hyps = self.init_hyp(x)
ended_hyps = []
for i in range(maxlen):
logger.debug("position " + str(i))
best = self.search(running_hyps, x)
# post process of one iteration
running_hyps = self.post_process(i, maxlen, maxlenratio, best,
ended_hyps)
# end detection
if maxlenratio == 0.0 and end_detect(
[h.asdict() for h in ended_hyps], i):
logger.info(f"end detected at {i}")
break
if len(running_hyps) == 0:
logger.info("no hypothesis. Finish decoding.")
break
else:
logger.debug(f"remained hypotheses: {len(running_hyps)}")
nbest_hyps = sorted(ended_hyps, key=lambda x: x.score, reverse=True)
# check the number of hypotheses reaching to eos
if len(nbest_hyps) == 0:
logger.warning("there is no N-best results, perform recognition "
"again with smaller minlenratio.")
return ([] if minlenratio < 0.1 else
self.forward(x, maxlenratio, max(0.0, minlenratio - 0.1)))
# report the best result
best = nbest_hyps[0]
for k, v in best.scores.items():
logger.info(
f"{float(v):6.2f} * {self.weights[k]:3} = {float(v) * self.weights[k]:6.2f} for {k}"
)
logger.info(f"total log probability: {float(best.score):.2f}")
logger.info(
f"normalized log probability: {float(best.score) / len(best.yseq):.2f}"
)
logger.info(f"total number of ended hypotheses: {len(nbest_hyps)}")
if self.token_list is not None:
# logger.info(
# "best hypo: "
# + "".join([self.token_list[x] for x in best.yseq[1:-1]])
# + "\n"
# )
logger.info("best hypo: " + "".join(
[self.token_list[x] for x in best.yseq[1:]]) + "\n")
return nbest_hyps
def post_process(
self,
i: int,
maxlen: int,
maxlenratio: float,
running_hyps: List[Hypothesis],
ended_hyps: List[Hypothesis], ) -> List[Hypothesis]:
"""Perform post-processing of beam search iterations.
Args:
i (int): The length of hypothesis tokens.
maxlen (int): The maximum length of tokens in beam search.
maxlenratio (int): The maximum length ratio in beam search.
running_hyps (List[Hypothesis]): The running hypotheses in beam search.
ended_hyps (List[Hypothesis]): The ended hypotheses in beam search.
Returns:
List[Hypothesis]: The new running hypotheses.
"""
logger.debug(f"the number of running hypotheses: {len(running_hyps)}")
if self.token_list is not None:
logger.debug("best hypo: " + "".join(
[self.token_list[x] for x in running_hyps[0].yseq[1:]]))
# add eos in the final loop to avoid that there are no ended hyps
if i == maxlen - 1:
logger.info("adding <eos> in the last position in the loop")
running_hyps = [
h._replace(yseq=self.append_token(h.yseq, self.eos))
for h in running_hyps
]
# add ended hypotheses to a final list, and removed them from current hypotheses
# (this will be a problem, number of hyps < beam)
remained_hyps = []
for hyp in running_hyps:
if hyp.yseq[-1] == self.eos:
# e.g., Word LM needs to add final <eos> score
for k, d in chain(self.full_scorers.items(),
self.part_scorers.items()):
s = d.final_score(hyp.states[k])
hyp.scores[k] += s
hyp = hyp._replace(score=hyp.score + self.weights[k] * s)
ended_hyps.append(hyp)
else:
remained_hyps.append(hyp)
return remained_hyps
def beam_search(
x: paddle.Tensor,
sos: int,
eos: int,
beam_size: int,
vocab_size: int,
scorers: Dict[str, ScorerInterface],
weights: Dict[str, float],
token_list: List[str]=None,
maxlenratio: float=0.0,
minlenratio: float=0.0,
pre_beam_ratio: float=1.5,
pre_beam_score_key: str="full", ) -> list:
"""Perform beam search with scorers.
Args:
x (paddle.Tensor): Encoded speech feature (T, D)
sos (int): Start of sequence id
eos (int): End of sequence id
beam_size (int): The number of hypotheses kept during search
vocab_size (int): The number of vocabulary
scorers (dict[str, ScorerInterface]): Dict of decoder modules
e.g., Decoder, CTCPrefixScorer, LM
The scorer will be ignored if it is `None`
weights (dict[str, float]): Dict of weights for each scorers
The scorer will be ignored if its weight is 0
token_list (list[str]): List of tokens for debug log
maxlenratio (float): Input length ratio to obtain max output length.
If maxlenratio=0.0 (default), it uses a end-detect function
to automatically find maximum hypothesis lengths
minlenratio (float): Input length ratio to obtain min output length.
pre_beam_score_key (str): key of scores to perform pre-beam search
pre_beam_ratio (float): beam size in the pre-beam search
will be `int(pre_beam_ratio * beam_size)`
Returns:
List[Dict]: N-best decoding results
"""
ret = BeamSearch(
scorers,
weights,
beam_size=beam_size,
vocab_size=vocab_size,
pre_beam_ratio=pre_beam_ratio,
pre_beam_score_key=pre_beam_score_key,
sos=sos,
eos=eos,
token_list=token_list, ).forward(
x=x, maxlenratio=maxlenratio, minlenratio=minlenratio)
return [h.asdict() for h in ret]

@ -53,7 +53,8 @@ std::string ctc_greedy_decoder(
std::string best_path_result;
for (size_t i = 0; i < idx_vec.size(); ++i) {
if (idx_vec[i] != blank_id) {
best_path_result += vocabulary[idx_vec[i]];
std::string ch = vocabulary[idx_vec[i]];
best_path_result += (ch == kSPACE) ? tSPACE : ch;
}
}
return best_path_result;

@ -74,7 +74,8 @@ std::vector<std::pair<double, std::string>> get_beam_search_result(
// convert index to string
std::string output_str;
for (size_t j = 0; j < output.size(); j++) {
output_str += vocabulary[output[j]];
std::string ch = vocabulary[output[j]];
output_str += (ch == kSPACE) ? tSPACE : ch;
}
std::pair<double, std::string> output_pair(
-space_prefixes[i]->approx_ctc, output_str);

@ -21,6 +21,7 @@
#include "path_trie.h"
const std::string kSPACE = "<space>";
const std::string tSPACE = " ";
const float NUM_FLT_INF = std::numeric_limits<float>::max();
const float NUM_FLT_MIN = std::numeric_limits<float>::min();

