Merge pull request #1450 from yt605155624/pwgan_tipc

[TIPC]add pwgan tipc
pull/1452/head
Hui Zhang 3 years ago committed by GitHub
commit 2bf3b3addf
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -0,0 +1,65 @@
#!/bin/bash
function func_parser_key(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[0]}
echo ${tmp}
}
function func_parser_value(){
strs=$1
IFS=":"
array=(${strs})
tmp=${array[1]}
echo ${tmp}
}
function func_set_params(){
key=$1
value=$2
if [ ${key}x = "null"x ];then
echo " "
elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
echo " "
else
echo "${key}=${value}"
fi
}
function func_parser_params(){
strs=$1
MODE=$2
IFS=":"
array=(${strs})
key=${array[0]}
tmp=${array[1]}
IFS="|"
res=""
for _params in ${tmp[*]}; do
IFS="="
array=(${_params})
mode=${array[0]}
value=${array[1]}
if [[ ${mode} = ${MODE} ]]; then
IFS="|"
#echo $(func_set_params "${mode}" "${value}")
echo $value
break
fi
IFS="|"
done
echo ${res}
}
function status_check(){
last_status=$1 # the exit code
run_command=$2
run_log=$3
if [ $last_status -eq 0 ]; then
echo -e "\033[33m Run successfully with command - ${run_command}! \033[0m" | tee -a ${run_log}
else
echo -e "\033[33m Run failed with command - ${run_command}! \033[0m" | tee -a ${run_log}
fi
}

@ -54,4 +54,4 @@ batch_size:16|30
fp_items:fp32 fp_items:fp32
iteration:50 iteration:50
--profiler-options:"batch_range=[10,35];state=GPU;tracer_option=Default;profile_path=model.profile" --profiler-options:"batch_range=[10,35];state=GPU;tracer_option=Default;profile_path=model.profile"
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096" flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096

@ -0,0 +1,57 @@
===========================train_params===========================
model_name:pwgan
python:python3.7
gpu_list:0|0,1
null:null
null:null
--max-iter:100
null:null
--batch-size:6
null:null
null:null
null:null
null:null
##
trainer:norm_train
norm_train: ../paddlespeech/t2s/exps/gan_vocoder/parallelwave_gan/train.py --ngpu=1 --train-metadata=dump/train/norm/metadata.jsonl --dev-metadata=dump/dev/norm/metadata.jsonl --config=../examples/csmsc/voc1/conf/default.yaml --output-dir=exp/default --run-benchmark=true --max-iter 10
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
null:null
null:null
norm_export: null
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
null:null
infer_model:null
infer_export:null
infer_quant:null
inference:null
null:null
null:null
null:null
null:null
null:null
null:null
null:null
null:null
null:null
null:null
null:null
===========================train_benchmark_params==========================
batch_size:6|16
fp_items:fp32
iteration:50
--profiler_options:"batch_range=[10,35];state=GPU;tracer_option=Default;profile_path=model.profile"
flags:FLAGS_eager_delete_tensor_gb=0.0;FLAGS_fraction_of_gpu_memory_to_use=0.98;FLAGS_conv_workspace_size_limit=4096

@ -58,4 +58,19 @@ if [ ${MODE} = "benchmark_train" ];then
sed -i "s#data/#test_tipc/conformer/benchmark_train/data/#g" ${curPath}/conformer/benchmark_train/conf/preprocess.yaml sed -i "s#data/#test_tipc/conformer/benchmark_train/data/#g" ${curPath}/conformer/benchmark_train/conf/preprocess.yaml
fi fi
if [ ${model_name} == "pwgan" ]; then
# 下载 csmsc 数据集并解压缩
wget -nc https://weixinxcxdb.oss-cn-beijing.aliyuncs.com/gwYinPinKu/BZNSYP.rar
mkdir -p BZNSYP
unrar x BZNSYP.rar BZNSYP
wget -nc https://paddlespeech.bj.bcebos.com/Parakeet/benchmark/durations.txt
# 数据预处理
python ../paddlespeech/t2s/exps/gan_vocoder/preprocess.py --rootdir=BZNSYP/ --dumpdir=dump --num-cpu=20 --cut-sil=True --dur-file=durations.txt --config=../examples/csmsc/voc1/conf/default.yaml
python ../utils/compute_statistics.py --metadata=dump/train/raw/metadata.jsonl --field-name="feats"
python ../paddlespeech/t2s/exps/gan_vocoder/normalize.py --metadata=dump/train/raw/metadata.jsonl --dumpdir=dump/train/norm --stats=dump/train/feats_stats.npy
python ../paddlespeech/t2s/exps/gan_vocoder/normalize.py --metadata=dump/dev/raw/metadata.jsonl --dumpdir=dump/dev/norm --stats=dump/train/feats_stats.npy
