Merge pull request #1015 from yt605155624/fs2_conformer

[TTS]fastspeech2 conformer
pull/1041/head
Hui Zhang 3 years ago committed by GitHub
commit 2bbfdbae91
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -5,20 +5,6 @@ Parakeet aims to provide a flexible, efficient and state-of-the-art text-to-spee
<img src="../../images/logo.png" width=300 /> <br> <img src="../../images/logo.png" width=300 /> <br>
</div> </div>
## News <img src="../../images/news_icon.png" width="40"/>
- Oct-12-2021, Refector examples code.
- Oct-12-2021, Parallel WaveGAN with LJSpeech. Check [examples/GANVocoder/parallelwave_gan/ljspeech](./examples/GANVocoder/parallelwave_gan/ljspeech).
- Oct-12-2021, FastSpeech2/FastPitch with LJSpeech. Check [examples/fastspeech2/ljspeech](./examples/fastspeech2/ljspeech).
- Sep-14-2021, Reconstruction of TransformerTTS. Check [examples/transformer_tts/ljspeech](./examples/transformer_tts/ljspeech).
- Aug-31-2021, Chinese Text Frontend. Check [examples/text_frontend](./examples/text_frontend).
- Aug-23-2021, FastSpeech2/FastPitch with AISHELL-3. Check [examples/fastspeech2/aishell3](./examples/fastspeech2/aishell3).
- Aug-03-2021, FastSpeech2/FastPitch with CSMSC. Check [examples/fastspeech2/baker](./examples/fastspeech2/baker).
- Jul-19-2021, SpeedySpeech with CSMSC. Check [examples/speedyspeech/baker](./examples/speedyspeech/baker).
- Jul-01-2021, Parallel WaveGAN with CSMSC. Check [examples/GANVocoder/parallelwave_gan/baker](./examples/GANVocoder/parallelwave_gan/baker).
- Jul-01-2021, Montreal-Forced-Aligner. Check [examples/use_mfa](./examples/use_mfa).
- May-07-2021, Voice Cloning in Chinese. Check [examples/tacotron2_aishell3](./examples/tacotron2_aishell3).
## Overview ## Overview
In order to facilitate exploiting the existing TTS models directly and developing the new ones, Parakeet selects typical models and provides their reference implementations in PaddlePaddle. Further more, Parakeet abstracts the TTS pipeline and standardizes the procedure of data preprocessing, common modules sharing, model configuration, and the process of training and synthesis. The models supported here include Text FrontEnd, end-to-end Acoustic models and Vocoders: In order to facilitate exploiting the existing TTS models directly and developing the new ones, Parakeet selects typical models and provides their reference implementations in PaddlePaddle. Further more, Parakeet abstracts the TTS pipeline and standardizes the procedure of data preprocessing, common modules sharing, model configuration, and the process of training and synthesis. The models supported here include Text FrontEnd, end-to-end Acoustic models and Vocoders:
@ -38,50 +24,11 @@ In order to facilitate exploiting the existing TTS models directly and developin
- [Transfer Learning from Speaker Verification to Multispeaker Text-to-Speech Synthesis](https://arxiv.org/pdf/1806.04558v4.pdf) - [Transfer Learning from Speaker Verification to Multispeaker Text-to-Speech Synthesis](https://arxiv.org/pdf/1806.04558v4.pdf)
- [【GE2E】Generalized End-to-End Loss for Speaker Verification](https://arxiv.org/abs/1710.10467) - [【GE2E】Generalized End-to-End Loss for Speaker Verification](https://arxiv.org/abs/1710.10467)
## Setup
It's difficult to install some dependent libraries for this repo in Windows system, we recommend that you **DO NOT** use Windows system, please use `Linux`.
Make sure the library `libsndfile1` is installed, e.g., on Ubuntu.
```bash
sudo apt-get install libsndfile1
```
### Install PaddlePaddle
See [install](https://www.paddlepaddle.org.cn/install/quick) for more details. This repo requires PaddlePaddle **2.1.2** or above.
### Install Parakeet
```bash
git clone https://github.com/PaddlePaddle/Parakeet
cd Parakeet
pip install -e .
```
If some python dependent packages cannot be installed successfully, you can run the following script first.
(replace `python3.6` with your own python version)
```bash
sudo apt install -y python3.6-dev
```
See [install](https://paddle-parakeet.readthedocs.io/en/latest/install.html) for more details.
## Examples
Entries to the introduction, and the launch of training and synthsis for different example models:
- [>>> Chinese Text Frontend](./examples/text_frontend)
- [>>> FastSpeech2/FastPitch](./examples/fastspeech2)
- [>>> Montreal-Forced-Aligner](./examples/use_mfa)
- [>>> Parallel WaveGAN](./examples/GANVocoder/parallelwave_gan)
- [>>> SpeedySpeech](./examples/speedyspeech)
- [>>> Tacotron2_AISHELL3](./examples/tacotron2_aishell3)
- [>>> GE2E](./examples/ge2e)
- [>>> WaveFlow](./examples/waveflow)
- [>>> TransformerTTS](./examples/transformer_tts)
- [>>> Tacotron2](./examples/tacotron2)
## Audio samples ## Audio samples
### TTS models (Acoustic Model + Neural Vocoder)
Check our [website](https://paddleparakeet.readthedocs.io/en/latest/demo.html) for audio sampels. Check our [website](https://paddlespeech.readthedocs.io/en/latest/tts/demo.html) for audio sampels.
## Released Model ## Released Model

@ -17,7 +17,7 @@ tar zxvf data_aishell3.tgz -C data_aishell3
``` ```
### Get MFA Result and Extract ### Get MFA Result and Extract
We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for aishell3_fastspeech2. We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for aishell3_fastspeech2.
You can download from here [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz), or train your own MFA model reference to [use_mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/use_mfa) (use MFA1.x now) of our repo. You can download from here [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz), or train your own MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo.
## Get Started ## Get Started
Assume the path to the dataset is `~/datasets/data_aishell3`. Assume the path to the dataset is `~/datasets/data_aishell3`.

@ -45,7 +45,6 @@ model:
postnet_layers: 5 # number of layers of postnset postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet postnet_chans: 256 # number of channels of conv layers in postnet
use_masking: True # whether to apply masking for padded part in loss calculation
use_scaled_pos_enc: True # whether to use scaled positional encoding use_scaled_pos_enc: True # whether to use scaled positional encoding
encoder_normalize_before: True # whether to perform layer normalization before the input encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input decoder_normalize_before: True # whether to perform layer normalization before the input

@ -45,7 +45,6 @@ model:
postnet_layers: 5 # number of layers of postnset postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet postnet_chans: 256 # number of channels of conv layers in postnet
use_masking: True # whether to apply masking for padded part in loss calculation
use_scaled_pos_enc: True # whether to use scaled positional encoding use_scaled_pos_enc: True # whether to use scaled positional encoding
encoder_normalize_before: True # whether to perform layer normalization before the input encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input decoder_normalize_before: True # whether to perform layer normalization before the input

@ -15,7 +15,7 @@ tar zxvf data_aishell3.tgz -C data_aishell3
``` ```
### Get MFA Result and Extract ### Get MFA Result and Extract
We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for aishell3_fastspeech2. We use [MFA2.x](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for aishell3_fastspeech2.
You can download from here [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz), or train your own MFA model reference to [use_mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/use_mfa) (use MFA1.x now) of our repo. You can download from here [aishell3_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/AISHELL-3/with_tone/aishell3_alignment_tone.tar.gz), or train your own MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) (use MFA1.x now) of our repo.
## Get Started ## Get Started
Assume the path to the dataset is `~/datasets/data_aishell3`. Assume the path to the dataset is `~/datasets/data_aishell3`.

@ -7,7 +7,7 @@ Download CSMSC from it's [Official Website](https://test.data-baker.com/data/ind
### Get MFA Result and Extract ### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for SPEEDYSPEECH. We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for SPEEDYSPEECH.
You can download from here [baker_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/BZNSYP/with_tone/baker_alignment_tone.tar.gz), or train your own MFA model reference to [use_mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/use_mfa) of our repo. You can download from here [baker_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/BZNSYP/with_tone/baker_alignment_tone.tar.gz), or train your own MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
## Get Started ## Get Started
Assume the path to the dataset is `~/datasets/BZNSYP`. Assume the path to the dataset is `~/datasets/BZNSYP`.

@ -7,7 +7,7 @@ Download CSMSC from it's [Official Website](https://test.data-baker.com/data/ind
### Get MFA Result and Extract ### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for fastspeech2. We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for fastspeech2.
You can download from here [baker_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/BZNSYP/with_tone/baker_alignment_tone.tar.gz), or train your own MFA model reference to [use_mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/use_mfa) of our repo. You can download from here [baker_alignment_tone.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/BZNSYP/with_tone/baker_alignment_tone.tar.gz), or train your own MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
## Get Started ## Get Started
Assume the path to the dataset is `~/datasets/BZNSYP`. Assume the path to the dataset is `~/datasets/BZNSYP`.