@ -0,0 +1,188 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""V2 backend for `asr_recog.py` using py:class:`decoders.beam_search.BeamSearch`."""
import jsonlines
import paddle
from yacs.config import CfgNode
from .beam_search import BatchBeamSearch
from .beam_search import BeamSearch
from .scorers.length_bonus import LengthBonus
from .scorers.scorer_interface import BatchScorerInterface
from .utils import add_results_to_json
from deepspeech.exps import dynamic_import_tester
from deepspeech.io.reader import LoadInputsAndTargets
from deepspeech.models.asr_interface import ASRInterface
from deepspeech.utils.log import Log
# from espnet.asr.asr_utils import get_model_conf
# from espnet.asr.asr_utils import torch_load
# from espnet.nets.lm_interface import dynamic_import_lm
logger = Log(__name__).getlog()
# NOTE: you need this func to generate our sphinx doc
def load_trained_model(args):
args.nprocs = args.ngpu
confs = CfgNode()
confs.set_new_allowed(True)
confs.merge_from_file(args.model_conf)
class_obj = dynamic_import_tester(args.model_name)
exp = class_obj(confs, args)
with exp.eval():
exp.setup()
exp.restore()
char_list = exp.args.char_list
model = exp.model
return model, char_list, exp, confs
def recog_v2(args):
"""Decode with custom models that implements ScorerInterface.
Args:
args (namespace): The program arguments.
See py:func:`bin.asr_recog.get_parser` for details
"""
logger.warning("experimental API for custom LMs is selected by --api v2")
if args.batchsize > 1:
raise NotImplementedError("multi-utt batch decoding is not implemented")
if args.streaming_mode is not None:
raise NotImplementedError("streaming mode is not implemented")
if args.word_rnnlm:
raise NotImplementedError("word LM is not implemented")
# set_deterministic(args)
model, char_list, exp, confs = load_trained_model(args)
assert isinstance(model, ASRInterface)
load_inputs_and_targets = LoadInputsAndTargets(
mode="asr",
load_output=False,
sort_in_input_length=False,
preprocess_conf=confs.collator.augmentation_config
if args.preprocess_conf is None else args.preprocess_conf,
preprocess_args={"train": False}, )
if args.rnnlm:
lm_args = get_model_conf(args.rnnlm, args.rnnlm_conf)
# NOTE: for a compatibility with less than 0.5.0 version models
lm_model_module = getattr(lm_args, "model_module", "default")
lm_class = dynamic_import_lm(lm_model_module, lm_args.backend)
lm = lm_class(len(char_list), lm_args)
torch_load(args.rnnlm, lm)
lm.eval()
else:
lm = None
if args.ngram_model:
from .scorers.ngram import NgramFullScorer
from .scorers.ngram import NgramPartScorer
if args.ngram_scorer == "full":
ngram = NgramFullScorer(args.ngram_model, char_list)
else:
ngram = NgramPartScorer(args.ngram_model, char_list)
else:
ngram = None
scorers = model.scorers() # decoder
scorers["lm"] = lm
scorers["ngram"] = ngram
scorers["length_bonus"] = LengthBonus(len(char_list))
weights = dict(
decoder=1.0 - args.ctc_weight,
ctc=args.ctc_weight,
lm=args.lm_weight,
ngram=args.ngram_weight,
length_bonus=args.penalty, )
beam_search = BeamSearch(
beam_size=args.beam_size,
vocab_size=len(char_list),
weights=weights,
scorers=scorers,
sos=model.sos,
eos=model.eos,
token_list=char_list,
pre_beam_score_key=None if args.ctc_weight == 1.0 else "full", )
# TODO(karita): make all scorers batchfied
if args.batchsize == 1:
non_batch = [
k for k, v in beam_search.full_scorers.items()
if not isinstance(v, BatchScorerInterface)
]
if len(non_batch) == 0:
beam_search.__class__ = BatchBeamSearch
logger.info("BatchBeamSearch implementation is selected.")
else:
logger.warning(f"As non-batch scorers {non_batch} are found, "
f"fall back to non-batch implementation.")
if args.ngpu > 1:
raise NotImplementedError("only single GPU decoding is supported")
if args.ngpu == 1:
device = "gpu:0"
else:
device = "cpu"
paddle.set_device(device)
dtype = getattr(paddle, args.dtype)
logger.info(f"Decoding device={device}, dtype={dtype}")
model.to(device=device, dtype=dtype)
model.eval()
beam_search.to(device=device, dtype=dtype)
beam_search.eval()
# read json data
js = []
with jsonlines.open(args.recog_json, "r") as reader:
for item in reader:
js.append(item)
# jsonlines to dict, key by 'utt', value by jsonline
js = {item['utt']: item for item in js}
new_js = {}
with paddle.no_grad():
with jsonlines.open(args.result_label, "w") as f:
for idx, name in enumerate(js.keys(), 1):
logger.info(f"({idx}/{len(js.keys())}) decoding " + name)
batch = [(name, js[name])]
feat = load_inputs_and_targets(batch)[0][0]
logger.info(f'feat: {feat.shape}')
enc = model.encode(paddle.to_tensor(feat).to(dtype))
logger.info(f'eout: {enc.shape}')
nbest_hyps = beam_search(
x=enc,
maxlenratio=args.maxlenratio,
minlenratio=args.minlenratio)
nbest_hyps = [
h.asdict()
for h in nbest_hyps[:min(len(nbest_hyps), args.nbest)]
]
new_js[name] = add_results_to_json(js[name], nbest_hyps,
char_list)
item = new_js[name]['output'][0] # 1-best
ref = item['text']
rec_text = item['rec_text'].replace('', ' ').replace(
'<eos>', '').strip()
rec_tokenid = list(map(int, item['rec_tokenid'].split()))
f.write({
"utt": name,
"refs": [ref],
"hyps": [rec_text],
"hyps_tokenid": [rec_tokenid],
})

@ -0,0 +1,376 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""End-to-end speech recognition model decoding script."""
import logging
import os
import random
import sys
from distutils.util import strtobool
import configargparse
import numpy as np
from deepspeech.decoders.recog import recog_v2
def get_parser():
"""Get default arguments."""
parser = configargparse.ArgumentParser(
description="Transcribe text from speech using "
"a speech recognition model on one CPU or GPU",
config_file_parser_class=configargparse.YAMLConfigFileParser,
formatter_class=configargparse.ArgumentDefaultsHelpFormatter, )
parser.add(
'--model-name',
type=str,
default='u2_kaldi',
help='model name, e.g: deepspeech2, u2, u2_kaldi, u2_st')
# general configuration
parser.add("--config", is_config_file=True, help="Config file path")
parser.add(
"--config2",
is_config_file=True,
help="Second config file path that overwrites the settings in `--config`",
)
parser.add(
"--config3",
is_config_file=True,
help="Third config file path that overwrites the settings "
"in `--config` and `--config2`", )
parser.add_argument("--ngpu", type=int, default=0, help="Number of GPUs")
parser.add_argument(
"--dtype",
choices=("float16", "float32", "float64"),
default="float32",
help="Float precision (only available in --api v2)", )
parser.add_argument("--debugmode", type=int, default=1, help="Debugmode")
parser.add_argument("--seed", type=int, default=1, help="Random seed")
parser.add_argument(
"--verbose", "-V", type=int, default=2, help="Verbose option")
parser.add_argument(
"--batchsize",
type=int,
default=1,
help="Batch size for beam search (0: means no batch processing)", )
parser.add_argument(
"--preprocess-conf",
type=str,
default=None,
help="The configuration file for the pre-processing", )
parser.add_argument(
"--api",
default="v2",
choices=["v2"],
help="Beam search APIs "
"v2: Experimental API. It supports any models that implements ScorerInterface.",
)
# task related
parser.add_argument(
"--recog-json", type=str, help="Filename of recognition data (json)")
parser.add_argument(
"--result-label",
type=str,
required=True,
help="Filename of result label data (json)", )
# model (parameter) related
parser.add_argument(
"--model",
type=str,
required=True,
help="Model file parameters to read")
parser.add_argument(
"--model-conf", type=str, default=None, help="Model config file")
parser.add_argument(
"--num-spkrs",
type=int,
default=1,
choices=[1, 2],
help="Number of speakers in the speech", )
parser.add_argument(
"--num-encs",
default=1,
type=int,
help="Number of encoders in the model.")
# search related
parser.add_argument(
"--nbest", type=int, default=1, help="Output N-best hypotheses")
parser.add_argument("--beam-size", type=int, default=1, help="Beam size")
parser.add_argument(
"--penalty", type=float, default=0.0, help="Incertion penalty")
parser.add_argument(
"--maxlenratio",
type=float,
default=0.0,
help="""Input length ratio to obtain max output length.
If maxlenratio=0.0 (default), it uses a end-detect function
to automatically find maximum hypothesis lengths.
If maxlenratio<0.0, its absolute value is interpreted
as a constant max output length""", )
parser.add_argument(
"--minlenratio",
type=float,
default=0.0,
help="Input length ratio to obtain min output length", )
parser.add_argument(
"--ctc-weight",
type=float,
default=0.0,
help="CTC weight in joint decoding")
parser.add_argument(
"--weights-ctc-dec",
type=float,
action="append",
help="ctc weight assigned to each encoder during decoding."
"[in multi-encoder mode only]", )
parser.add_argument(
"--ctc-window-margin",
type=int,
default=0,
help="""Use CTC window with margin parameter to accelerate
CTC/attention decoding especially on GPU. Smaller magin
makes decoding faster, but may increase search errors.
If margin=0 (default), this function is disabled""", )
# transducer related
parser.add_argument(
"--search-type",
type=str,
default="default",
choices=["default", "nsc", "tsd", "alsd", "maes"],
help="""Type of beam search implementation to use during inference.
Can be either: default beam search ("default"),
N-Step Constrained beam search ("nsc"), Time-Synchronous Decoding ("tsd"),
Alignment-Length Synchronous Decoding ("alsd") or
modified Adaptive Expansion Search ("maes").""", )
parser.add_argument(
"--nstep",
type=int,
default=1,
help="""Number of expansion steps allowed in NSC beam search or mAES
(nstep > 0 for NSC and nstep > 1 for mAES).""", )
parser.add_argument(
"--prefix-alpha",
type=int,
default=2,
help="Length prefix difference allowed in NSC beam search or mAES.", )
parser.add_argument(
"--max-sym-exp",
type=int,
default=2,
help="Number of symbol expansions allowed in TSD.", )
parser.add_argument(
"--u-max",
type=int,
default=400,
help="Length prefix difference allowed in ALSD.", )
parser.add_argument(
"--expansion-gamma",
type=float,
default=2.3,
help="Allowed logp difference for prune-by-value method in mAES.", )
parser.add_argument(
"--expansion-beta",
type=int,
default=2,
help="""Number of additional candidates for expanded hypotheses
selection in mAES.""", )
parser.add_argument(
"--score-norm",
type=strtobool,
nargs="?",
default=True,
help="Normalize final hypotheses' score by length", )
parser.add_argument(
"--softmax-temperature",
type=float,
default=1.0,
help="Penalization term for softmax function.", )
# rnnlm related
parser.add_argument(
"--rnnlm", type=str, default=None, help="RNNLM model file to read")
parser.add_argument(
"--rnnlm-conf",
type=str,
default=None,
help="RNNLM model config file to read")
parser.add_argument(
"--word-rnnlm",
type=str,
default=None,
help="Word RNNLM model file to read")
parser.add_argument(
"--word-rnnlm-conf",
type=str,
default=None,
help="Word RNNLM model config file to read", )
parser.add_argument(
"--word-dict", type=str, default=None, help="Word list to read")
parser.add_argument(
"--lm-weight", type=float, default=0.1, help="RNNLM weight")
# ngram related
parser.add_argument(
"--ngram-model",
type=str,
default=None,
help="ngram model file to read")
parser.add_argument(
"--ngram-weight", type=float, default=0.1, help="ngram weight")
parser.add_argument(
"--ngram-scorer",
type=str,
default="part",
choices=("full", "part"),
help="""if the ngram is set as a part scorer, similar with CTC scorer,
ngram scorer only scores topK hypethesis.
if the ngram is set as full scorer, ngram scorer scores all hypthesis
the decoding speed of part scorer is musch faster than full one""",
)
# streaming related
parser.add_argument(
"--streaming-mode",
type=str,
default=None,
choices=["window", "segment"],
help="""Use streaming recognizer for inference.
`--batchsize` must be set to 0 to enable this mode""", )
parser.add_argument(
"--streaming-window", type=int, default=10, help="Window size")
parser.add_argument(
"--streaming-min-blank-dur",
type=int,
default=10,
help="Minimum blank duration threshold", )
parser.add_argument(
"--streaming-onset-margin", type=int, default=1, help="Onset margin")
parser.add_argument(
"--streaming-offset-margin", type=int, default=1, help="Offset margin")
# non-autoregressive related
# Mask CTC related. See https://arxiv.org/abs/2005.08700 for the detail.
parser.add_argument(
"--maskctc-n-iterations",
type=int,
default=10,
help="Number of decoding iterations."
"For Mask CTC, set 0 to predict 1 mask/iter.", )
parser.add_argument(
"--maskctc-probability-threshold",
type=float,
default=0.999,
help="Threshold probability for CTC output", )
# quantize model related
parser.add_argument(
"--quantize-config",
nargs="*",
help="Quantize config list. E.g.: --quantize-config=[Linear,LSTM,GRU]",
)
parser.add_argument(
"--quantize-dtype",
type=str,
default="qint8",
help="Dtype dynamic quantize")
parser.add_argument(
"--quantize-asr-model",
type=bool,
default=False,
help="Quantize asr model", )
parser.add_argument(
"--quantize-lm-model",
type=bool,
default=False,
help="Quantize lm model", )
return parser
def main(args):
"""Run the main decoding function."""
parser = get_parser()
parser.add_argument(
"--output", metavar="CKPT_DIR", help="path to save checkpoint.")
parser.add_argument(
"--checkpoint_path", type=str, help="path to load checkpoint")
parser.add_argument("--dict-path", type=str, help="path to load checkpoint")
args = parser.parse_args(args)
if args.ngpu == 0 and args.dtype == "float16":
raise ValueError(
f"--dtype {args.dtype} does not support the CPU backend.")
# logging info
if args.verbose == 1:
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
elif args.verbose == 2:
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
else:
logging.basicConfig(
level=logging.WARN,
format="%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s",
)
logging.warning("Skip DEBUG/INFO messages")
logging.info(args)
# check CUDA_VISIBLE_DEVICES
if args.ngpu > 0:
cvd = os.environ.get("CUDA_VISIBLE_DEVICES")
if cvd is None:
logging.warning("CUDA_VISIBLE_DEVICES is not set.")
elif args.ngpu != len(cvd.split(",")):
logging.error("#gpus is not matched with CUDA_VISIBLE_DEVICES.")
sys.exit(1)
# TODO(mn5k): support of multiple GPUs
if args.ngpu > 1:
logging.error("The program only supports ngpu=1.")
sys.exit(1)
# display PYTHONPATH
logging.info("python path = " + os.environ.get("PYTHONPATH", "(None)"))
# seed setting
random.seed(args.seed)
np.random.seed(args.seed)
logging.info("set random seed = %d" % args.seed)
# validate rnn options
if args.rnnlm is not None and args.word_rnnlm is not None:
logging.error(
"It seems that both --rnnlm and --word-rnnlm are specified. "
"Please use either option.")
sys.exit(1)
# recog
if args.num_spkrs == 1:
if args.num_encs == 1:
# Experimental API that supports custom LMs
if args.api == "v2":
recog_v2(args)
else:
raise ValueError("Only support --api v2")
else:
if args.api == "v2":
raise NotImplementedError(
f"--num-encs {args.num_encs} > 1 is not supported in --api v2"
)
elif args.num_spkrs == 2:
raise ValueError("asr_mix not supported.")
if __name__ == "__main__":
main(sys.argv[1:])