python ../paddlespeech/t2s/exps/gan_vocoder/normalize.py --metadata=dump/test/raw/metadata.jsonl --dumpdir=dump/test/norm --stats=dump/train/feats_stats.npy
fi
fi fi

@ -20,10 +20,10 @@ train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}") autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}") autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}") epoch_key=$(func_parser_key "${lines[6]}")
epoch_num=$(func_parser_params "${lines[6]}") epoch_num=$(func_parser_params "${lines[6]}" "${MODE}")
save_model_key=$(func_parser_key "${lines[7]}") save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}") train_batch_key=$(func_parser_key "${lines[8]}")
train_batch_value=$(func_parser_params "${lines[8]}") train_batch_value=$(func_parser_params "${lines[8]}" "${MODE}")
pretrain_model_key=$(func_parser_key "${lines[9]}") pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}") pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}") train_model_name=$(func_parser_value "${lines[10]}")
@ -50,7 +50,6 @@ eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}") eval_value1=$(func_parser_value "${lines[24]}")
save_infer_key=$(func_parser_key "${lines[27]}") save_infer_key=$(func_parser_key "${lines[27]}")
save_infer_value=$(func_parser_value "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}") export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}") norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}") pact_export=$(func_parser_value "${lines[30]}")
@ -91,44 +90,42 @@ infer_value1=$(func_parser_value "${lines[50]}")
# parser klquant_infer # parser klquant_infer
if [ ${MODE} = "klquant_whole_infer" ]; then if [ ${MODE} = "klquant_whole_infer" ]; then
dataline=$(awk 'NR==1 NR==17{print}' $FILENAME) dataline=$(awk 'NR==1, NR==17{print}' $FILENAME)
lines=(${dataline}) lines=(${dataline})
model_name=$(func_parser_value "${lines[1]}") model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}") python=$(func_parser_value "${lines[2]}")
export_weight=$(func_parser_key "${lines[3]}")
save_infer_key=$(func_parser_key "${lines[4]}")
# parser inference model # parser inference model
infer_model_dir_list=$(func_parser_value "${lines[3]}") infer_model_dir_list=$(func_parser_value "${lines[5]}")
infer_export_list=$(func_parser_value "${lines[4]}") infer_export_list=$(func_parser_value "${lines[6]}")
infer_is_quant=$(func_parser_value "${lines[5]}") infer_is_quant=$(func_parser_value "${lines[7]}")
# parser inference # parser inference
inference_py=$(func_parser_value "${lines[6]}") inference_py=$(func_parser_value "${lines[8]}")
use_gpu_key=$(func_parser_key "${lines[7]}") use_gpu_key=$(func_parser_key "${lines[9]}")
use_gpu_list=$(func_parser_value "${lines[7]}") use_gpu_list=$(func_parser_value "${lines[9]}")
use_mkldnn_key=$(func_parser_key "${lines[8]}") use_mkldnn_key=$(func_parser_key "${lines[10]}")
use_mkldnn_list=$(func_parser_value "${lines[8]}") use_mkldnn_list=$(func_parser_value "${lines[10]}")
cpu_threads_key=$(func_parser_key "${lines[9]}") cpu_threads_key=$(func_parser_key "${lines[11]}")
cpu_threads_list=$(func_parser_value "${lines[9]}") cpu_threads_list=$(func_parser_value "${lines[11]}")
batch_size_key=$(func_parser_key "${lines[10]}") batch_size_key=$(func_parser_key "${lines[12]}")
batch_size_list=$(func_parser_value "${lines[10]}") batch_size_list=$(func_parser_value "${lines[12]}")
use_trt_key=$(func_parser_key "${lines[11]}") use_trt_key=$(func_parser_key "${lines[13]}")
use_trt_list=$(func_parser_value "${lines[11]}") use_trt_list=$(func_parser_value "${lines[13]}")
precision_key=$(func_parser_key "${lines[12]}") precision_key=$(func_parser_key "${lines[14]}")
precision_list=$(func_parser_value "${lines[12]}") precision_list=$(func_parser_value "${lines[14]}")
infer_model_key=$(func_parser_key "${lines[13]}") infer_model_key=$(func_parser_key "${lines[15]}")
image_dir_key=$(func_parser_key "${lines[14]}") image_dir_key=$(func_parser_key "${lines[16]}")