@ -0,0 +1,109 @@
###########################################################
# FEATURE EXTRACTION SETTING #
###########################################################
fs: 24000 # sr
n_fft: 2048 # FFT size.
n_shift: 300 # Hop size.
win_length: 1200 # Window length.
# If set to null, it will be the same as fft_size.
window: "hann" # Window function.
# Only used for feats_type != raw
fmin: 80 # Minimum frequency of Mel basis.
fmax: 7600 # Maximum frequency of Mel basis.
n_mels: 80 # The number of mel basis.
# Only used for the model using pitch features (e.g. FastSpeech2)
f0min: 80 # Maximum f0 for pitch extraction.
f0max: 400 # Minimum f0 for pitch extraction.
###########################################################
# DATA SETTING #
###########################################################
batch_size: 64
num_workers: 4
###########################################################
# MODEL SETTING #
###########################################################
model:
adim: 384 # attention dimension
aheads: 2 # number of attention heads
elayers: 4 # number of encoder layers
eunits: 1536 # number of encoder ff units
dlayers: 4 # number of decoder layers
dunits: 1536 # number of decoder ff units
positionwise_layer_type: conv1d # type of position-wise layer
positionwise_conv_kernel_size: 3 # kernel size of position wise conv layer
duration_predictor_layers: 2 # number of layers of duration predictor
duration_predictor_chans: 256 # number of channels of duration predictor
duration_predictor_kernel_size: 3 # filter size of duration predictor
postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet
encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input
reduction_factor: 1 # reduction factor
encoder_type: conformer # encoder type
decoder_type: conformer # decoder type
conformer_pos_enc_layer_type: rel_pos # conformer positional encoding type
conformer_self_attn_layer_type: rel_selfattn # conformer self-attention type
conformer_activation_type: swish # conformer activation type
use_macaron_style_in_conformer: true # whether to use macaron style in conformer
use_cnn_in_conformer: true # whether to use CNN in conformer
conformer_enc_kernel_size: 7 # kernel size in CNN module of conformer-based encoder
conformer_dec_kernel_size: 31 # kernel size in CNN module of conformer-based decoder
init_type: xavier_uniform # initialization type
transformer_enc_dropout_rate: 0.2 # dropout rate for transformer encoder layer
transformer_enc_positional_dropout_rate: 0.2 # dropout rate for transformer encoder positional encoding
transformer_enc_attn_dropout_rate: 0.2 # dropout rate for transformer encoder attention layer
transformer_dec_dropout_rate: 0.2 # dropout rate for transformer decoder layer
transformer_dec_positional_dropout_rate: 0.2 # dropout rate for transformer decoder positional encoding
transformer_dec_attn_dropout_rate: 0.2 # dropout rate for transformer decoder attention layer
pitch_predictor_layers: 5 # number of conv layers in pitch predictor
pitch_predictor_chans: 256 # number of channels of conv layers in pitch predictor
pitch_predictor_kernel_size: 5 # kernel size of conv leyers in pitch predictor
pitch_predictor_dropout: 0.5 # dropout rate in pitch predictor
pitch_embed_kernel_size: 1 # kernel size of conv embedding layer for pitch
pitch_embed_dropout: 0.0 # dropout rate after conv embedding layer for pitch
stop_gradient_from_pitch_predictor: true # whether to stop the gradient from pitch predictor to encoder
energy_predictor_layers: 2 # number of conv layers in energy predictor
energy_predictor_chans: 256 # number of channels of conv layers in energy predictor
energy_predictor_kernel_size: 3 # kernel size of conv leyers in energy predictor
energy_predictor_dropout: 0.5 # dropout rate in energy predictor
energy_embed_kernel_size: 1 # kernel size of conv embedding layer for energy
energy_embed_dropout: 0.0 # dropout rate after conv embedding layer for energy
stop_gradient_from_energy_predictor: false # whether to stop the gradient from energy predictor to encoder
###########################################################
# UPDATER SETTING #
###########################################################
updater:
use_masking: True # whether to apply masking for padded part in loss calculation
###########################################################
# OPTIMIZER SETTING #
###########################################################
optimizer:
optim: adam # optimizer type
learning_rate: 0.001 # learning rate
###########################################################
# TRAINING SETTING #
###########################################################
max_epoch: 1000
num_snapshots: 5
###########################################################
# OTHER SETTING #
###########################################################
seed: 10086

@ -45,7 +45,6 @@ model:
postnet_layers: 5 # number of layers of postnset postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet postnet_chans: 256 # number of channels of conv layers in postnet
use_masking: True # whether to apply masking for padded part in loss calculation
use_scaled_pos_enc: True # whether to use scaled positional encoding use_scaled_pos_enc: True # whether to use scaled positional encoding
encoder_normalize_before: True # whether to perform layer normalization before the input encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input decoder_normalize_before: True # whether to perform layer normalization before the input

@ -7,7 +7,7 @@ Download LJSpeech-1.1 from the [official website](https://keithito.com/LJ-Speech
### Get MFA Result and Extract ### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for fastspeech2. We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for fastspeech2.
You can download from here [ljspeech_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/ljspeech_alignment.tar.gz), or train your own MFA model reference to [use_mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/use_mfa) of our repo. You can download from here [ljspeech_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/LJSpeech-1.1/ljspeech_alignment.tar.gz), or train your own MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
## Get Started ## Get Started
Assume the path to the dataset is `~/datasets/LJSpeech-1.1`. Assume the path to the dataset is `~/datasets/LJSpeech-1.1`.

@ -45,7 +45,6 @@ model:
postnet_layers: 5 # number of layers of postnset postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet postnet_chans: 256 # number of channels of conv layers in postnet
use_masking: True # whether to apply masking for padded part in loss calculation
use_scaled_pos_enc: True # whether to use scaled positional encoding use_scaled_pos_enc: True # whether to use scaled positional encoding
encoder_normalize_before: True # whether to perform layer normalization before the input encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input decoder_normalize_before: True # whether to perform layer normalization before the input

@ -7,8 +7,8 @@ Download VCTK-0.92 from the [official website](https://datashare.ed.ac.uk/handle
### Get MFA Result and Extract ### Get MFA Result and Extract
We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for fastspeech2. We use [MFA](https://github.com/MontrealCorpusTools/Montreal-Forced-Aligner) to get durations for fastspeech2.
You can download from here [vctk_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/VCTK-Corpus-0.92/vctk_alignment.tar.gz), or train your own MFA model reference to [use_mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/use_mfa) of our repo. You can download from here [vctk_alignment.tar.gz](https://paddlespeech.bj.bcebos.com/MFA/VCTK-Corpus-0.92/vctk_alignment.tar.gz), or train your own MFA model reference to [mfa example](https://github.com/PaddlePaddle/PaddleSpeech/tree/develop/examples/other/mfa) of our repo.
ps: we remove three speakers in VCTK-0.92 (see [reorganize_vctk.py](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/examples/other/use_mfa/local/reorganize_vctk.py)): ps: we remove three speakers in VCTK-0.92 (see [reorganize_vctk.py](https://github.com/PaddlePaddle/PaddleSpeech/blob/develop/examples/other/mfa/local/reorganize_vctk.py)):
1. `p315`, because no txt for it. 1. `p315`, because no txt for it.
2. `p280` and `p362`, because no *_mic2.flac (which is better than *_mic1.flac) for them. 2. `p280` and `p362`, because no *_mic2.flac (which is better than *_mic1.flac) for them.

@ -45,7 +45,6 @@ model:
postnet_layers: 5 # number of layers of postnset postnet_layers: 5 # number of layers of postnset
postnet_filts: 5 # filter size of conv layers in postnet postnet_filts: 5 # filter size of conv layers in postnet
postnet_chans: 256 # number of channels of conv layers in postnet postnet_chans: 256 # number of channels of conv layers in postnet
use_masking: True # whether to apply masking for padded part in loss calculation
use_scaled_pos_enc: True # whether to use scaled positional encoding use_scaled_pos_enc: True # whether to use scaled positional encoding
encoder_normalize_before: True # whether to perform layer normalization before the input encoder_normalize_before: True # whether to perform layer normalization before the input
decoder_normalize_before: True # whether to perform layer normalization before the input decoder_normalize_before: True # whether to perform layer normalization before the input

@ -36,10 +36,10 @@ from paddlespeech.t2s.models.melgan import MBMelGANEvaluator
from paddlespeech.t2s.models.melgan import MBMelGANUpdater from paddlespeech.t2s.models.melgan import MBMelGANUpdater
from paddlespeech.t2s.models.melgan import MelGANGenerator from paddlespeech.t2s.models.melgan import MelGANGenerator
from paddlespeech.t2s.models.melgan import MelGANMultiScaleDiscriminator from paddlespeech.t2s.models.melgan import MelGANMultiScaleDiscriminator
from paddlespeech.t2s.modules.adversarial_loss import DiscriminatorAdversarialLoss from paddlespeech.t2s.modules.losses import DiscriminatorAdversarialLoss
from paddlespeech.t2s.modules.adversarial_loss import GeneratorAdversarialLoss from paddlespeech.t2s.modules.losses import GeneratorAdversarialLoss
from paddlespeech.t2s.modules.losses import MultiResolutionSTFTLoss
from paddlespeech.t2s.modules.pqmf import PQMF from paddlespeech.t2s.modules.pqmf import PQMF
from paddlespeech.t2s.modules.stft_loss import MultiResolutionSTFTLoss
from paddlespeech.t2s.training.extensions.snapshot import Snapshot from paddlespeech.t2s.training.extensions.snapshot import Snapshot
from paddlespeech.t2s.training.extensions.visualizer import VisualDL from paddlespeech.t2s.training.extensions.visualizer import VisualDL
from paddlespeech.t2s.training.seeding import seed_everything from paddlespeech.t2s.training.seeding import seed_everything

@ -36,7 +36,7 @@ from paddlespeech.t2s.models.parallel_wavegan import PWGDiscriminator
from paddlespeech.t2s.models.parallel_wavegan import PWGEvaluator from paddlespeech.t2s.models.parallel_wavegan import PWGEvaluator
from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator from paddlespeech.t2s.models.parallel_wavegan import PWGGenerator
from paddlespeech.t2s.models.parallel_wavegan import PWGUpdater from paddlespeech.t2s.models.parallel_wavegan import PWGUpdater
from paddlespeech.t2s.modules.stft_loss import MultiResolutionSTFTLoss from paddlespeech.t2s.modules.losses import MultiResolutionSTFTLoss
from paddlespeech.t2s.training.extensions.snapshot import Snapshot from paddlespeech.t2s.training.extensions.snapshot import Snapshot
from paddlespeech.t2s.training.extensions.visualizer import VisualDL from paddlespeech.t2s.training.extensions.visualizer import VisualDL
from paddlespeech.t2s.training.seeding import seed_everything from paddlespeech.t2s.training.seeding import seed_everything

@ -12,6 +12,8 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .fastspeech2 import * from .fastspeech2 import *
from .melgan import *
from .parallel_wavegan import *
from .tacotron2 import * from .tacotron2 import *
from .transformer_tts import * from .transformer_tts import *
from .waveflow import * from .waveflow import *