@ -145,9 +145,11 @@ class PartialScorerInterface(ScorerInterface):
and receives pre-pruned next tokens to score because it is too heavy to score
all the tokens.
Score sub-set of tokens, not all.
Examples:
* Prefix search for connectionist-temporal-classification models
* :class:`espnet.nets.scorers.ctc.CTCPrefixScorer`
* :class:`decoders.scorers.ctc.CTCPrefixScorer`
"""

@ -11,8 +11,12 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
__all__ = ["end_detect"]
from deepspeech.utils.log import Log
logger = Log(__name__).getlog()
__all__ = ["end_detect", "parse_hypothesis", "add_results_to_json"]
def end_detect(ended_hyps, i, M=3, D_end=np.log(1 * np.exp(-10))):
@ -47,3 +51,79 @@ def end_detect(ended_hyps, i, M=3, D_end=np.log(1 * np.exp(-10))):
return True
else:
return False
# * ------------------ recognition related ------------------ *
def parse_hypothesis(hyp, char_list):
"""Parse hypothesis.
Args:
hyp (list[dict[str, Any]]): Recognition hypothesis.
char_list (list[str]): List of characters.
Returns:
tuple(str, str, str, float)
"""
# remove sos and get results
tokenid_as_list = list(map(int, hyp["yseq"][1:]))
token_as_list = [char_list[idx] for idx in tokenid_as_list]
score = float(hyp["score"])
# convert to string
tokenid = " ".join([str(idx) for idx in tokenid_as_list])
token = " ".join(token_as_list)
text = "".join(token_as_list).replace("<space>", " ")
return text, token, tokenid, score
def add_results_to_json(js, nbest_hyps, char_list):
"""Add N-best results to json.
Args:
js (dict[str, Any]): Groundtruth utterance dict.
nbest_hyps_sd (list[dict[str, Any]]):
List of hypothesis for multi_speakers: nutts x nspkrs.
char_list (list[str]): List of characters.
Returns:
dict[str, Any]: N-best results added utterance dict.
"""
# copy old json info
new_js = dict()
new_js["utt2spk"] = js["utt2spk"]
new_js["output"] = []
for n, hyp in enumerate(nbest_hyps, 1):
# parse hypothesis
rec_text, rec_token, rec_tokenid, score = parse_hypothesis(hyp,
char_list)
# copy ground-truth
if len(js["output"]) > 0:
out_dic = dict(js["output"][0].items())
else:
# for no reference case (e.g., speech translation)
out_dic = {"name": ""}
# update name
out_dic["name"] += "[%d]" % n
# add recognition results
out_dic["rec_text"] = rec_text
out_dic["rec_token"] = rec_token
out_dic["rec_tokenid"] = rec_tokenid
out_dic["score"] = score
# add to list of N-best result dicts
new_js["output"].append(out_dic)
# show 1-best result
if n == 1:
if "text" in out_dic.keys():
logger.info("groundtruth: %s" % out_dic["text"])
logger.info("prediction : %s" % out_dic["rec_text"])
return new_js

@ -11,3 +11,52 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from deepspeech.training.trainer import Trainer
from deepspeech.utils.dynamic_import import dynamic_import
model_trainer_alias = {
"ds2": "deepspeech.exp.deepspeech2.model:DeepSpeech2Trainer",
"u2": "deepspeech.exps.u2.model:U2Trainer",
"u2_kaldi": "deepspeech.exps.u2_kaldi.model:U2Trainer",
"u2_st": "deepspeech.exps.u2_st.model:U2STTrainer",
}
def dynamic_import_trainer(module):
"""Import Trainer dynamically.
Args:
module (str): trainer name. e.g., ds2, u2, u2_kaldi
Returns:
type: Trainer class
"""
model_class = dynamic_import(module, model_trainer_alias)
assert issubclass(model_class,
Trainer), f"{module} does not implement Trainer"
return model_class
model_tester_alias = {
"ds2": "deepspeech.exp.deepspeech2.model:DeepSpeech2Tester",
"u2": "deepspeech.exps.u2.model:U2Tester",
"u2_kaldi": "deepspeech.exps.u2_kaldi.model:U2Tester",
"u2_st": "deepspeech.exps.u2_st.model:U2STTester",
}
def dynamic_import_tester(module):
"""Import Tester dynamically.
Args:
module (str): tester name. e.g., ds2, u2, u2_kaldi
Returns:
type: Tester class
"""
model_class = dynamic_import(module, model_tester_alias)
assert issubclass(model_class,
Trainer), f"{module} does not implement Tester"
return model_class

@ -56,11 +56,6 @@ class DeepSpeech2Tester_hub():
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch)
#replace the '<space>' with ' '
result_transcripts = [
self._text_featurizer.detokenize(sentence)
for sentence in result_transcripts
]
return result_transcripts
@ -167,7 +162,6 @@ def check(audio_file):
def main_sp(config, args):
exp = DeepSpeech2Tester_hub(config, args)
with exp.eval():
exp.setup()
exp.run_test()

@ -341,11 +341,6 @@ class DeepSpeech2Tester(DeepSpeech2Trainer):
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch)
#replace the <space> with ' '
result_transcripts = [
self._text_featurizer.detokenize(sentence)
for sentence in result_transcripts
]
self.autolog.times.stamp()
self.autolog.times.stamp()

