|
|
|
@ -68,12 +68,13 @@ class VectorExecutor(BaseExecutor):
|
|
|
|
|
|
|
|
|
|
self.parser = argparse.ArgumentParser(
|
|
|
|
|
prog="paddlespeech.vector", add_help=True)
|
|
|
|
|
|
|
|
|
|
self.parser.add_argument(
|
|
|
|
|
"--model",
|
|
|
|
|
type=str,
|
|
|
|
|
default="ecapatdnn_voxceleb12",
|
|
|
|
|
choices=["ecapatdnn_voxceleb12"],
|
|
|
|
|
help="Choose model type of asr task.")
|
|
|
|
|
help="Choose model type of vector task.")
|
|
|
|
|
self.parser.add_argument(
|
|
|
|
|
"--task",
|
|
|
|
|
type=str,
|
|
|
|
@ -81,7 +82,7 @@ class VectorExecutor(BaseExecutor):
|
|
|
|
|
choices=["spk"],
|
|
|
|
|
help="task type in vector domain")
|
|
|
|
|
self.parser.add_argument(
|
|
|
|
|
"--input", type=str, default=None, help="Audio file to recognize.")
|
|
|
|
|
"--input", type=str, default=None, help="Audio file to extract embedding.")
|
|
|
|
|
self.parser.add_argument(
|
|
|
|
|
"--sample_rate",
|
|
|
|
|
type=int,
|
|
|
|
@ -186,7 +187,7 @@ class VectorExecutor(BaseExecutor):
|
|
|
|
|
sample_rate (int, optional): model sample rate. Defaults to 16000.
|
|
|
|
|
config (os.PathLike, optional): yaml config. Defaults to None.
|
|
|
|
|
ckpt_path (os.PathLike, optional): pretrained model path. Defaults to None.
|
|
|
|
|
device (_type_, optional): paddle running host device. Defaults to paddle.get_device().
|
|
|
|
|
device (optional): paddle running host device. Defaults to paddle.get_device().
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
dict: return the audio embedding and the embedding shape
|
|
|
|
@ -216,6 +217,7 @@ class VectorExecutor(BaseExecutor):
|
|
|
|
|
|
|
|
|
|
def _get_pretrained_path(self, tag: str) -> os.PathLike:
|
|
|
|
|
"""get the neural network path from the pretrained model list
|
|
|
|
|
we stored all the pretained mode in the variable `pretrained_models`
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
tag (str): model tag in the pretrained model list
|
|
|
|
@ -332,6 +334,7 @@ class VectorExecutor(BaseExecutor):
|
|
|
|
|
logger.info(f"embedding size: {embedding.shape}")
|
|
|
|
|
|
|
|
|
|
# stage 2: put the embedding and dim info to _outputs property
|
|
|
|
|
# the embedding type is numpy.array
|
|
|
|
|
self._outputs["embedding"] = embedding
|
|
|
|
|
|
|
|
|
|
def postprocess(self) -> Union[str, os.PathLike]:
|
|
|
|
@ -356,6 +359,7 @@ class VectorExecutor(BaseExecutor):
|
|
|
|
|
logger.info(f"Preprocess audio file: {audio_file}")
|
|
|
|
|
|
|
|
|
|
# stage 1: load the audio sample points
|
|
|
|
|
# Note: this process must match the training process
|
|
|
|
|
waveform, sr = load_audio(audio_file)
|
|
|
|
|
logger.info(f"load the audio sample points, shape is: {waveform.shape}")
|
|
|
|
|
|
|
|
|
|