@ -24,17 +24,16 @@ import paddle.nn.functional as F
from paddle import nn from paddle import nn
from typeguard import check_argument_types from typeguard import check_argument_types
from paddlespeech.t2s.modules.fastspeech2_predictor.duration_predictor import DurationPredictor
from paddlespeech.t2s.modules.fastspeech2_predictor.duration_predictor import DurationPredictorLoss
from paddlespeech.t2s.modules.fastspeech2_predictor.length_regulator import LengthRegulator
from paddlespeech.t2s.modules.fastspeech2_predictor.variance_predictor import VariancePredictor
from paddlespeech.t2s.modules.fastspeech2_transformer.embedding import PositionalEncoding
from paddlespeech.t2s.modules.fastspeech2_transformer.embedding import ScaledPositionalEncoding
from paddlespeech.t2s.modules.fastspeech2_transformer.encoder import Encoder as TransformerEncoder
from paddlespeech.t2s.modules.nets_utils import initialize from paddlespeech.t2s.modules.nets_utils import initialize
from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask
from paddlespeech.t2s.modules.nets_utils import make_pad_mask from paddlespeech.t2s.modules.nets_utils import make_pad_mask
from paddlespeech.t2s.modules.predictor.duration_predictor import DurationPredictor
from paddlespeech.t2s.modules.predictor.duration_predictor import DurationPredictorLoss
from paddlespeech.t2s.modules.predictor.length_regulator import LengthRegulator
from paddlespeech.t2s.modules.predictor.variance_predictor import VariancePredictor
from paddlespeech.t2s.modules.tacotron2.decoder import Postnet from paddlespeech.t2s.modules.tacotron2.decoder import Postnet
from paddlespeech.t2s.modules.transformer.encoder import ConformerEncoder
from paddlespeech.t2s.modules.transformer.encoder import TransformerEncoder
class FastSpeech2(nn.Layer): class FastSpeech2(nn.Layer):
@ -66,6 +65,7 @@ class FastSpeech2(nn.Layer):
postnet_layers: int=5, postnet_layers: int=5,
postnet_chans: int=512, postnet_chans: int=512,
postnet_filts: int=5, postnet_filts: int=5,
postnet_dropout_rate: float=0.5,
positionwise_layer_type: str="conv1d", positionwise_layer_type: str="conv1d",
positionwise_conv_kernel_size: int=1, positionwise_conv_kernel_size: int=1,
use_scaled_pos_enc: bool=True, use_scaled_pos_enc: bool=True,
@ -77,10 +77,27 @@ class FastSpeech2(nn.Layer):
reduction_factor: int=1, reduction_factor: int=1,
encoder_type: str="transformer", encoder_type: str="transformer",
decoder_type: str="transformer", decoder_type: str="transformer",
# for transformer
transformer_enc_dropout_rate: float=0.1,
transformer_enc_positional_dropout_rate: float=0.1,
transformer_enc_attn_dropout_rate: float=0.1,
transformer_dec_dropout_rate: float=0.1,
transformer_dec_positional_dropout_rate: float=0.1,
transformer_dec_attn_dropout_rate: float=0.1,
# for conformer
conformer_pos_enc_layer_type: str="rel_pos",
conformer_self_attn_layer_type: str="rel_selfattn",
conformer_activation_type: str="swish",
use_macaron_style_in_conformer: bool=True,
use_cnn_in_conformer: bool=True,
zero_triu: bool=False,
conformer_enc_kernel_size: int=7,
conformer_dec_kernel_size: int=31,
# duration predictor # duration predictor
duration_predictor_layers: int=2, duration_predictor_layers: int=2,
duration_predictor_chans: int=384, duration_predictor_chans: int=384,
duration_predictor_kernel_size: int=3, duration_predictor_kernel_size: int=3,
duration_predictor_dropout_rate: float=0.1,
# energy predictor # energy predictor
energy_predictor_layers: int=2, energy_predictor_layers: int=2,
energy_predictor_chans: int=384, energy_predictor_chans: int=384,
@ -102,24 +119,146 @@ class FastSpeech2(nn.Layer):
spk_embed_dim: int=None, spk_embed_dim: int=None,
spk_embed_integration_type: str="add", spk_embed_integration_type: str="add",
# tone emb # tone emb
num_tones: int=None, tone_num: int=None,
tone_embed_dim: int=None, tone_embed_dim: int=None,
tone_embed_integration_type: str="add", tone_embed_integration_type: str="add",
# training related # training related
transformer_enc_dropout_rate: float=0.1,
transformer_enc_positional_dropout_rate: float=0.1,
transformer_enc_attn_dropout_rate: float=0.1,
transformer_dec_dropout_rate: float=0.1,
transformer_dec_positional_dropout_rate: float=0.1,
transformer_dec_attn_dropout_rate: float=0.1,
duration_predictor_dropout_rate: float=0.1,
postnet_dropout_rate: float=0.5,
init_type: str="xavier_uniform", init_type: str="xavier_uniform",
init_enc_alpha: float=1.0, init_enc_alpha: float=1.0,
init_dec_alpha: float=1.0, init_dec_alpha: float=1.0, ):
use_masking: bool=False, """Initialize FastSpeech2 module.
use_weighted_masking: bool=False, ): Parameters
"""Initialize FastSpeech2 module.""" ----------
idim : int
Dimension of the inputs.
odim : int
Dimension of the outputs.
adim : int
Attention dimension.
aheads : int
Number of attention heads.
elayers : int
Number of encoder layers.
eunits : int
Number of encoder hidden units.
dlayers : int
Number of decoder layers.
dunits : int
Number of decoder hidden units.
postnet_layers : int
Number of postnet layers.
postnet_chans : int
Number of postnet channels.
postnet_filts : int
Kernel size of postnet.
postnet_dropout_rate : float
Dropout rate in postnet.
use_scaled_pos_enc : bool
Whether to use trainable scaled pos encoding.
use_batch_norm : bool
Whether to use batch normalization in encoder prenet.
encoder_normalize_before : bool
Whether to apply layernorm layer before encoder block.
decoder_normalize_before : bool
Whether to apply layernorm layer before
decoder block.
encoder_concat_after : bool
Whether to concatenate attention layer's input and output in encoder.
decoder_concat_after : bool
Whether to concatenate attention layer's input and output in decoder.
reduction_factor : int
Reduction factor.
encoder_type : str
Encoder type ("transformer" or "conformer").
decoder_type : str
Decoder type ("transformer" or "conformer").
transformer_enc_dropout_rate : float
Dropout rate in encoder except attention and positional encoding.
transformer_enc_positional_dropout_rate (float): Dropout rate after encoder
positional encoding.
transformer_enc_attn_dropout_rate (float): Dropout rate in encoder
self-attention module.
transformer_dec_dropout_rate (float): Dropout rate in decoder except
attention & positional encoding.
transformer_dec_positional_dropout_rate (float): Dropout rate after decoder
positional encoding.
transformer_dec_attn_dropout_rate (float): Dropout rate in decoder
self-attention module.
conformer_pos_enc_layer_type : str
Pos encoding layer type in conformer.
conformer_self_attn_layer_type : str
Self-attention layer type in conformer
conformer_activation_type : str
Activation function type in conformer.
use_macaron_style_in_conformer : bool
Whether to use macaron style FFN.
use_cnn_in_conformer : bool
Whether to use CNN in conformer.
zero_triu : bool
Whether to use zero triu in relative self-attention module.
conformer_enc_kernel_size : int
Kernel size of encoder conformer.
conformer_dec_kernel_size : int
Kernel size of decoder conformer.
duration_predictor_layers : int
Number of duration predictor layers.
duration_predictor_chans : int
Number of duration predictor channels.
duration_predictor_kernel_size : int
Kernel size of duration predictor.
duration_predictor_dropout_rate : float
Dropout rate in duration predictor.
pitch_predictor_layers : int
Number of pitch predictor layers.
pitch_predictor_chans : int
Number of pitch predictor channels.
pitch_predictor_kernel_size : int
Kernel size of pitch predictor.
pitch_predictor_dropout_rate : float
Dropout rate in pitch predictor.
pitch_embed_kernel_size : float
Kernel size of pitch embedding.
pitch_embed_dropout_rate : float
Dropout rate for pitch embedding.
stop_gradient_from_pitch_predictor : bool
Whether to stop gradient from pitch predictor to encoder.
energy_predictor_layers : int
Number of energy predictor layers.
energy_predictor_chans : int
Number of energy predictor channels.
energy_predictor_kernel_size : int
Kernel size of energy predictor.
energy_predictor_dropout_rate : float
Dropout rate in energy predictor.
energy_embed_kernel_size : float
Kernel size of energy embedding.
energy_embed_dropout_rate : float
Dropout rate for energy embedding.
stop_gradient_from_energy_predictor : bool
Whether to stop gradient from energy predictor to encoder.
spk_num : Optional[int]
Number of speakers. If not None, assume that the spk_embed_dim is not None,
spk_ids will be provided as the input and use spk_embedding_table.
spk_embed_dim : Optional[int]
Speaker embedding dimension. If not None,
assume that spk_emb will be provided as the input or spk_num is not None.
spk_embed_integration_type : str
How to integrate speaker embedding.
tone_num : Optional[int]
Number of tones. If not None, assume that the
tone_ids will be provided as the input and use tone_embedding_table.
tone_embed_dim : Optional[int]
Tone embedding dimension. If not None, assume that tone_num is not None.
tone_embed_integration_type : str
How to integrate tone embedding.
init_type : str
How to initialize transformer parameters.
init_enc_alpha : float
Initial value of alpha in scaled pos encoding of the encoder.
init_dec_alpha : float
Initial value of alpha in scaled pos encoding of the decoder.
"""
assert check_argument_types() assert check_argument_types()
super().__init__() super().__init__()
@ -156,13 +295,12 @@ class FastSpeech2(nn.Layer):
if self.tone_embed_dim is not None: if self.tone_embed_dim is not None:
self.tone_embedding_table = nn.Embedding( self.tone_embedding_table = nn.Embedding(
num_embeddings=num_tones, num_embeddings=tone_num,
embedding_dim=self.tone_embed_dim, embedding_dim=self.tone_embed_dim,
padding_idx=self.padding_idx) padding_idx=self.padding_idx)
# get positional encoding class # get positional encoding layer type
pos_enc_class = (ScaledPositionalEncoding transformer_pos_enc_layer_type = "scaled_abs_pos" if self.use_scaled_pos_enc else "abs_pos"
if self.use_scaled_pos_enc else PositionalEncoding)
# define encoder # define encoder
encoder_input_layer = nn.Embedding( encoder_input_layer = nn.Embedding(
@ -171,6 +309,7 @@ class FastSpeech2(nn.Layer):
padding_idx=self.padding_idx) padding_idx=self.padding_idx)
if encoder_type == "transformer": if encoder_type == "transformer":
print("encoder_type is transformer")
self.encoder = TransformerEncoder( self.encoder = TransformerEncoder(
idim=idim, idim=idim,
attention_dim=adim, attention_dim=adim,
@ -181,11 +320,34 @@ class FastSpeech2(nn.Layer):
dropout_rate=transformer_enc_dropout_rate, dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate, positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate, attention_dropout_rate=transformer_enc_attn_dropout_rate,
pos_enc_class=pos_enc_class, pos_enc_layer_type=transformer_pos_enc_layer_type,
normalize_before=encoder_normalize_before, normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after, concat_after=encoder_concat_after,
positionwise_layer_type=positionwise_layer_type, positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size, ) positionwise_conv_kernel_size=positionwise_conv_kernel_size, )
elif encoder_type == "conformer":
print("encoder_type is conformer")
self.encoder = ConformerEncoder(
idim=idim,
attention_dim=adim,
attention_heads=aheads,
linear_units=eunits,
num_blocks=elayers,
input_layer=encoder_input_layer,
dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate,
normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
pos_enc_layer_type=conformer_pos_enc_layer_type,
selfattention_layer_type=conformer_self_attn_layer_type,
activation_type=conformer_activation_type,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_enc_kernel_size,
zero_triu=zero_triu, )
else: else:
raise ValueError(f"{encoder_type} is not supported.") raise ValueError(f"{encoder_type} is not supported.")
@ -251,6 +413,7 @@ class FastSpeech2(nn.Layer):
# NOTE: we use encoder as decoder # NOTE: we use encoder as decoder
# because fastspeech's decoder is the same as encoder # because fastspeech's decoder is the same as encoder
if decoder_type == "transformer": if decoder_type == "transformer":
print("decoder_type is transformer")
self.decoder = TransformerEncoder( self.decoder = TransformerEncoder(
idim=0, idim=0,
attention_dim=adim, attention_dim=adim,
@ -262,11 +425,33 @@ class FastSpeech2(nn.Layer):
dropout_rate=transformer_dec_dropout_rate, dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate, positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate, attention_dropout_rate=transformer_dec_attn_dropout_rate,
pos_enc_class=pos_enc_class, pos_enc_layer_type=transformer_pos_enc_layer_type,
normalize_before=decoder_normalize_before, normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after, concat_after=decoder_concat_after,
positionwise_layer_type=positionwise_layer_type, positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size, ) positionwise_conv_kernel_size=positionwise_conv_kernel_size, )
elif decoder_type == "conformer":
print("decoder_type is conformer")
self.decoder = ConformerEncoder(
idim=0,
attention_dim=adim,
attention_heads=aheads,
linear_units=dunits,
num_blocks=dlayers,
input_layer=None,
dropout_rate=transformer_dec_dropout_rate,
positional_dropout_rate=transformer_dec_positional_dropout_rate,
attention_dropout_rate=transformer_dec_attn_dropout_rate,
normalize_before=decoder_normalize_before,
concat_after=decoder_concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=use_macaron_style_in_conformer,
pos_enc_layer_type=conformer_pos_enc_layer_type,
selfattention_layer_type=conformer_self_attn_layer_type,
activation_type=conformer_activation_type,
use_cnn_module=use_cnn_in_conformer,
cnn_module_kernel=conformer_dec_kernel_size, )
else: else:
raise ValueError(f"{decoder_type} is not supported.") raise ValueError(f"{decoder_type} is not supported.")