@ -0,0 +1,187 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Evaluation for U2 model."""
import cProfile
import os
import sys
import paddle
import soundfile
from deepspeech.exps.u2.config import get_cfg_defaults
from deepspeech.frontend.featurizer.text_featurizer import TextFeaturizer
from deepspeech.io.collator import SpeechCollator
from deepspeech.models.u2 import U2Model
from deepspeech.training.cli import default_argument_parser
from deepspeech.training.trainer import Trainer
from deepspeech.utils import layer_tools
from deepspeech.utils import mp_tools
from deepspeech.utils.log import Log
from deepspeech.utils.utility import print_arguments
from deepspeech.utils.utility import UpdateConfig
logger = Log(__name__).getlog()
# TODO(hui zhang): dynamic load
class U2Tester_Hub(Trainer):
def __init__(self, config, args):
# super().__init__(config, args)
self.args = args
self.config = config
self.audio_file = args.audio_file
self.collate_fn_test = SpeechCollator.from_config(config)
self._text_featurizer = TextFeaturizer(
unit_type=config.collator.unit_type,
vocab_filepath=None,
spm_model_prefix=config.collator.spm_model_prefix)
def setup_model(self):
config = self.config
model_conf = config.model
with UpdateConfig(model_conf):
model_conf.input_dim = self.collate_fn_test.feature_size
model_conf.output_dim = self.collate_fn_test.vocab_size
model = U2Model.from_config(model_conf)
if self.parallel:
model = paddle.DataParallel(model)
logger.info(f"{model}")
layer_tools.print_params(model, logger.info)
self.model = model
logger.info("Setup model")
@mp_tools.rank_zero_only
@paddle.no_grad()
def test(self):
self.model.eval()
cfg = self.config.decoding
audio_file = self.audio_file
collate_fn_test = self.collate_fn_test
audio, _ = collate_fn_test.process_utterance(
audio_file=audio_file, transcript="Hello")
audio_len = audio.shape[0]
audio = paddle.to_tensor(audio, dtype='float32')
audio_len = paddle.to_tensor(audio_len)
audio = paddle.unsqueeze(audio, axis=0)
vocab_list = collate_fn_test.vocab_list
text_feature = self.collate_fn_test.text_feature
result_transcripts = self.model.decode(
audio,
audio_len,
text_feature=text_feature,
decoding_method=cfg.decoding_method,
lang_model_path=cfg.lang_model_path,
beam_alpha=cfg.alpha,
beam_beta=cfg.beta,
beam_size=cfg.beam_size,
cutoff_prob=cfg.cutoff_prob,
cutoff_top_n=cfg.cutoff_top_n,
num_processes=cfg.num_proc_bsearch,
ctc_weight=cfg.ctc_weight,
decoding_chunk_size=cfg.decoding_chunk_size,
num_decoding_left_chunks=cfg.num_decoding_left_chunks,
simulate_streaming=cfg.simulate_streaming)
logger.info("The result_transcripts: " + result_transcripts[0][0])
def run_test(self):
self.resume()
try:
self.test()
except KeyboardInterrupt:
sys.exit(-1)
def setup(self):
"""Setup the experiment.
"""
paddle.set_device('gpu' if self.args.nprocs > 0 else 'cpu')
#self.setup_output_dir()
#self.setup_checkpointer()
#self.setup_dataloader()
self.setup_model()
self.iteration = 0
self.epoch = 0
def resume(self):
"""Resume from the checkpoint at checkpoints in the output
directory or load a specified checkpoint.
"""
params_path = self.args.checkpoint_path + ".pdparams"
model_dict = paddle.load(params_path)
self.model.set_state_dict(model_dict)
def check(audio_file):
logger.info("checking the audio file format......")
try:
sig, sample_rate = soundfile.read(audio_file)
except Exception as e:
logger.error(str(e))
logger.error(
"can not open the wav file, please check the audio file format")
sys.exit(-1)
logger.info("The sample rate is %d" % sample_rate)
assert (sample_rate == 16000)
logger.info("The audio file format is right")
def main_sp(config, args):
exp = U2Tester_Hub(config, args)
with exp.eval():
exp.setup()
exp.run_test()
def main(config, args):
main_sp(config, args)
if __name__ == "__main__":
parser = default_argument_parser()
# save asr result to
parser.add_argument(
"--result_file", type=str, help="path of save the asr result")
parser.add_argument(
"--audio_file", type=str, help="path of the input audio file")
args = parser.parse_args()
print_arguments(args, globals())
if not os.path.isfile(args.audio_file):
print("Please input the right audio file path")
sys.exit(-1)
check(args.audio_file)
# https://yaml.org/type/float.html
config = get_cfg_defaults()
if args.config:
config.merge_from_file(args.config)
if args.opts:
config.merge_from_list(args.opts)
config.freeze()
print(config)
if args.dump_config:
with open(args.dump_config, 'w') as f:
print(config, file=f)
# Setting for profiling
pr = cProfile.Profile()
pr.runcall(main, config, args)
pr.dump_stats('test.profile')

@ -0,0 +1,19 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from deepspeech.decoders.recog_bin import main
if __name__ == "__main__":
main(sys.argv[1:])

@ -317,11 +317,9 @@ class U2Trainer(Trainer):
with UpdateConfig(model_conf):
model_conf.input_dim = self.train_loader.feat_dim
model_conf.output_dim = self.train_loader.vocab_size
model = U2Model.from_config(model_conf)
if self.parallel:
model = paddle.DataParallel(model)
logger.info(f"{model}")
layer_tools.print_params(model, logger.info)
# lr

@ -207,7 +207,7 @@ class TextFeaturizer():
"""Load vocabulary from file."""
vocab_list = load_dict(vocab_filepath, maskctc)
assert vocab_list is not None
logger.info(f"Vocab: {pformat(vocab_list)}")
logger.debug(f"Vocab: {pformat(vocab_list)}")
id2token = dict(
[(idx, token) for (idx, token) in enumerate(vocab_list)])

@ -354,7 +354,7 @@ def make_batchset(
:param int batch_frames_out: maximum number of output frames in a minibatch.
:param int batch_frames_out: maximum number of input+output frames in a minibatch.
:param str count: strategy to count maximum size of batch.
For choices, see espnet.asr.batchfy.BATCH_COUNT_CHOICES
For choices, see io.batchfy.BATCH_COUNT_CHOICES
:param int max_length_in: maximum length of input to decide adaptive batch size
:param int max_length_out: maximum length of output to decide adaptive batch size

@ -0,0 +1,161 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ASR Interface module."""
import argparse
from deepspeech.utils.dynamic_import import dynamic_import
class ASRInterface:
"""ASR Interface for ESPnet model implementation."""
@staticmethod
def add_arguments(parser):
"""Add arguments to parser."""
return parser
@classmethod
def build(cls, idim: int, odim: int, **kwargs):
"""Initialize this class with python-level args.
Args:
idim (int): The number of an input feature dim.
odim (int): The number of output vocab.
Returns:
ASRinterface: A new instance of ASRInterface.
"""
args = argparse.Namespace(**kwargs)
return cls(idim, odim, args)
def forward(self, xs, ilens, ys, olens):
"""Compute loss for training.
:param xs: batch of padded source sequences paddle.Tensor (B, Tmax, idim)
:param ilens: batch of lengths of source sequences (B), paddle.Tensor
:param ys: batch of padded target sequences paddle.Tensor (B, Lmax)
:param olens: batch of lengths of target sequences (B), paddle.Tensor
:return: loss value
:rtype: paddle.Tensor
"""
raise NotImplementedError("forward method is not implemented")
def recognize(self, x, recog_args, char_list=None, rnnlm=None):
"""Recognize x for evaluation.
:param ndarray x: input acouctic feature (B, T, D) or (T, D)
:param namespace recog_args: argment namespace contraining options
:param list char_list: list of characters
:param paddle.nn.Layer rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
raise NotImplementedError("recognize method is not implemented")
def recognize_batch(self, x, recog_args, char_list=None, rnnlm=None):
"""Beam search implementation for batch.
:param paddle.Tensor x: encoder hidden state sequences (B, Tmax, Henc)
:param namespace recog_args: argument namespace containing options
:param list char_list: list of characters
:param paddle.nn.Module rnnlm: language model module
:return: N-best decoding results
:rtype: list
"""
raise NotImplementedError("Batch decoding is not supported yet.")
def calculate_all_attentions(self, xs, ilens, ys):
"""Calculate attention.
:param list xs: list of padded input sequences [(T1, idim), (T2, idim), ...]
:param ndarray ilens: batch of lengths of input sequences (B)
:param list ys: list of character id sequence tensor [(L1), (L2), (L3), ...]
:return: attention weights (B, Lmax, Tmax)
:rtype: float ndarray
"""
raise NotImplementedError(
"calculate_all_attentions method is not implemented")
def calculate_all_ctc_probs(self, xs, ilens, ys):
"""Calculate CTC probability.
:param list xs_pad: list of padded input sequences [(T1, idim), (T2, idim), ...]
:param ndarray ilens: batch of lengths of input sequences (B)
:param list ys: list of character id sequence tensor [(L1), (L2), (L3), ...]
:return: CTC probabilities (B, Tmax, vocab)
:rtype: float ndarray
"""
raise NotImplementedError(
"calculate_all_ctc_probs method is not implemented")
@property
def attention_plot_class(self):
"""Get attention plot class."""
from espnet.asr.asr_utils import PlotAttentionReport
return PlotAttentionReport
@property
def ctc_plot_class(self):
"""Get CTC plot class."""
from espnet.asr.asr_utils import PlotCTCReport
return PlotCTCReport
def get_total_subsampling_factor(self):
"""Get total subsampling factor."""
raise NotImplementedError(
"get_total_subsampling_factor method is not implemented")
def encode(self, feat):
"""Encode feature in `beam_search` (optional).
Args:
x (numpy.ndarray): input feature (T, D)
Returns:
paddle.Tensor: encoded feature (T, D)
"""
raise NotImplementedError("encode method is not implemented")
def scorers(self):
"""Get scorers for `beam_search` (optional).
Returns:
dict[str, ScorerInterface]: dict of `ScorerInterface` objects
"""
raise NotImplementedError("decoders method is not implemented")
predefined_asr = {
"transformer": "deepspeech.models.u2:U2Model",
"conformer": "deepspeech.models.u2:U2Model",
}
def dynamic_import_asr(module):
"""Import ASR models dynamically.
Args:
module (str): asr name. e.g., transformer, conformer
Returns:
type: ASR class
"""
model_class = dynamic_import(module, predefined_asr)
assert issubclass(model_class,
ASRInterface), f"{module} does not implement ASRInterface"
return model_class