infer_img_dir=$(func_parser_value "${lines[14]}") infer_img_dir=$(func_parser_value "${lines[16]}")
save_log_key=$(func_parser_key "${lines[15]}") save_log_key=$(func_parser_key "${lines[17]}")
benchmark_key=$(func_parser_key "${lines[16]}") save_log_value=$(func_parser_value "${lines[17]}")
benchmark_value=$(func_parser_value "${lines[16]}") benchmark_key=$(func_parser_key "${lines[18]}")
infer_key1=$(func_parser_key "${lines[17]}") benchmark_value=$(func_parser_value "${lines[18]}")
infer_value1=$(func_parser_value "${lines[17]}") infer_key1=$(func_parser_key "${lines[19]}")
infer_value1=$(func_parser_value "${lines[19]}")
fi fi
save_model_value=$(func_parser_value "${lines[7]}")
if [[ ${save_model_value} = " " ]] || [[ ${save_model_value} = "null" ]] || [[ ${save_model_value} = "" ]];then
LOG_PATH="./test_tipc/output" LOG_PATH="./test_tipc/output"
else
LOG_PATH=${save_model_value}
fi
mkdir -p ${LOG_PATH} mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results_python.log" status_log="${LOG_PATH}/results_python.log"
@ -163,10 +160,12 @@ function func_inference(){
set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}") set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}") set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}") set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
set_mkldnn=$(func_set_params "${use_mkldnn_key}" "${use_mkldnn}")
set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}") set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 " command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_params0} ${set_infer_data} ${set_benchmark} ${set_precision} ${set_infer_params1} > ${_save_log_path} 2>&1 "
eval $command eval $command
last_status=${PIPESTATUS[0]} last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}" eval "cat ${_save_log_path}"
@ -184,7 +183,7 @@ function func_inference(){
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue continue
fi fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then if [[ ${use_trt} = "False" && ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
continue continue
fi fi
for batch_size in ${batch_size_list[*]}; do for batch_size in ${batch_size_list[*]}; do
@ -195,8 +194,9 @@ function func_inference(){
set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}") set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${precision_key}" "${precision}") set_precision=$(func_set_params "${precision_key}" "${precision}")
set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}") set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
set_infer_params0=$(func_set_params "${save_log_key}" "${save_log_value}")
set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}") set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 " command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} ${set_infer_params0} > ${_save_log_path} 2>&1 "
eval $command eval $command
last_status=${PIPESTATUS[0]} last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}" eval "cat ${_save_log_path}"
@ -227,12 +227,15 @@ if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
for infer_model in ${infer_model_dir_list[*]}; do for infer_model in ${infer_model_dir_list[*]}; do
# run export # run export
if [ ${infer_run_exports[Count]} != "null" ];then if [ ${infer_run_exports[Count]} != "null" ];then
save_infer_dir=$(dirname $infer_model) if [ ${MODE} = "klquant_whole_infer" ]; then
save_infer_dir="${infer_model}_klquant"
fi
if [ ${MODE} = "whole_infer" ]; then
save_infer_dir="${infer_model}"
fi
set_export_weight=$(func_set_params "${export_weight}" "${infer_model}") set_export_weight=$(func_set_params "${export_weight}" "${infer_model}")
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}") set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_dir}")
# For lac which needs the `data_dir` args export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key}"
set_export1_key=$(func_set_params "${export_key1}" "${export_value1}")