@ -78,7 +78,7 @@ class MelGANGenerator(nn.Layer):
Padding function module name before dilated convolution layer. Padding function module name before dilated convolution layer.
pad_params : dict pad_params : dict
Hyperparameters for padding function. Hyperparameters for padding function.
use_final_nonlinear_activation : paddle.nn.Layer use_final_nonlinear_activation : nn.Layer
Activation function for the final layer. Activation function for the final layer.
use_weight_norm : bool use_weight_norm : bool
Whether to use weight norm. Whether to use weight norm.

@ -11,13 +11,34 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import numpy as np
import paddle import paddle
from paddle import nn from paddle import nn
from paddlespeech.t2s.modules.expansion import expand
from paddlespeech.t2s.modules.positional_encoding import sinusoid_position_encoding from paddlespeech.t2s.modules.positional_encoding import sinusoid_position_encoding
def expand(encodings: paddle.Tensor, durations: paddle.Tensor) -> paddle.Tensor:
"""
encodings: (B, T, C)
durations: (B, T)
"""
batch_size, t_enc = durations.shape
durations = durations.numpy()
slens = np.sum(durations, -1)
t_dec = np.max(slens)
M = np.zeros([batch_size, t_dec, t_enc])
for i in range(batch_size):
k = 0
for j in range(t_enc):
d = durations[i, j]
M[i, k:k + d, j] = 1
k += d
M = paddle.to_tensor(M, dtype=encodings.dtype)
encodings = paddle.matmul(M, encodings)
return encodings
class ResidualBlock(nn.Layer): class ResidualBlock(nn.Layer):
def __init__(self, channels, kernel_size, dilation, n=2): def __init__(self, channels, kernel_size, dilation, n=2):
super().__init__() super().__init__()

@ -19,8 +19,8 @@ from paddle.fluid.layers import huber_loss
from paddle.nn import functional as F from paddle.nn import functional as F
from paddlespeech.t2s.modules.losses import masked_l1_loss from paddlespeech.t2s.modules.losses import masked_l1_loss
from paddlespeech.t2s.modules.losses import ssim
from paddlespeech.t2s.modules.losses import weighted_mean from paddlespeech.t2s.modules.losses import weighted_mean
from paddlespeech.t2s.modules.ssim import ssim
from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator from paddlespeech.t2s.training.extensions.evaluator import StandardEvaluator
from paddlespeech.t2s.training.reporter import report from paddlespeech.t2s.training.reporter import report
from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater from paddlespeech.t2s.training.updaters.standard_updater import StandardUpdater

@ -20,7 +20,6 @@ from paddle.nn import functional as F
from paddle.nn import initializer as I from paddle.nn import initializer as I
from tqdm import trange from tqdm import trange
from paddlespeech.t2s.modules.attention import LocationSensitiveAttention
from paddlespeech.t2s.modules.conv import Conv1dBatchNorm from paddlespeech.t2s.modules.conv import Conv1dBatchNorm
from paddlespeech.t2s.modules.losses import guided_attention_loss from paddlespeech.t2s.modules.losses import guided_attention_loss
from paddlespeech.t2s.utils import checkpoint from paddlespeech.t2s.utils import checkpoint
@ -28,6 +27,99 @@ from paddlespeech.t2s.utils import checkpoint
__all__ = ["Tacotron2", "Tacotron2Loss"] __all__ = ["Tacotron2", "Tacotron2Loss"]
class LocationSensitiveAttention(nn.Layer):
"""Location Sensitive Attention module.
Reference: `Attention-Based Models for Speech Recognition <https://arxiv.org/pdf/1506.07503.pdf>`_
Parameters
-----------
d_query: int
The feature size of query.
d_key : int
The feature size of key.
d_attention : int
The feature size of dimension.
location_filters : int
Filter size of attention convolution.
location_kernel_size : int
Kernel size of attention convolution.
"""
def __init__(self,
d_query: int,
d_key: int,
d_attention: int,
location_filters: int,
location_kernel_size: int):
super().__init__()
self.query_layer = nn.Linear(d_query, d_attention, bias_attr=False)
self.key_layer = nn.Linear(d_key, d_attention, bias_attr=False)
self.value = nn.Linear(d_attention, 1, bias_attr=False)
# Location Layer
self.location_conv = nn.Conv1D(
2,
location_filters,
kernel_size=location_kernel_size,
padding=int((location_kernel_size - 1) / 2),
bias_attr=False,
data_format='NLC')
self.location_layer = nn.Linear(
location_filters, d_attention, bias_attr=False)
def forward(self,
query,
processed_key,
value,
attention_weights_cat,
mask=None):
"""Compute context vector and attention weights.
Parameters
-----------
query : Tensor [shape=(batch_size, d_query)]
The queries.
processed_key : Tensor [shape=(batch_size, time_steps_k, d_attention)]
The keys after linear layer.
value : Tensor [shape=(batch_size, time_steps_k, d_key)]
The values.
attention_weights_cat : Tensor [shape=(batch_size, time_step_k, 2)]
Attention weights concat.
mask : Tensor, optional
The mask. Shape should be (batch_size, times_steps_k, 1).
Defaults to None.
Returns
----------
attention_context : Tensor [shape=(batch_size, d_attention)]
The context vector.
attention_weights : Tensor [shape=(batch_size, time_steps_k)]
The attention weights.
"""
processed_query = self.query_layer(paddle.unsqueeze(query, axis=[1]))
processed_attention_weights = self.location_layer(
self.location_conv(attention_weights_cat))
# (B, T_enc, 1)
alignment = self.value(
paddle.tanh(processed_attention_weights + processed_key +
processed_query))
if mask is not None:
alignment = alignment + (1.0 - mask) * -1e9
attention_weights = F.softmax(alignment, axis=1)
attention_context = paddle.matmul(
attention_weights, value, transpose_x=True)
attention_weights = paddle.squeeze(attention_weights, axis=-1)
attention_context = paddle.squeeze(attention_context, axis=1)
return attention_context, attention_weights
class DecoderPreNet(nn.Layer): class DecoderPreNet(nn.Layer):
"""Decoder prenet module for Tacotron2. """Decoder prenet module for Tacotron2.
@ -197,7 +289,7 @@ class Tacotron2Encoder(nn.Layer):
super().__init__() super().__init__()
k = math.sqrt(1.0 / (d_hidden * kernel_size)) k = math.sqrt(1.0 / (d_hidden * kernel_size))
self.conv_batchnorms = paddle.nn.LayerList([ self.conv_batchnorms = nn.LayerList([
Conv1dBatchNorm( Conv1dBatchNorm(
d_hidden, d_hidden,
d_hidden, d_hidden,
@ -903,7 +995,7 @@ class Tacotron2Loss(nn.Layer):
self.use_stop_token_loss = use_stop_token_loss self.use_stop_token_loss = use_stop_token_loss
self.use_guided_attention_loss = use_guided_attention_loss self.use_guided_attention_loss = use_guided_attention_loss
self.attn_criterion = guided_attention_loss self.attn_criterion = guided_attention_loss
self.stop_criterion = paddle.nn.BCEWithLogitsLoss() self.stop_criterion = nn.BCEWithLogitsLoss()
self.sigma = sigma self.sigma = sigma
def forward(self, def forward(self,