@ -28,8 +28,10 @@ from paddle import jit
from paddle import nn
from yacs.config import CfgNode
from deepspeech.decoders.scorers.ctc import CTCPrefixScorer
from deepspeech.frontend.utility import IGNORE_ID
from deepspeech.frontend.utility import load_cmvn
from deepspeech.models.asr_interface import ASRInterface
from deepspeech.modules.cmvn import GlobalCMVN
from deepspeech.modules.ctc import CTCDecoder
from deepspeech.modules.decoder import TransformerDecoder
@ -55,7 +57,7 @@ __all__ = ["U2Model", "U2InferModel"]
logger = Log(__name__).getlog()
class U2BaseModel(nn.Layer):
class U2BaseModel(ASRInterface, nn.Layer):
"""CTC-Attention hybrid Encoder-Decoder model"""
@classmethod
@ -120,7 +122,7 @@ class U2BaseModel(nn.Layer):
**kwargs):
assert 0.0 <= ctc_weight <= 1.0, ctc_weight
super().__init__()
nn.Layer.__init__(self)
# note that eos is the same as sos (equivalent ID)
self.sos = vocab_size - 1
self.eos = vocab_size - 1
@ -813,7 +815,27 @@ class U2BaseModel(nn.Layer):
return res, res_tokenids
class U2Model(U2BaseModel):
class U2DecodeModel(U2BaseModel):
def scorers(self):
"""Scorers."""
return dict(
decoder=self.decoder, ctc=CTCPrefixScorer(self.ctc, self.eos))
def encode(self, x):
"""Encode acoustic features.
:param ndarray x: source acoustic feature (T, D)
:return: encoder outputs
:rtype: paddle.Tensor
"""
self.eval()
x = paddle.to_tensor(x).unsqueeze(0)
ilen = x.size(1)
enc_output, _ = self._forward_encoder(x, ilen)
return enc_output.squeeze(0)
class U2Model(U2DecodeModel):
def __init__(self, configs: dict):
vocab_size, encoder, decoder, ctc = U2Model._init_from_config(configs)

@ -11,6 +11,8 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Union
import paddle
from paddle import nn
from paddle.nn import functional as F
@ -40,7 +42,7 @@ class CTCDecoderBase(nn.Layer):
dropout_rate: float=0.0,
reduction: bool=True,
batch_average: bool=True,
grad_norm_type: str="instance"):
grad_norm_type: Union[str, None]=None):
"""CTC decoder
Args:
@ -49,7 +51,7 @@ class CTCDecoderBase(nn.Layer):
dropout_rate (float): dropout rate (0.0 ~ 1.0)
reduction (bool): reduce the CTC loss into a scalar, True for 'sum' or 'none'
batch_average (bool): do batch dim wise average.
grad_norm_type (str): one of 'instance', 'batch', 'frame', None.
grad_norm_type (str): Default, None. one of 'instance', 'batch', 'frame', None.
"""
assert check_argument_types()
super().__init__()

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""Decoder definition."""
from typing import Any
from typing import List
from typing import Optional
from typing import Tuple
@ -20,10 +21,12 @@ import paddle
from paddle import nn
from typeguard import check_argument_types
from deepspeech.decoders.scorers.scorer_interface import BatchScorerInterface
from deepspeech.modules.attention import MultiHeadedAttention
from deepspeech.modules.decoder_layer import DecoderLayer
from deepspeech.modules.embedding import PositionalEncoding
from deepspeech.modules.mask import make_non_pad_mask
from deepspeech.modules.mask import make_xs_mask
from deepspeech.modules.mask import subsequent_mask
from deepspeech.modules.positionwise_feed_forward import PositionwiseFeedForward
from deepspeech.utils.log import Log
@ -33,7 +36,7 @@ logger = Log(__name__).getlog()
__all__ = ["TransformerDecoder"]
class TransformerDecoder(nn.Layer):
class TransformerDecoder(BatchScorerInterface, nn.Layer):
"""Base class of Transfomer decoder module.
Args:
vocab_size: output dim
@ -71,7 +74,8 @@ class TransformerDecoder(nn.Layer):
concat_after: bool=False, ):
assert check_argument_types()
super().__init__()
nn.Layer.__init__(self)
self.selfattention_layer_type = 'selfattn'
attention_dim = encoder_output_size
if input_layer == "embed":
@ -180,3 +184,63 @@ class TransformerDecoder(nn.Layer):
if self.use_output_layer:
y = paddle.log_softmax(self.output_layer(y), axis=-1)
return y, new_cache
# beam search API (see ScorerInterface)
def score(self, ys, state, x):
"""Score.
ys: (ylen,)
x: (xlen, n_feat)
"""
ys_mask = subsequent_mask(len(ys)).unsqueeze(0) # (B,L,L)
x_mask = make_xs_mask(x.unsqueeze(0)).unsqueeze(1) # (B,1,T)
if self.selfattention_layer_type != "selfattn":
# TODO(karita): implement cache
logging.warning(
f"{self.selfattention_layer_type} does not support cached decoding."
)
state = None
logp, state = self.forward_one_step(
x.unsqueeze(0), x_mask, ys.unsqueeze(0), ys_mask, cache=state)
return logp.squeeze(0), state
# batch beam search API (see BatchScorerInterface)
def batch_score(self,
ys: paddle.Tensor,
states: List[Any],
xs: paddle.Tensor) -> Tuple[paddle.Tensor, List[Any]]:
"""Score new token batch (required).
Args:
ys (paddle.Tensor): paddle.int64 prefix tokens (n_batch, ylen).
states (List[Any]): Scorer states for prefix tokens.
xs (paddle.Tensor):
The encoder feature that generates ys (n_batch, xlen, n_feat).
Returns:
tuple[paddle.Tensor, List[Any]]: Tuple of
batchfied scores for next token with shape of `(n_batch, n_vocab)`
and next state list for ys.
"""
# merge states
n_batch = len(ys)
n_layers = len(self.decoders)
if states[0] is None:
batch_state = None
else:
# transpose state of [batch, layer] into [layer, batch]
batch_state = [
paddle.stack([states[b][i] for b in range(n_batch)])
for i in range(n_layers)
]
# batch decoding
ys_mask = subsequent_mask(ys.size(-1)).unsqueeze(0) # (B,L,L)
xs_mask = make_xs_mask(xs).unsqueeze(1) # (B,1,T)
logp, states = self.forward_one_step(
xs, xs_mask, ys, ys_mask, cache=batch_state)
# transpose state of [layer, batch] into [batch, layer]
state_list = [[states[i][b] for i in range(n_layers)]
for b in range(n_batch)]
return logp, state_list

@ -54,7 +54,7 @@ class CTCLoss(nn.Layer):
self.norm_by_total_logits_len = True
else:
raise ValueError(f"CTCLoss Grad Norm no support {grad_norm_type}")
self.kwargs = {
kwargs = {
"norm_by_times": self.norm_by_times,
"norm_by_batchsize": self.norm_by_batchsize,
"norm_by_total_logits_len": self.norm_by_total_logits_len,
@ -66,10 +66,9 @@ class CTCLoss(nn.Layer):
except ValueError:
# Some function, e.g. built-in function, are failed
param = {}
self._kwargs = {k: v for k, v in self.kwargs.items() if k in param}
_notin = {k: v for k, v in self.kwargs.items() if k not in param}
self._kwargs = {k: v for k, v in kwargs.items() if k in param}
_notin = {k: v for k, v in kwargs.items() if k not in param}
logger.info(f"{self.loss} kwargs:{self._kwargs}, not support: {_notin}")
#self.loss_fn = partial(self.loss.forward, **_kwargs)
def forward(self, logits, ys_pad, hlens, ys_lens):
"""Compute CTC loss.
@ -89,8 +88,7 @@ class CTCLoss(nn.Layer):
# logits: (B, L, D) -> (L, B, D)
logits = logits.transpose([1, 0, 2])
ys_pad = ys_pad.astype(paddle.int32)
#loss = self.loss_fn(logits, ys_pad, hlens, ys_lens)
loss = self.loss(logits, ys_pad, hlens, ys_lens)
loss = self.loss(logits, ys_pad, hlens, ys_lens, **self._kwargs)
if self.batch_average:
# Batch-size average
loss = loss / B