export_cmd="${python} ${infer_run_exports[Count]} ${set_export_weight} ${set_save_infer_key} ${set_export1_key}"
echo ${infer_run_exports[Count]} echo ${infer_run_exports[Count]}
echo $export_cmd echo $export_cmd
eval $export_cmd eval $export_cmd
@ -243,7 +246,7 @@ if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
fi fi
#run inference #run inference
is_quant=${infer_quant_flag[Count]} is_quant=${infer_quant_flag[Count]}
if [ ${MODE} = "klquant_infer" ]; then if [ ${MODE} = "klquant_whole_infer" ]; then
is_quant="True" is_quant="True"
fi fi
func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} func_inference "${python}" "${inference_py}" "${save_infer_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
@ -261,7 +264,6 @@ else
env="" env=""
elif [ ${#gpu} -le 1 ];then elif [ ${#gpu} -le 1 ];then
env="export CUDA_VISIBLE_DEVICES=${gpu}" env="export CUDA_VISIBLE_DEVICES=${gpu}"
eval ${env}
elif [ ${#gpu} -le 15 ];then elif [ ${#gpu} -le 15 ];then
IFS="," IFS=","
array=(${gpu}) array=(${gpu})
@ -324,10 +326,6 @@ else
save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}" save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
fi fi
# load pretrain from norm training if current trainer is pact or fpgm trainer
if ([ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]) && [ ${nodes} -le 1 ]; then
set_pretrain="${load_norm_train_model}"
fi
set_save_model=$(func_set_params "${save_model_key}" "${save_log}") set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
if [ ${#gpu} -le 2 ];then # train with cpu or single gpu if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
@ -338,17 +336,14 @@ else
cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}" cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_use_gpu} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_autocast} ${set_batchsize} ${set_train_params1} ${set_amp_config}"
fi fi
# run train # run train
eval "unset CUDA_VISIBLE_DEVICES"
eval $cmd eval $cmd
status_check $? "${cmd}" "${status_log}" status_check $? "${cmd}" "${status_log}"
set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}") set_eval_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
# save norm trained models to set pretrain for pact training and fpgm training
if [ ${trainer} = ${trainer_norm} ] && [ ${nodes} -le 1 ]; then
load_norm_train_model=${set_eval_pretrain}
fi
# run eval # run eval
if [ ${eval_py} != "null" ]; then if [ ${eval_py} != "null" ]; then
eval ${env}
set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}") set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}" eval_cmd="${python} ${eval_py} ${set_eval_pretrain} ${set_use_gpu} ${set_eval_params1}"
eval $eval_cmd eval $eval_cmd
@ -357,20 +352,17 @@ else
# run export model # run export model
if [ ${run_export} != "null" ]; then if [ ${run_export} != "null" ]; then
# run export model # run export model
save_infer_path="${save_infer_value}" save_infer_path="${save_log}"
set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}") set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}") set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
# For lac which needs the `data_dir` args export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key}"
set_export1_key=$(func_set_params "${export_key1}" "${export_value1}")
export_cmd="${python} ${run_export} ${set_export_weight} ${set_save_infer_key} ${set_export1_key}"
eval $export_cmd eval $export_cmd
status_check $? "${export_cmd}" "${status_log}" status_check $? "${export_cmd}" "${status_log}"
#run inference #run inference
eval $env eval $env
save_infer_path="${save_infer_value}" save_infer_path="${save_log}"
if [[ ${inference_dir} != "null" ]] && [[ ${inference_dir} != '##' ]]; then
if [ ${inference_dir} != "null" ] && [ ${inference_dir} != '##' ]; then
infer_model_dir="${save_infer_path}/${inference_dir}" infer_model_dir="${save_infer_path}/${inference_dir}"
else else
infer_model_dir=${save_infer_path} infer_model_dir=${save_infer_path}

Loading…
Cancel
Save