@ -23,12 +23,6 @@ import paddle.nn.functional as F
from paddle import nn from paddle import nn
from typeguard import check_argument_types from typeguard import check_argument_types
from paddlespeech.t2s.modules.fastspeech2_transformer.attention import MultiHeadedAttention
from paddlespeech.t2s.modules.fastspeech2_transformer.decoder import Decoder
from paddlespeech.t2s.modules.fastspeech2_transformer.embedding import PositionalEncoding
from paddlespeech.t2s.modules.fastspeech2_transformer.embedding import ScaledPositionalEncoding
from paddlespeech.t2s.modules.fastspeech2_transformer.encoder import Encoder
from paddlespeech.t2s.modules.fastspeech2_transformer.mask import subsequent_mask
from paddlespeech.t2s.modules.nets_utils import initialize from paddlespeech.t2s.modules.nets_utils import initialize
from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask from paddlespeech.t2s.modules.nets_utils import make_non_pad_mask
from paddlespeech.t2s.modules.nets_utils import make_pad_mask from paddlespeech.t2s.modules.nets_utils import make_pad_mask
@ -36,6 +30,12 @@ from paddlespeech.t2s.modules.style_encoder import StyleEncoder
from paddlespeech.t2s.modules.tacotron2.decoder import Postnet from paddlespeech.t2s.modules.tacotron2.decoder import Postnet
from paddlespeech.t2s.modules.tacotron2.decoder import Prenet as DecoderPrenet from paddlespeech.t2s.modules.tacotron2.decoder import Prenet as DecoderPrenet
from paddlespeech.t2s.modules.tacotron2.encoder import Encoder as EncoderPrenet from paddlespeech.t2s.modules.tacotron2.encoder import Encoder as EncoderPrenet
from paddlespeech.t2s.modules.transformer.attention import MultiHeadedAttention
from paddlespeech.t2s.modules.transformer.decoder import Decoder
from paddlespeech.t2s.modules.transformer.embedding import PositionalEncoding
from paddlespeech.t2s.modules.transformer.embedding import ScaledPositionalEncoding
from paddlespeech.t2s.modules.transformer.encoder import TransformerEncoder
from paddlespeech.t2s.modules.transformer.mask import subsequent_mask
class TransformerTTS(nn.Layer): class TransformerTTS(nn.Layer):
@ -257,9 +257,9 @@ class TransformerTTS(nn.Layer):
self.padding_idx = 0 self.padding_idx = 0
# set_global_initializer 会影响后面的全局,包括 create_parameter # set_global_initializer 会影响后面的全局,包括 create_parameter
initialize(self, init_type) initialize(self, init_type)
# get positional encoding class
pos_enc_class = (ScaledPositionalEncoding # get positional encoding layer type
if self.use_scaled_pos_enc else PositionalEncoding) transformer_pos_enc_layer_type = "scaled_abs_pos" if self.use_scaled_pos_enc else "abs_pos"
# define transformer encoder # define transformer encoder
if eprenet_conv_layers != 0: if eprenet_conv_layers != 0:
@ -281,7 +281,7 @@ class TransformerTTS(nn.Layer):
num_embeddings=idim, num_embeddings=idim,
embedding_dim=adim, embedding_dim=adim,
padding_idx=self.padding_idx) padding_idx=self.padding_idx)
self.encoder = Encoder( self.encoder = TransformerEncoder(
idim=idim, idim=idim,
attention_dim=adim, attention_dim=adim,
attention_heads=aheads, attention_heads=aheads,
@ -291,7 +291,7 @@ class TransformerTTS(nn.Layer):
dropout_rate=transformer_enc_dropout_rate, dropout_rate=transformer_enc_dropout_rate,
positional_dropout_rate=transformer_enc_positional_dropout_rate, positional_dropout_rate=transformer_enc_positional_dropout_rate,
attention_dropout_rate=transformer_enc_attn_dropout_rate, attention_dropout_rate=transformer_enc_attn_dropout_rate,
pos_enc_class=pos_enc_class, pos_enc_layer_type=transformer_pos_enc_layer_type,
normalize_before=encoder_normalize_before, normalize_before=encoder_normalize_before,
concat_after=encoder_concat_after, concat_after=encoder_concat_after,
positionwise_layer_type=positionwise_layer_type, positionwise_layer_type=positionwise_layer_type,
@ -330,6 +330,9 @@ class TransformerTTS(nn.Layer):
nn.Linear(dprenet_units, adim), ) nn.Linear(dprenet_units, adim), )
else: else:
decoder_input_layer = "linear" decoder_input_layer = "linear"
# get positional encoding class
pos_enc_class = (ScaledPositionalEncoding
if self.use_scaled_pos_enc else PositionalEncoding)
self.decoder = Decoder( self.decoder = Decoder(
odim=odim, # odim is needed when no prenet is used odim=odim, # odim is needed when no prenet is used
attention_dim=adim, attention_dim=adim,

@ -329,7 +329,7 @@ class ResidualNet(nn.LayerList):
if len(dilations_h) != n_layer: if len(dilations_h) != n_layer:
raise ValueError( raise ValueError(
"number of dilations_h should equals num of layers") "number of dilations_h should equals num of layers")
super(ResidualNet, self).__init__() super().__init__()
for i in range(n_layer): for i in range(n_layer):
dilation = (dilations_h[i], 2**i) dilation = (dilations_h[i], 2**i)
layer = ResidualBlock(residual_channels, condition_channels, layer = ResidualBlock(residual_channels, condition_channels,

@ -11,10 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
from .attention import *
from .conv import * from .conv import *
from .geometry import * from .geometry import *
from .losses import * from .losses import *
from .masking import *
from .positional_encoding import * from .positional_encoding import *
from .transformer import *

@ -11,8 +11,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import paddle
import paddle.nn.functional as F
from paddle import nn from paddle import nn
from paddle.nn import functional as F
class GLU(nn.Layer): class GLU(nn.Layer):
@ -24,3 +25,18 @@ class GLU(nn.Layer):
def forward(self, xs): def forward(self, xs):
return F.glu(xs, axis=self.dim) return F.glu(xs, axis=self.dim)
def get_activation(act):
"""Return activation function."""
activation_funcs = {
"hardtanh": paddle.nn.Hardtanh,
"tanh": paddle.nn.Tanh,
"relu": paddle.nn.ReLU,
"selu": paddle.nn.SELU,
"swish": paddle.nn.Swish,
"glu": GLU
}
return activation_funcs[act]()

@ -1,125 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
"""Adversarial loss modules."""
import paddle
import paddle.nn.functional as F
from paddle import nn
class GeneratorAdversarialLoss(nn.Layer):
"""Generator adversarial loss module."""
def __init__(
self,
average_by_discriminators=True,
loss_type="mse", ):
"""Initialize GeneratorAversarialLoss module."""
super().__init__()
self.average_by_discriminators = average_by_discriminators
assert loss_type in ["mse", "hinge"], f"{loss_type} is not supported."
if loss_type == "mse":
self.criterion = self._mse_loss
else:
self.criterion = self._hinge_loss
def forward(self, outputs):
"""Calcualate generator adversarial loss.
Parameters
----------
outputs: Tensor or List
Discriminator outputs or list of discriminator outputs.
Returns
----------
Tensor
Generator adversarial loss value.
"""
if isinstance(outputs, (tuple, list)):
adv_loss = 0.0
for i, outputs_ in enumerate(outputs):
if isinstance(outputs_, (tuple, list)):
# case including feature maps
outputs_ = outputs_[-1]
adv_loss += self.criterion(outputs_)
if self.average_by_discriminators:
adv_loss /= i + 1
else:
adv_loss = self.criterion(outputs)
return adv_loss
def _mse_loss(self, x):
return F.mse_loss(x, paddle.ones_like(x))
def _hinge_loss(self, x):
return -x.mean()
class DiscriminatorAdversarialLoss(nn.Layer):
"""Discriminator adversarial loss module."""
def __init__(
self,
average_by_discriminators=True,
loss_type="mse", ):
"""Initialize DiscriminatorAversarialLoss module."""
super().__init__()
self.average_by_discriminators = average_by_discriminators
assert loss_type in ["mse"], f"{loss_type} is not supported."
if loss_type == "mse":
self.fake_criterion = self._mse_fake_loss
self.real_criterion = self._mse_real_loss
def forward(self, outputs_hat, outputs):
"""Calcualate discriminator adversarial loss.
Parameters
----------
outputs_hat : Tensor or list
Discriminator outputs or list of
discriminator outputs calculated from generator outputs.
outputs : Tensor or list
Discriminator outputs or list of
discriminator outputs calculated from groundtruth.
Returns
----------
Tensor
Discriminator real loss value.
Tensor
Discriminator fake loss value.
"""
if isinstance(outputs, (tuple, list)):
real_loss = 0.0
fake_loss = 0.0
for i, (outputs_hat_,
outputs_) in enumerate(zip(outputs_hat, outputs)):
if isinstance(outputs_hat_, (tuple, list)):
# case including feature maps
outputs_hat_ = outputs_hat_[-1]
outputs_ = outputs_[-1]
real_loss += self.real_criterion(outputs_)
fake_loss += self.fake_criterion(outputs_hat_)
if self.average_by_discriminators:
fake_loss /= i + 1
real_loss /= i + 1
else:
real_loss = self.real_criterion(outputs)
fake_loss = self.fake_criterion(outputs_hat)
return real_loss, fake_loss
def _mse_real_loss(self, x):
return F.mse_loss(x, paddle.ones_like(x))
def _mse_fake_loss(self, x):
return F.mse_loss(x, paddle.zeros_like(x))