@ -18,12 +18,25 @@ from deepspeech.utils.log import Log
logger = Log(__name__).getlog()
__all__ = [
"make_pad_mask", "make_non_pad_mask", "subsequent_mask",
"make_xs_mask", "make_pad_mask", "make_non_pad_mask", "subsequent_mask",
"subsequent_chunk_mask", "add_optional_chunk_mask", "mask_finished_scores",
"mask_finished_preds"
]
def make_xs_mask(xs: paddle.Tensor, pad_value=0.0) -> paddle.Tensor:
"""Maks mask tensor containing indices of non-padded part.
Args:
xs (paddle.Tensor): (B, T, D), zeros for pad.
Returns:
paddle.Tensor: Mask Tensor indices of non-padded part. (B, T)
"""
pad_frame = paddle.full([1, 1, xs.shape[-1]], pad_value, dtype=xs.dtype)
mask = xs != pad_frame
mask = mask.all(axis=-1)
return mask
def make_pad_mask(lengths: paddle.Tensor) -> paddle.Tensor:
"""Make mask tensor containing indices of padded part.
See description of make_non_pad_mask.
@ -31,6 +44,7 @@ def make_pad_mask(lengths: paddle.Tensor) -> paddle.Tensor:
lengths (paddle.Tensor): Batch of lengths (B,).
Returns:
paddle.Tensor: Mask tensor containing indices of padded part.
(B, T)
Examples:
>>> lengths = [5, 3, 2]
>>> make_pad_mask(lengths)
@ -62,6 +76,7 @@ def make_non_pad_mask(lengths: paddle.Tensor) -> paddle.Tensor:
lengths (paddle.Tensor): Batch of lengths (B,).
Returns:
paddle.Tensor: mask tensor containing indices of padded part.
(B, T)
Examples:
>>> lengths = [5, 3, 2]
>>> make_non_pad_mask(lengths)

@ -35,7 +35,7 @@ class LoadFromFile(argparse.Action):
parser.parse_args(f.read().split(), namespace)
def default_argument_parser():
def default_argument_parser(parser=None):
r"""A simple yet genral argument parser for experiments with parakeet.
This is used in examples with parakeet. And it is intended to be used by
@ -62,7 +62,9 @@ def default_argument_parser():
argparse.ArgumentParser
the parser
"""
if parser is None:
parser = argparse.ArgumentParser()
parser.register('action', 'extend', ExtendAction)
parser.add_argument(
'--conf', type=open, action=LoadFromFile, help="config file.")

@ -126,7 +126,8 @@ class Trainer():
logger.info(f"Set seed {args.seed}")
# profiler and benchmark options
if self.args.benchmark_batch_size:
if hasattr(self.args,
"benchmark_batch_size") and self.args.benchmark_batch_size:
with UpdateConfig(self.config):
self.config.collator.batch_size = self.args.benchmark_batch_size
self.config.training.log_interval = 1
@ -326,12 +327,24 @@ class Trainer():
finally:
self.destory()
def restore(self):
"""Resume from latest checkpoint at checkpoints in the output
directory or load a specified checkpoint.
If ``args.checkpoint_path`` is not None, load the checkpoint, else
resume training.
"""
assert self.args.checkpoint_path
infos = self.checkpoint.load_latest_parameters(
self.model, checkpoint_path=self.args.checkpoint_path)
return infos
def run_test(self):
"""Do Test/Decode"""
try:
with Timer("Test/Decode Done: {}"):
with self.eval():
self.resume_or_scratch()
self.restore()
self.test()
except KeyboardInterrupt:
exit(-1)
@ -341,6 +354,7 @@ class Trainer():
try:
with Timer("Export Done: {}"):
with self.eval():
self.restore()
self.export()
except KeyboardInterrupt:
exit(-1)
@ -350,7 +364,7 @@ class Trainer():
try:
with Timer("Align Done: {}"):
with self.eval():
self.resume_or_scratch()
self.restore()
self.align()
except KeyboardInterrupt:
sys.exit(-1)

@ -42,7 +42,7 @@ def all_version():
"paddle_commit": paddle.version.commit,
"soundfile": soundfile.__version__,
}
logger.info(f"Deps Module Version:{pformat(vers.items())}")
logger.info(f"Deps Module Version:{pformat(list(vers.items()))}")
@contextmanager

@ -14,10 +14,11 @@ In addition, the training process and the testing process are also introduced.
The arcitecture of the model is shown in Fig.1.
<p align="center">
<img src="../images/ds2onlineModel.png" width=800>
<img src="../../images/ds2onlineModel.png" width=800>
<br/>Fig.1 The Arcitecture of deepspeech2 online model
</p>
### Data Preparation
#### Vocabulary
For English data, the vocabulary dictionary is composed of 26 English characters with " ' ", space, \<blank\> and \<eos\>. The \<blank\> represents the blank label in CTC, the \<unk\> represents the unknown character and the \<eos\> represents the start and the end characters. For mandarin, the vocabulary dictionary is composed of chinese characters statisticed from the training set and three additional characters are added. The added characters are \<blank\>, \<unk\> and \<eos\>. For both English and mandarin data, we set the default indexs that \<blank\>=0, \<unk\>=1 and \<eos\>= last index.
@ -161,12 +162,13 @@ The deepspeech2 offline model is similarity to the deepspeech2 online model. The
The arcitecture of the model is shown in Fig.2.
<p align="center">
<img src="../images/ds2offlineModel.png" width=800>
<img src="../../images/ds2offlineModel.png" width=800>
<br/>Fig.2 The Arcitecture of deepspeech2 offline model
</p>
For data preparation and decoder, the deepspeech2 offline model is same with the deepspeech2 online model.
The code of encoder and decoder for deepspeech2 offline model is in:

@ -2,10 +2,11 @@
Parakeet aims to provide a flexible, efficient and state-of-the-art text-to-speech toolkit for the open-source community. It is built on PaddlePaddle dynamic graph and includes many influential TTS models.
<div align="center">
<img src="docs/images/logo.png" width=300 /> <br>
<img src="../../images/logo.png" width=300 /> <br>
</div>
## News <img src="./docs/images/news_icon.png" width="40"/>
## News <img src="../../images/news_icon.png" width="40"/>
- Oct-12-2021, Refector examples code.
- Oct-12-2021, Parallel WaveGAN with LJSpeech. Check [examples/GANVocoder/parallelwave_gan/ljspeech](./examples/GANVocoder/parallelwave_gan/ljspeech).
- Oct-12-2021, FastSpeech2/FastPitch with LJSpeech. Check [examples/fastspeech2/ljspeech](./examples/fastspeech2/ljspeech).

@ -6,6 +6,7 @@
## Data
| Data Subset | Duration in Seconds |
| ------------------- | --------------------- |
| data/manifest.train | 1.23 ~ 14.53125 |
| data/manifest.dev | 1.645 ~ 12.533 |
| data/manifest.test | 1.859125 ~ 14.6999375 |

@ -41,7 +41,7 @@ model:
use_gru: True
share_rnn_weights: False
blank_id: 0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
training:
n_epoch: 80

@ -43,7 +43,7 @@ model:
fc_layers_size_list: -1,
use_gru: False
blank_id: 0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
training:
n_epoch: 50

@ -77,7 +77,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -72,7 +72,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -0,0 +1,47 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix audio_file"
exit -1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
audio_file=$3
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
chunk_mode=true
fi
# download language model
#bash local/download_lm_ch.sh
#if [ $? -ne 0 ]; then
# exit 1
#fi
for type in attention_rescoring; do
echo "decoding ${type}"
batch_size=1
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/test_hub.py \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size} \
--audio_file ${audio_file}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
done
exit 0

@ -13,6 +13,8 @@ avg_ckpt=avg_${avg_num}
ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}')
echo "checkpoint name ${ckpt}"
audio_file="data/tmp.wav"
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
bash ./local/data.sh || exit -1
@ -48,3 +50,8 @@ fi
# train lm and build TLG
./local/tlg.sh --corpus aishell --lmtype srilm
fi
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=3 ./local/test_hub.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${audio_file} || exit -1
fi

@ -218,6 +218,8 @@ fastspeech2_nosil_aishell3_ckpt_0.4
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained fastspeech2 and parallel wavegan models.
```bash
source path.sh
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/multi_spk_synthesize_e2e.py \

@ -2,7 +2,7 @@
This example contains code used to train a [Tacotron2 ](https://arxiv.org/abs/1712.05884) model with [AISHELL-3](http://www.aishelltech.com/aishell_3). The trained model can be used in Voice Cloning Task, We refer to the model structure of [Transfer Learning from Speaker Verification to Multispeaker Text-To-Speech Synthesis](https://arxiv.org/pdf/1806.04558.pdf) . The general steps are as follows:
1. Speaker Encoder: We use a Speaker Verification to train a speaker encoder. Datasets used in this task are different from those used in Tacotron2, because the transcriptions are not needed, we use more datasets, refer to [ge2e](../../other/ge2e).
2. Synthesizer: Then, we use the trained speaker encoder to generate utterance embedding for each sentence in AISHELL-3. This embedding is a extra input of Tacotron2 which will be concated with encoder outputs.
3. Vocoder: We use WaveFlow as the neural Vocoder,参考实验 [waveflow](../../ljspeech/voc0).
3. Vocoder: We use WaveFlow as the neural Vocoder, refer to [waveflow](../../ljspeech/voc0).
## Get Started
Assume the path to the dataset is `~/datasets/data_aishell3`.

@ -35,9 +35,3 @@ if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
--input=${preprocess_path}/normalized_wav \
--output=${preprocess_path}/mel
fi

@ -223,6 +223,8 @@ speedyspeech_nosil_baker_ckpt_0.5
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained speedyspeech and parallel wavegan models.
```bash
source path.sh
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \

@ -202,6 +202,8 @@ fastspeech2_nosil_baker_ckpt_0.4
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained fastspeech2 and parallel wavegan models.
```bash
source path.sh
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \

@ -2,8 +2,7 @@
* s0 is for deepspeech2 offline
* s1 is for transformer/conformer/U2
* s2 is for transformer/conformer/U2 w/ kaldi feat
need install Kaldi
* s2 is for transformer/conformer/U2 w/ kaldi feat, need install Kaldi
## Data
| Data Subset | Duration in Seconds |

@ -1,14 +1,6 @@
# LibriSpeech
## Data
| Data Subset | Duration in Seconds |
| --- | --- |
| data/manifest.train | 0.83s ~ 29.735s |
| data/manifest.dev | 1.065 ~ 35.155s |
| data/manifest.test-clean | 1.285s ~ 34.955s |
## Deepspeech2
| Model | Params | release | Config | Test set | Loss | WER |
| --- | --- | --- | --- | --- | --- | --- |
| DeepSpeech2 | 42.96M | 2.2.0 | conf/deepspeech2.yaml + spec_aug | test-clean | 14.49190807 | 0.067283 |

@ -41,7 +41,7 @@ model:
use_gru: False
share_rnn_weights: True
blank_id: 0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
training:
n_epoch: 50

@ -43,7 +43,7 @@ model:
fc_layers_size_list: 512, 256
use_gru: False
blank_id: 0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
training:
n_epoch: 50

@ -0,0 +1,36 @@
#!/bin/bash
if [ $# != 4 ];then
echo "usage: ${0} config_path ckpt_path_prefix model_type audio_file"
exit -1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
model_type=$3
audio_file=$4
# download language model
bash local/download_lm_en.sh
if [ $? -ne 0 ]; then
exit 1
fi
python3 -u ${BIN_DIR}/test_hub.py \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${ckpt_prefix}.rsl \
--checkpoint_path ${ckpt_prefix} \
--model_type ${model_type} \
--audio_file ${audio_file}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
exit 0

@ -13,6 +13,7 @@ avg_ckpt=avg_${avg_num}
ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}')
echo "checkpoint name ${ckpt}"
audio_file="data/tmp.flac"
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
bash ./local/data.sh || exit -1
@ -37,3 +38,8 @@ if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES= ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit ${model_type}
fi
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=3 ./local/test_hub.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${model_type} ${audio_file} || exit -1
fi

@ -77,7 +77,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -70,7 +70,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -73,7 +73,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -68,7 +68,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -0,0 +1,54 @@
#!/bin/bash
if [ $# != 3 ];then
echo "usage: ${0} config_path ckpt_path_prefix audio_file"
exit -1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
ckpt_prefix=$2
audio_file=$3
# bpemode (unigram or bpe)
nbpe=5000
bpemode=unigram
bpeprefix="data/bpe_${bpemode}_${nbpe}"
bpemodel=${bpeprefix}.model
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
chunk_mode=true
fi
# download language model
#bash local/download_lm_ch.sh
#if [ $? -ne 0 ]; then
# exit 1
#fi
for type in attention_rescoring; do
echo "decoding ${type}"
batch_size=1
output_dir=${ckpt_prefix}
mkdir -p ${output_dir}
python3 -u ${BIN_DIR}/test_hub.py \
--nproc ${ngpu} \
--config ${config_path} \
--result_file ${output_dir}/${type}.rsl \
--checkpoint_path ${ckpt_prefix} \
--opts decoding.decoding_method ${type} \
--opts decoding.batch_size ${batch_size} \
--audio_file ${audio_file}
#score_sclite.sh --bpe ${nbpe} --bpemodel ${bpemodel}.model --wer true ${expdir}/${decode_dir} ${dict}
if [ $? -ne 0 ]; then
echo "Failed in evaluation!"
exit 1
fi
done
exit 0

@ -15,6 +15,8 @@ avg_ckpt=avg_${avg_num}
ckpt=$(basename ${conf_path} | awk -F'.' '{print $1}')
echo "checkpoint name ${ckpt}"
audio_file="data/tmp.flac"
if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
# prepare data
bash ./local/data.sh || exit -1
@ -44,3 +46,8 @@ if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
# export ckpt avg_n
CUDA_VISIBLE_DEVICES= ./local/export.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} exp/${ckpt}/checkpoints/${avg_ckpt}.jit
fi
if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
# test a single .wav file
CUDA_VISIBLE_DEVICES=3 ./local/test_hub.sh ${conf_path} exp/${ckpt}/checkpoints/${avg_ckpt} ${audio_file} || exit -1
fi

@ -1,9 +1,14 @@
# LibriSpeech
## Transformer
| Model | Params | Config | Augmentation| Test Set | Decode Method | Loss | WER % |
| --- | --- | --- | --- | --- | --- | --- | --- |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention | 6.395054340362549 | 4.2 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_greedy_search | 6.395054340362549 | 5.0 |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | ctc_prefix_beam_search | 6.395054340362549 | |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | test-clean | attention_rescore | 6.395054340362549 | |
| Model | Params | Config | Augmentation| Loss |
| --- | --- | --- | --- |
| transformer | 32.52 M | conf/transformer.yaml | spec_aug | 6.3197922706604 |
| Test Set | Decode Method | #Snt | #Wrd | Corr | Sub | Del | Ins | Err | S.Err |
| --- | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| test-clean | attention | 2620 | 52576 | 96.4 | 2.5 | 1.1 | 0.4 | 4.0 | 34.7 |
| test-clean | ctc_greedy_search | 2620 | 52576 | 95.9 | 3.7 | 0.4 | 0.5 | 4.6 | 48.0 |
| test-clean | ctc_prefix_beamsearch | 2620 | 52576 | 95.9 | 3.7 | 0.4 | 0.5 | 4.6 | 47.6 |
| test-clean | attention_rescore | 2620 | 52576 | 96.8 | 2.9 | 0.3 | 0.4 | 3.7 | 38.0 |
| test-clean | join_ctc_w/o_lm | 2620 | 52576 | 97.2 | 2.6 | 0.3 | 0.4 | 3.2 | 34.9 |

@ -77,7 +77,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -70,7 +70,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -73,7 +73,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -0,0 +1,7 @@
batchsize: 0
beam-size: 60
ctc-weight: 0.0
lm-weight: 0.0
maxlenratio: 0.0
minlenratio: 0.0
penalty: 0.0

@ -0,0 +1,7 @@
batchsize: 0
beam-size: 60
ctc-weight: 0.4
lm-weight: 0.6
maxlenratio: 0.0
minlenratio: 0.0
penalty: 0.0

@ -0,0 +1,7 @@
batchsize: 0
beam-size: 60
ctc-weight: 0.4
lm-weight: 0.0
maxlenratio: 0.0
minlenratio: 0.0
penalty: 0.0

@ -0,0 +1,109 @@
#!/bin/bash
set -e
expdir=exp
datadir=data
nj=32
tag=
# decode config
decode_config=conf/decode/decode.yaml
# lm params
lang_model=rnnlm.model.best
lmexpdir=exp/train_rnnlm_pytorch_lm_transformer_cosine_batchsize32_lr1e-4_layer16_unigram5000_ngpu4/
lmtag='nolm'
recog_set="test-clean test-other dev-clean dev-other"
recog_set="test-clean"
# bpemode (unigram or bpe)
nbpe=5000
bpemode=unigram
bpeprefix="data/bpe_${bpemode}_${nbpe}"
bpemodel=${bpeprefix}.model
# bin params
config_path=conf/transformer.yaml
dict=data/bpe_unigram_5000_units.txt
ckpt_prefix=
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
if [ -z ${ckpt_prefix} ]; then
echo "usage: $0 --ckpt_prefix ckpt_prefix"
exit 1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
ckpt_dir=$(dirname `dirname ${ckpt_prefix}`)
echo "ckpt dir: ${ckpt_dir}"
ckpt_tag=$(basename ${ckpt_prefix})
echo "ckpt tag: ${ckpt_tag}"
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
chunk_mode=true
fi
echo "chunk mode: ${chunk_mode}"
echo "decode conf: ${decode_config}"
# download language model
#bash local/download_lm_en.sh
#if [ $? -ne 0 ]; then
# exit 1
#fi
pids=() # initialize pids
for dmethd in join_ctc; do
(
echo "${dmethd} decoding"
for rtask in ${recog_set}; do
(
echo "${rtask} dataset"
decode_dir=${ckpt_dir}/decode/decode_${rtask/-/_}_${dmethd}_$(basename ${config_path%.*})_${lmtag}_${ckpt_tag}_${tag}
feat_recog_dir=${datadir}
mkdir -p ${decode_dir}
mkdir -p ${feat_recog_dir}
# split data
split_json.sh manifest.${rtask} ${nj}
#### use CPU for decoding
ngpu=0
# set batchsize 0 to disable batch decoding
${decode_cmd} JOB=1:${nj} ${decode_dir}/log/decode.JOB.log \
python3 -u ${BIN_DIR}/recog.py \
--api v2 \
--config ${decode_config} \
--ngpu ${ngpu} \
--batchsize 0 \
--checkpoint_path ${ckpt_prefix} \
--dict-path ${dict} \
--recog-json ${feat_recog_dir}/split${nj}/JOB/manifest.${rtask} \
--result-label ${decode_dir}/data.JOB.json \
--model-conf ${config_path} \
--model ${ckpt_prefix}.pdparams
#--rnnlm ${lmexpdir}/${lang_model} \
score_sclite.sh --bpe ${nbpe} --bpemodel ${bpemodel} --wer false ${decode_dir} ${dict}
) &
pids+=($!) # store background pids
i=0; for pid in "${pids[@]}"; do wait ${pid} || ((++i)); done
[ ${i} -gt 0 ] && echo "$0: ${i} background jobs are failed." || true
done
)
done
echo "Finished"
exit 0

@ -6,7 +6,7 @@ expdir=exp
datadir=data
nj=32
lmtag=
lmtag='nolm'
recog_set="test-clean test-other dev-clean dev-other"
recog_set="test-clean"
@ -17,23 +17,31 @@ bpemode=unigram
bpeprefix="data/bpe_${bpemode}_${nbpe}"
bpemodel=${bpeprefix}.model
if [ $# != 3 ];then
echo "usage: ${0} config_path dict_path ckpt_path_prefix"
exit -1
config_path=conf/transformer.yaml
dict=data/bpe_unigram_5000_units.txt
ckpt_prefix=
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
if [ -z ${ckpt_prefix} ]; then
echo "usage: $0 --ckpt_prefix ckpt_prefix"
exit 1
fi
ngpu=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
echo "using $ngpu gpus..."
config_path=$1
dict=$2
ckpt_prefix=$3
ckpt_dir=$(dirname `dirname ${ckpt_prefix}`)
echo "ckpt dir: ${ckpt_dir}"
ckpt_tag=$(basename ${ckpt_prefix})
echo "ckpt tag: ${ckpt_tag}"
chunk_mode=false
if [[ ${config_path} =~ ^.*chunk_.*yaml$ ]];then
chunk_mode=true
fi
echo "chunk mode ${chunk_mode}"
echo "chunk mode: ${chunk_mode}"
# download language model
@ -46,13 +54,13 @@ pids=() # initialize pids
for dmethd in attention ctc_greedy_search ctc_prefix_beam_search attention_rescoring; do
(
echo "${dmethd} decoding"
echo "decode method: ${dmethd}"
for rtask in ${recog_set}; do
(
echo "${rtask} dataset"
decode_dir=decode_${rtask/-/_}_${dmethd}_$(basename ${config_path%.*})_${lmtag}
echo "dataset: ${rtask}"
decode_dir=${ckpt_dir}/decode/decode_${rtask/-/_}_${dmethd}_$(basename ${config_path%.*})_${lmtag}_${ckpt_tag}
feat_recog_dir=${datadir}
mkdir -p ${expdir}/${decode_dir}
mkdir -p ${decode_dir}
mkdir -p ${feat_recog_dir}
# split data
@ -63,7 +71,7 @@ for dmethd in attention ctc_greedy_search ctc_prefix_beam_search attention_resco
# set batchsize 0 to disable batch decoding
batch_size=1
${decode_cmd} JOB=1:${nj} ${expdir}/${decode_dir}/log/decode.JOB.log \
${decode_cmd} JOB=1:${nj} ${decode_dir}/log/decode.JOB.log \
python3 -u ${BIN_DIR}/test.py \
--model-name u2_kaldi \
--run-mode test \
@ -71,12 +79,12 @@ for dmethd in attention ctc_greedy_search ctc_prefix_beam_search attention_resco
--dict-path ${dict} \
--config ${config_path} \
--checkpoint_path ${ckpt_prefix} \
--result-file ${expdir}/${decode_dir}/data.JOB.json \
--result-file ${decode_dir}/data.JOB.json \
--opts decoding.decoding_method ${dmethd} \
--opts decoding.batch_size ${batch_size} \
--opts data.test_manifest ${feat_recog_dir}/split${nj}/JOB/manifest.${rtask}
score_sclite.sh --bpe ${nbpe} --bpemodel ${bpemodel} --wer false ${expdir}/${decode_dir} ${dict}
score_sclite.sh --bpe ${nbpe} --bpemodel ${bpemodel} --wer false ${decode_dir} ${dict}
) &
pids+=($!) # store background pids

@ -1,4 +1,5 @@
#!/bin/bash
set -e
. ./path.sh || exit 1;
@ -7,8 +8,9 @@ set -e
stage=0
stop_stage=100
conf_path=conf/transformer.yaml
dict_path=data/train_960_unigram5000_units.txt
dict_path=data/bpe_unigram_5000_units.txt
avg_num=10
source ${MAIN_ROOT}/utils/parse_options.sh || exit 1;
avg_ckpt=avg_${avg_num}

@ -188,6 +188,8 @@ transformer_tts_ljspeech_ckpt_0.4
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences_en.txt` using pretrained transformer_tts and waveflow models.
```bash
source path.sh
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e.py \