@ -1,348 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import numpy as np
import paddle
from paddle import nn
from paddle.nn import functional as F
def scaled_dot_product_attention(q, k, v, mask=None, dropout=0.0,
training=True):
r"""Scaled dot product attention with masking.
Assume that q, k, v all have the same leading dimensions (denoted as * in
descriptions below). Dropout is applied to attention weights before
weighted sum of values.
Parameters
-----------
q : Tensor [shape=(\*, T_q, d)]
the query tensor.
k : Tensor [shape=(\*, T_k, d)]
the key tensor.
v : Tensor [shape=(\*, T_k, d_v)]
the value tensor.
mask : Tensor, [shape=(\*, T_q, T_k) or broadcastable shape], optional
the mask tensor, zeros correspond to paddings. Defaults to None.
Returns
----------
out : Tensor [shape=(\*, T_q, d_v)]
the context vector.
attn_weights : Tensor [shape=(\*, T_q, T_k)]
the attention weights.
"""
d = q.shape[-1] # we only support imperative execution
qk = paddle.matmul(q, k, transpose_y=True)
scaled_logit = paddle.scale(qk, 1.0 / math.sqrt(d))
if mask is not None:
scaled_logit += paddle.scale((1.0 - mask), -1e9) # hard coded here
attn_weights = F.softmax(scaled_logit, axis=-1)
attn_weights = F.dropout(attn_weights, dropout, training=training)
out = paddle.matmul(attn_weights, v)
return out, attn_weights
def drop_head(x, drop_n_heads, training=True):
"""Drop n context vectors from multiple ones.
Parameters
----------
x : Tensor [shape=(batch_size, num_heads, time_steps, channels)]
The input, multiple context vectors.
drop_n_heads : int [0<= drop_n_heads <= num_heads]
Number of vectors to drop.
training : bool
A flag indicating whether it is in training. If `False`, no dropout is
applied.
Returns
-------
Tensor
The output.
"""
if not training or (drop_n_heads == 0):
return x
batch_size, num_heads, _, _ = x.shape
# drop all heads
if num_heads == drop_n_heads:
return paddle.zeros_like(x)
mask = np.ones([batch_size, num_heads])
mask[:, :drop_n_heads] = 0
for subarray in mask:
np.random.shuffle(subarray)
scale = float(num_heads) / (num_heads - drop_n_heads)
mask = scale * np.reshape(mask, [batch_size, num_heads, 1, 1])
out = x * paddle.to_tensor(mask)
return out
def _split_heads(x, num_heads):
batch_size, time_steps, _ = x.shape
x = paddle.reshape(x, [batch_size, time_steps, num_heads, -1])
x = paddle.transpose(x, [0, 2, 1, 3])
return x
def _concat_heads(x):
batch_size, _, time_steps, _ = x.shape
x = paddle.transpose(x, [0, 2, 1, 3])
x = paddle.reshape(x, [batch_size, time_steps, -1])
return x
# Standard implementations of Monohead Attention & Multihead Attention
class MonoheadAttention(nn.Layer):
"""Monohead Attention module.
Parameters
----------
model_dim : int
Feature size of the query.
dropout : float, optional
Dropout probability of scaled dot product attention and final context
vector. Defaults to 0.0.
k_dim : int, optional
Feature size of the key of each scaled dot product attention. If not
provided, it is set to `model_dim / num_heads`. Defaults to None.
v_dim : int, optional
Feature size of the key of each scaled dot product attention. If not
provided, it is set to `model_dim / num_heads`. Defaults to None.
"""
def __init__(self,
model_dim: int,
dropout: float=0.0,
k_dim: int=None,
v_dim: int=None):
super(MonoheadAttention, self).__init__()
k_dim = k_dim or model_dim
v_dim = v_dim or model_dim
self.affine_q = nn.Linear(model_dim, k_dim)
self.affine_k = nn.Linear(model_dim, k_dim)
self.affine_v = nn.Linear(model_dim, v_dim)
self.affine_o = nn.Linear(v_dim, model_dim)
self.model_dim = model_dim
self.dropout = dropout
def forward(self, q, k, v, mask):
"""Compute context vector and attention weights.
Parameters
-----------
q : Tensor [shape=(batch_size, time_steps_q, model_dim)]
The queries.
k : Tensor [shape=(batch_size, time_steps_k, model_dim)]
The keys.
v : Tensor [shape=(batch_size, time_steps_k, model_dim)]
The values.
mask : Tensor [shape=(batch_size, times_steps_q, time_steps_k] or broadcastable shape
The mask.
Returns
----------
out : Tensor [shape=(batch_size, time_steps_q, model_dim)]
The context vector.
attention_weights : Tensor [shape=(batch_size, times_steps_q, time_steps_k)]
The attention weights.
"""
q = self.affine_q(q) # (B, T, C)
k = self.affine_k(k)
v = self.affine_v(v)
context_vectors, attention_weights = scaled_dot_product_attention(
q, k, v, mask, self.dropout, self.training)
out = self.affine_o(context_vectors)
return out, attention_weights
class MultiheadAttention(nn.Layer):
"""Multihead Attention module.
Parameters
-----------
model_dim: int
The feature size of query.
num_heads : int
The number of attention heads.
dropout : float, optional
Dropout probability of scaled dot product attention and final context
vector. Defaults to 0.0.
k_dim : int, optional
Feature size of the key of each scaled dot product attention. If not
provided, it is set to ``model_dim / num_heads``. Defaults to None.
v_dim : int, optional
Feature size of the key of each scaled dot product attention. If not
provided, it is set to ``model_dim / num_heads``. Defaults to None.
Raises
---------
ValueError
If ``model_dim`` is not divisible by ``num_heads``.
"""
def __init__(self,
model_dim: int,
num_heads: int,
dropout: float=0.0,
k_dim: int=None,
v_dim: int=None):
super(MultiheadAttention, self).__init__()
if model_dim % num_heads != 0:
raise ValueError("model_dim must be divisible by num_heads")
depth = model_dim // num_heads
k_dim = k_dim or depth
v_dim = v_dim or depth
self.affine_q = nn.Linear(model_dim, num_heads * k_dim)
self.affine_k = nn.Linear(model_dim, num_heads * k_dim)
self.affine_v = nn.Linear(model_dim, num_heads * v_dim)
self.affine_o = nn.Linear(num_heads * v_dim, model_dim)
self.num_heads = num_heads
self.model_dim = model_dim
self.dropout = dropout
def forward(self, q, k, v, mask):
"""Compute context vector and attention weights.
Parameters
-----------
q : Tensor [shape=(batch_size, time_steps_q, model_dim)]
The queries.
k : Tensor [shape=(batch_size, time_steps_k, model_dim)]
The keys.
v : Tensor [shape=(batch_size, time_steps_k, model_dim)]
The values.
mask : Tensor [shape=(batch_size, times_steps_q, time_steps_k] or broadcastable shape
The mask.
Returns
----------
out : Tensor [shape=(batch_size, time_steps_q, model_dim)]
The context vector.
attention_weights : Tensor [shape=(batch_size, times_steps_q, time_steps_k)]
The attention weights.
"""
q = _split_heads(self.affine_q(q), self.num_heads) # (B, h, T, C)
k = _split_heads(self.affine_k(k), self.num_heads)
v = _split_heads(self.affine_v(v), self.num_heads)
mask = paddle.unsqueeze(mask, 1) # unsqueeze for the h dim
context_vectors, attention_weights = scaled_dot_product_attention(
q, k, v, mask, self.dropout, self.training)
# NOTE: there is more sophisticated implementation: Scheduled DropHead
context_vectors = _concat_heads(context_vectors) # (B, T, h*C)
out = self.affine_o(context_vectors)
return out, attention_weights
class LocationSensitiveAttention(nn.Layer):
"""Location Sensitive Attention module.
Reference: `Attention-Based Models for Speech Recognition <https://arxiv.org/pdf/1506.07503.pdf>`_
Parameters
-----------
d_query: int
The feature size of query.
d_key : int
The feature size of key.
d_attention : int
The feature size of dimension.
location_filters : int
Filter size of attention convolution.
location_kernel_size : int
Kernel size of attention convolution.
"""
def __init__(self,
d_query: int,
d_key: int,
d_attention: int,
location_filters: int,
location_kernel_size: int):
super().__init__()
self.query_layer = nn.Linear(d_query, d_attention, bias_attr=False)
self.key_layer = nn.Linear(d_key, d_attention, bias_attr=False)
self.value = nn.Linear(d_attention, 1, bias_attr=False)
# Location Layer
self.location_conv = nn.Conv1D(
2,
location_filters,
kernel_size=location_kernel_size,
padding=int((location_kernel_size - 1) / 2),
bias_attr=False,
data_format='NLC')
self.location_layer = nn.Linear(
location_filters, d_attention, bias_attr=False)
def forward(self,
query,
processed_key,
value,
attention_weights_cat,
mask=None):
"""Compute context vector and attention weights.
Parameters
-----------
query : Tensor [shape=(batch_size, d_query)]
The queries.
processed_key : Tensor [shape=(batch_size, time_steps_k, d_attention)]
The keys after linear layer.
value : Tensor [shape=(batch_size, time_steps_k, d_key)]
The values.
attention_weights_cat : Tensor [shape=(batch_size, time_step_k, 2)]
Attention weights concat.
mask : Tensor, optional
The mask. Shape should be (batch_size, times_steps_k, 1).
Defaults to None.
Returns
----------
attention_context : Tensor [shape=(batch_size, d_attention)]
The context vector.
attention_weights : Tensor [shape=(batch_size, time_steps_k)]
The attention weights.
"""
processed_query = self.query_layer(paddle.unsqueeze(query, axis=[1]))
processed_attention_weights = self.location_layer(
self.location_conv(attention_weights_cat))
# (B, T_enc, 1)
alignment = self.value(
paddle.tanh(processed_attention_weights + processed_key +
processed_query))
if mask is not None:
alignment = alignment + (1.0 - mask) * -1e9
attention_weights = F.softmax(alignment, axis=1)
attention_context = paddle.matmul(
attention_weights, value, transpose_x=True)
attention_weights = paddle.squeeze(attention_weights, axis=-1)
attention_context = paddle.squeeze(attention_context, axis=1)
return attention_context, attention_weights