@ -202,6 +202,8 @@ fastspeech2_nosil_ljspeech_ckpt_0.5
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences_en.txt` using pretrained fastspeech2 and parallel wavegan models.
```bash
source path.sh
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/synthesize_e2e_en.py \

@ -1,3 +1,3 @@
# Punctation Restoration
Please using [PaddleSpeechTask](https://github.com/745165806/PaddleSpeechTask] to do this task.
Please using [PaddleSpeechTask](https://github.com/745165806/PaddleSpeechTask) to do this task.

@ -69,7 +69,7 @@ model:
asr_weight: 0.0
ctc_weight: 0.0
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -69,7 +69,7 @@ model:
asr_weight: 0.5
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -67,7 +67,7 @@ model:
model_conf:
ctc_weight: 0.5
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -42,7 +42,7 @@ model:
use_gru: False
share_rnn_weights: True
blank_id: 0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
training:
n_epoch: 10

@ -44,7 +44,7 @@ model:
fc_layers_size_list: 512, 256
use_gru: True
blank_id: 0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
training:
n_epoch: 10

@ -77,7 +77,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -70,7 +70,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -73,7 +73,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -67,7 +67,7 @@ model:
model_conf:
ctc_weight: 0.3
ctc_dropoutrate: 0.0
ctc_grad_norm_type: instance
ctc_grad_norm_type: null
lsm_weight: 0.1 # label smoothing option
length_normalized_loss: false

@ -212,6 +212,8 @@ fastspeech2_nosil_vctk_ckpt_0.5
```
You can use the following scripts to synthesize for `${BIN_DIR}/../sentences.txt` using pretrained fastspeech2 and parallel wavegan models.
```bash
source path.sh
FLAGS_allocator_strategy=naive_best_fit \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python3 ${BIN_DIR}/multi_spk_synthesize_e2e_en.py \

@ -1,3 +1,4 @@
ConfigArgParse
coverage
editdistance
g2p_en

@ -6,7 +6,7 @@ CC ?= gcc # used for sph2pipe
# CXX = clang++ # Uncomment these lines...
# CC = clang # ...to build with Clang.
$(WGET) ?= wget --no-check-certificate
WGET ?= wget --no-check-certificate
.PHONY: all clean
@ -85,7 +85,7 @@ sctk-$(SCTK_GITHASH).tar.gz:
if [ -d '$(DOWNLOAD_DIR)' ]; then \
cp -p '$(DOWNLOAD_DIR)/sctk-$(SCTK_GITHASH).tar.gz' .; \
else \
$($(WGET)) -nv -T 10 -t 3 -O sctk-$(SCTK_GITHASH).tar.gz \
$(WGET) -nv -T 10 -t 3 -O sctk-$(SCTK_GITHASH).tar.gz \
https://github.com/usnistgov/SCTK/archive/$(SCTK_GITHASH).tar.gz; \
fi

@ -25,8 +25,8 @@ def main(args):
paddle.set_device('cpu')
val_scores = []
beat_val_scores = []
selected_epochs = []
beat_val_scores = None
selected_epochs = None
jsons = glob.glob(f'{args.ckpt_dir}/[!train]*.json')
jsons = sorted(jsons, key=os.path.getmtime, reverse=True)
@ -80,9 +80,10 @@ def main(args):
data = json.dumps({
"mode": 'val_best' if args.val_best else 'latest',
"avg_ckpt": args.dst_model,
"ckpt": path_list,
"epoch": selected_epochs.tolist(),
"val_loss": beat_val_scores.tolist(),
"val_loss_mean": np.mean(beat_val_scores),
"ckpts": path_list,
"epochs": selected_epochs.tolist(),
"val_losses": beat_val_scores.tolist(),
})
f.write(data + "\n")

Loading…
Cancel
Save