@ -1,229 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import librosa
import numpy as np
import paddle
from librosa.util import pad_center
from paddle import nn
from paddle.nn import functional as F
from scipy import signal
__all__ = ["quantize", "dequantize", "STFT", "MelScale"]
def quantize(values, n_bands):
"""Linearlly quantize a float Tensor in [-1, 1) to an interger Tensor in
[0, n_bands).
Parameters
-----------
values : Tensor [dtype: flaot32 or float64]
The floating point value.
n_bands : int
The number of bands. The output integer Tensor's value is in the range
[0, n_bans).
Returns
----------
Tensor [dtype: int 64]
The quantized tensor.
"""
quantized = paddle.cast((values + 1.0) / 2.0 * n_bands, "int64")
return quantized
def dequantize(quantized, n_bands, dtype=None):
"""Linearlly dequantize an integer Tensor into a float Tensor in the range
[-1, 1).
Parameters
-----------
quantized : Tensor [dtype: int]
The quantized value in the range [0, n_bands).
n_bands : int
Number of bands. The input integer Tensor's value is in the range
[0, n_bans).
dtype : str, optional
Data type of the output.
Returns
-----------
Tensor
The dequantized tensor, dtype is specified by `dtype`. If `dtype` is
not specified, the default float data type is used.
"""
dtype = dtype or paddle.get_default_dtype()
value = (paddle.cast(quantized, dtype) + 0.5) * (2.0 / n_bands) - 1.0
return value
class STFT(nn.Layer):
"""A module for computing stft transformation in a differentiable way.
Parameters
------------
n_fft : int
Number of samples in a frame.
hop_length : int
Number of samples shifted between adjacent frames.
win_length : int
Length of the window.
window : str, optional
Name of window function, see `scipy.signal.get_window` for more
details. Defaults to "hanning".
center : bool
If True, the signal y is padded so that frame D[:, t] is centered
at y[t * hop_length]. If False, then D[:, t] begins at y[t * hop_length].
Defaults to True.
pad_mode : string or function
If center=True, this argument is passed to np.pad for padding the edges
of the signal y. By default (pad_mode="reflect"), y is padded on both
sides with its own reflection, mirrored around its first and last
sample respectively. If center=False, this argument is ignored.
Notes
-----------
It behaves like ``librosa.core.stft``. See ``librosa.core.stft`` for more
details.
Given a audio which ``T`` samples, it the STFT transformation outputs a
spectrum with (C, frames) and complex dtype, where ``C = 1 + n_fft / 2``
and ``frames = 1 + T // hop_lenghth``.
Ony ``center`` and ``reflect`` padding is supported now.
"""
def __init__(self,
n_fft,
hop_length=None,
win_length=None,
window="hanning",
center=True,
pad_mode="reflect"):
super().__init__()
# By default, use the entire frame
if win_length is None:
win_length = n_fft
# Set the default hop, if it's not already specified
if hop_length is None:
hop_length = int(win_length // 4)
self.hop_length = hop_length
self.n_bin = 1 + n_fft // 2
self.n_fft = n_fft
self.center = center
self.pad_mode = pad_mode
# calculate window
window = signal.get_window(window, win_length, fftbins=True)
# pad window to n_fft size
if n_fft != win_length:
window = pad_center(window, n_fft, mode="constant")
# lpad = (n_fft - win_length) // 2
# rpad = n_fft - win_length - lpad
# window = np.pad(window, ((lpad, pad), ), 'constant')
# calculate weights
# r = np.arange(0, n_fft)
# M = np.expand_dims(r, -1) * np.expand_dims(r, 0)
# w_real = np.reshape(window *
# np.cos(2 * np.pi * M / n_fft)[:self.n_bin],
# (self.n_bin, 1, self.n_fft))
# w_imag = np.reshape(window *
# np.sin(-2 * np.pi * M / n_fft)[:self.n_bin],
# (self.n_bin, 1, self.n_fft))
weight = np.fft.fft(np.eye(n_fft))[:self.n_bin]
w_real = weight.real
w_imag = weight.imag
w = np.concatenate([w_real, w_imag], axis=0)
w = w * window
w = np.expand_dims(w, 1)
weight = paddle.cast(paddle.to_tensor(w), paddle.get_default_dtype())
self.register_buffer("weight", weight)
def forward(self, x):
"""Compute the stft transform.
Parameters
------------
x : Tensor [shape=(B, T)]
The input waveform.
Returns
------------
real : Tensor [shape=(B, C, frames)]
The real part of the spectrogram.
imag : Tensor [shape=(B, C, frames)]
The image part of the spectrogram.
"""
x = paddle.unsqueeze(x, axis=1)
if self.center:
x = F.pad(
x, [self.n_fft // 2, self.n_fft // 2],
data_format='NCL',
mode=self.pad_mode)
# to BCT, C=1
out = F.conv1d(x, self.weight, stride=self.hop_length)
real, imag = paddle.chunk(out, 2, axis=1) # BCT
return real, imag
def power(self, x):
"""Compute the power spectrum.
Parameters
------------
x : Tensor [shape=(B, T)]
The input waveform.
Returns
------------
Tensor [shape=(B, C, T)]
The power spectrum.
"""
real, imag = self.forward(x)
power = real**2 + imag**2
return power
def magnitude(self, x):
"""Compute the magnitude of the spectrum.
Parameters
------------
x : Tensor [shape=(B, T)]
The input waveform.
Returns
------------
Tensor [shape=(B, C, T)]
The magnitude of the spectrum.
"""
power = self.power(x)
magnitude = paddle.sqrt(power) # TODO(chenfeiyu): maybe clipping
return magnitude
class MelScale(nn.Layer):
def __init__(self, sr, n_fft, n_mels, fmin, fmax):
super().__init__()
mel_basis = librosa.filters.mel(sr, n_fft, n_mels, fmin, fmax)
# self.weight = paddle.to_tensor(mel_basis)
weight = paddle.to_tensor(mel_basis, dtype=paddle.get_default_dtype())
self.register_buffer("weight", weight)
def forward(self, spec):
# (n_mels, n_freq) * (batch_size, n_freq, n_frames)
mel = paddle.matmul(self.weight, spec)
return mel

@ -13,9 +13,10 @@
# limitations under the License. # limitations under the License.
"""Causal convolusion layer modules.""" """Causal convolusion layer modules."""
import paddle import paddle
from paddle import nn
class CausalConv1D(paddle.nn.Layer): class CausalConv1D(nn.Layer):
"""CausalConv1D module with customized initialization.""" """CausalConv1D module with customized initialization."""
def __init__( def __init__(
@ -31,7 +32,7 @@ class CausalConv1D(paddle.nn.Layer):
super().__init__() super().__init__()
self.pad = getattr(paddle.nn, pad)((kernel_size - 1) * dilation, self.pad = getattr(paddle.nn, pad)((kernel_size - 1) * dilation,
**pad_params) **pad_params)
self.conv = paddle.nn.Conv1D( self.conv = nn.Conv1D(
in_channels, in_channels,
out_channels, out_channels,
kernel_size, kernel_size,
@ -52,7 +53,7 @@ class CausalConv1D(paddle.nn.Layer):
return self.conv(self.pad(x))[:, :, :x.shape[2]] return self.conv(self.pad(x))[:, :, :x.shape[2]]
class CausalConv1DTranspose(paddle.nn.Layer): class CausalConv1DTranspose(nn.Layer):
"""CausalConv1DTranspose module with customized initialization.""" """CausalConv1DTranspose module with customized initialization."""
def __init__(self, def __init__(self,
@ -63,7 +64,7 @@ class CausalConv1DTranspose(paddle.nn.Layer):
bias=True): bias=True):
"""Initialize CausalConvTranspose1d module.""" """Initialize CausalConvTranspose1d module."""
super().__init__() super().__init__()
self.deconv = paddle.nn.Conv1DTranspose( self.deconv = nn.Conv1DTranspose(
in_channels, out_channels, kernel_size, stride, bias_attr=bias) in_channels, out_channels, kernel_size, stride, bias_attr=bias)
self.stride = stride self.stride = stride

@ -0,0 +1,86 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
"""ConvolutionModule definition."""
from paddle import nn
class ConvolutionModule(nn.Layer):
"""ConvolutionModule in Conformer model.
Parameters
----------
channels : int
The number of channels of conv layers.
kernel_size : int
Kernerl size of conv layers.
"""
def __init__(self, channels, kernel_size, activation=nn.ReLU(), bias=True):
"""Construct an ConvolutionModule object."""
super().__init__()
# kernerl_size should be a odd number for 'SAME' padding
assert (kernel_size - 1) % 2 == 0
self.pointwise_conv1 = nn.Conv1D(
channels,
2 * channels,
kernel_size=1,
stride=1,
padding=0,
bias_attr=bias, )
self.depthwise_conv = nn.Conv1D(
channels,
channels,
kernel_size,
stride=1,
padding=(kernel_size - 1) // 2,
groups=channels,
bias_attr=bias, )
self.norm = nn.BatchNorm1D(channels)
self.pointwise_conv2 = nn.Conv1D(
channels,
channels,
kernel_size=1,
stride=1,
padding=0,
bias_attr=bias, )
self.activation = activation
def forward(self, x):
"""Compute convolution module.
Parameters
----------
x : paddle.Tensor
Input tensor (#batch, time, channels).
Returns
----------
paddle.Tensor
Output tensor (#batch, time, channels).
"""
# exchange the temporal dimension and the feature dimension
x = x.transpose([0, 2, 1])
# GLU mechanism
# (batch, 2*channel, time)
x = self.pointwise_conv1(x)
# (batch, channel, time)
x = nn.functional.glu(x, axis=1)
# 1D Depthwise Conv
x = self.depthwise_conv(x)
x = self.activation(self.norm(x))
x = self.pointwise_conv2(x)
return x.transpose([0, 2, 1])

@ -0,0 +1,196 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
"""Encoder self-attention layer definition."""
import paddle
from paddle import nn
from paddlespeech.t2s.modules.layer_norm import LayerNorm
class EncoderLayer(nn.Layer):
"""Encoder layer module.
Parameters
----------
size : int
Input dimension.
self_attn : nn.Layer
Self-attention module instance.
`MultiHeadedAttention` or `RelPositionMultiHeadedAttention` instance
can be used as the argument.
feed_forward : nn.Layer
Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
feed_forward_macaron : nn.Layer
Additional feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance
can be used as the argument.
conv_module : nn.Layer
Convolution module instance.
`ConvlutionModule` instance can be used as the argument.
dropout_rate : float
Dropout rate.
normalize_before : bool
Whether to use layer_norm before the first block.
concat_after : bool
Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
stochastic_depth_rate : float
Proability to skip this layer.
During training, the layer may skip residual computation and return input
as-is with given probability.
"""
def __init__(
self,
size,
self_attn,
feed_forward,
feed_forward_macaron,
conv_module,
dropout_rate,
normalize_before=True,
concat_after=False,
stochastic_depth_rate=0.0, ):
"""Construct an EncoderLayer object."""
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.feed_forward_macaron = feed_forward_macaron
self.conv_module = conv_module
self.norm_ff = LayerNorm(size) # for the FNN module
self.norm_mha = LayerNorm(size) # for the MHA module
if feed_forward_macaron is not None:
self.norm_ff_macaron = LayerNorm(size)
self.ff_scale = 0.5
else:
self.ff_scale = 1.0
if self.conv_module is not None:
self.norm_conv = LayerNorm(size) # for the CNN module
self.norm_final = LayerNorm(
size) # for the final output of the block
self.dropout = nn.Dropout(dropout_rate)
self.size = size
self.normalize_before = normalize_before
self.concat_after = concat_after
if self.concat_after:
self.concat_linear = nn.Linear(size + size, size)
self.stochastic_depth_rate = stochastic_depth_rate
def forward(self, x_input, mask, cache=None):
"""Compute encoded features.
Parameters
----------
x_input : Union[Tuple, paddle.Tensor]
Input tensor w/ or w/o pos emb.
- w/ pos emb: Tuple of tensors [(#batch, time, size), (1, time, size)].
- w/o pos emb: Tensor (#batch, time, size).
mask : paddle.Tensor
Mask tensor for the input (#batch, time).
cache paddle.Tensor
Cache tensor of the input (#batch, time - 1, size).
Returns
----------
paddle.Tensor
Output tensor (#batch, time, size).
paddle.Tensor
Mask tensor (#batch, time).
"""
if isinstance(x_input, tuple):
x, pos_emb = x_input[0], x_input[1]
else:
x, pos_emb = x_input, None
skip_layer = False
# with stochastic depth, residual connection `x + f(x)` becomes
# `x <- x + 1 / (1 - p) * f(x)` at training time.
stoch_layer_coeff = 1.0
if self.training and self.stochastic_depth_rate > 0:
skip_layer = paddle.rand(1).item() < self.stochastic_depth_rate
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
if skip_layer:
if cache is not None:
x = paddle.concat([cache, x], axis=1)
if pos_emb is not None:
return (x, pos_emb), mask
return x, mask
# whether to use macaron style
if self.feed_forward_macaron is not None:
residual = x
if self.normalize_before:
x = self.norm_ff_macaron(x)
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout(
self.feed_forward_macaron(x))
if not self.normalize_before:
x = self.norm_ff_macaron(x)
# multi-headed self-attention module
residual = x
if self.normalize_before:
x = self.norm_mha(x)
if cache is None:
x_q = x
else:
assert cache.shape == (x.shape[0], x.shape[1] - 1, self.size)
x_q = x[:, -1:, :]
residual = residual[:, -1:, :]
mask = None if mask is None else mask[:, -1:, :]
if pos_emb is not None:
x_att = self.self_attn(x_q, x, x, pos_emb, mask)
else:
x_att = self.self_attn(x_q, x, x, mask)
if self.concat_after:
x_concat = paddle.concat((x, x_att), axis=-1)
x = residual + stoch_layer_coeff * self.concat_linear(x_concat)
else:
x = residual + stoch_layer_coeff * self.dropout(x_att)
if not self.normalize_before:
x = self.norm_mha(x)
# convolution module
if self.conv_module is not None:
residual = x
if self.normalize_before:
x = self.norm_conv(x)
x = residual + stoch_layer_coeff * self.dropout(self.conv_module(x))
if not self.normalize_before:
x = self.norm_conv(x)
# feed forward module
residual = x
if self.normalize_before:
x = self.norm_ff(x)
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout(
self.feed_forward(x))
if not self.normalize_before:
x = self.norm_ff(x)
if self.conv_module is not None:
x = self.norm_final(x)
if cache is not None:
x = paddle.concat([cache, x], axis=1)
if pos_emb is not None:
return (x, pos_emb), mask
return x, mask

@ -84,7 +84,7 @@ class Conv1dCell(nn.Conv1D):
_kernel_size = kernel_size[0] if isinstance(kernel_size, ( _kernel_size = kernel_size[0] if isinstance(kernel_size, (
tuple, list)) else kernel_size tuple, list)) else kernel_size
self._r = 1 + (_kernel_size - 1) * _dilation self._r = 1 + (_kernel_size - 1) * _dilation
super(Conv1dCell, self).__init__( super().__init__(
in_channels, in_channels,
out_channels, out_channels,
kernel_size, kernel_size,
@ -226,7 +226,7 @@ class Conv1dBatchNorm(nn.Layer):
data_format="NCL", data_format="NCL",
momentum=0.9, momentum=0.9,
epsilon=1e-05): epsilon=1e-05):
super(Conv1dBatchNorm, self).__init__() super().__init__()
self.conv = nn.Conv1D( self.conv = nn.Conv1D(
in_channels, in_channels,
out_channels, out_channels,

@ -1,37 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
from paddle import Tensor
def expand(encodings: Tensor, durations: Tensor) -> Tensor:
"""
encodings: (B, T, C)
durations: (B, T)
"""
batch_size, t_enc = durations.shape
durations = durations.numpy()
slens = np.sum(durations, -1)
t_dec = np.max(slens)
M = np.zeros([batch_size, t_dec, t_enc])
for i in range(batch_size):
k = 0
for j in range(t_enc):
d = durations[i, j]
M[i, k:k + d, j] = 1
k += d
M = paddle.to_tensor(M, dtype=encodings.dtype)
encodings = paddle.matmul(M, encodings)
return encodings

@ -1,224 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
from paddle import nn
from paddlespeech.t2s.modules.fastspeech2_transformer.attention import MultiHeadedAttention
from paddlespeech.t2s.modules.fastspeech2_transformer.embedding import PositionalEncoding
from paddlespeech.t2s.modules.fastspeech2_transformer.encoder_layer import EncoderLayer
from paddlespeech.t2s.modules.fastspeech2_transformer.multi_layer_conv import Conv1dLinear
from paddlespeech.t2s.modules.fastspeech2_transformer.multi_layer_conv import MultiLayeredConv1d
from paddlespeech.t2s.modules.fastspeech2_transformer.positionwise_feed_forward import PositionwiseFeedForward
from paddlespeech.t2s.modules.fastspeech2_transformer.repeat import repeat
class Encoder(nn.Layer):
"""Transformer encoder module.
Parameters
----------
idim : int
Input dimension.
attention_dim : int
Dimention of attention.
attention_heads : int
The number of heads of multi head attention.
linear_units : int
The number of units of position-wise feed forward.
num_blocks : int
The number of decoder blocks.
dropout_rate : float
Dropout rate.
positional_dropout_rate : float
Dropout rate after adding positional encoding.
attention_dropout_rate : float
Dropout rate in attention.
input_layer : Union[str, paddle.nn.Layer]
Input layer type.
pos_enc_class : paddle.nn.Layer
Positional encoding module class.
`PositionalEncoding `or `ScaledPositionalEncoding`
normalize_before : bool
Whether to use layer_norm before the first block.
concat_after : bool
Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
positionwise_layer_type : str
"linear", "conv1d", or "conv1d-linear".
positionwise_conv_kernel_size : int
Kernel size of positionwise conv1d layer.
selfattention_layer_type : str
Encoder attention layer type.
padding_idx : int
Padding idx for input_layer=embed.
"""
def __init__(
self,
idim,
attention_dim=256,
attention_heads=4,
linear_units=2048,
num_blocks=6,
dropout_rate=0.1,
positional_dropout_rate=0.1,
attention_dropout_rate=0.0,
input_layer="conv2d",
pos_enc_class=PositionalEncoding,
normalize_before=True,
concat_after=False,
positionwise_layer_type="linear",
positionwise_conv_kernel_size=1,
selfattention_layer_type="selfattn",
padding_idx=-1, ):
"""Construct an Encoder object."""
super(Encoder, self).__init__()
self.conv_subsampling_factor = 1
if input_layer == "linear":
self.embed = nn.Sequential(
nn.Linear(idim, attention_dim, bias_attr=True),
nn.LayerNorm(attention_dim),
nn.Dropout(dropout_rate),
nn.ReLU(),
pos_enc_class(attention_dim, positional_dropout_rate), )
elif input_layer == "embed":
self.embed = nn.Sequential(
nn.Embedding(idim, attention_dim, padding_idx=padding_idx),
pos_enc_class(attention_dim, positional_dropout_rate), )
elif isinstance(input_layer, nn.Layer):
self.embed = nn.Sequential(
input_layer,
pos_enc_class(attention_dim, positional_dropout_rate), )
elif input_layer is None:
self.embed = nn.Sequential(
pos_enc_class(attention_dim, positional_dropout_rate))
else:
raise ValueError("unknown input_layer: " + input_layer)
self.normalize_before = normalize_before
positionwise_layer, positionwise_layer_args = self.get_positionwise_layer(
positionwise_layer_type,
attention_dim,
linear_units,
dropout_rate,
positionwise_conv_kernel_size, )
if selfattention_layer_type in [
"selfattn",
"rel_selfattn",
"legacy_rel_selfattn",
]:
encoder_selfattn_layer = MultiHeadedAttention
encoder_selfattn_layer_args = [
(attention_heads, attention_dim, attention_dropout_rate, )
] * num_blocks
else:
raise NotImplementedError(selfattention_layer_type)
self.encoders = repeat(
num_blocks,
lambda lnum: EncoderLayer(
attention_dim,
encoder_selfattn_layer(*encoder_selfattn_layer_args[lnum]),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
normalize_before,
concat_after, ), )
if self.normalize_before:
self.after_norm = nn.LayerNorm(attention_dim)
def get_positionwise_layer(
self,
positionwise_layer_type="linear",
attention_dim=256,
linear_units=2048,
dropout_rate=0.1,
positionwise_conv_kernel_size=1, ):
"""Define positionwise layer."""
if positionwise_layer_type == "linear":
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (attention_dim, linear_units,
dropout_rate)
elif positionwise_layer_type == "conv1d":
positionwise_layer = MultiLayeredConv1d
positionwise_layer_args = (attention_dim, linear_units,
positionwise_conv_kernel_size,
dropout_rate, )
elif positionwise_layer_type == "conv1d-linear":
positionwise_layer = Conv1dLinear
positionwise_layer_args = (attention_dim, linear_units,
positionwise_conv_kernel_size,
dropout_rate, )
else:
raise NotImplementedError("Support only linear or conv1d.")
return positionwise_layer, positionwise_layer_args
def forward(self, xs, masks):
"""Encode input sequence.
Parameters
----------
xs : paddle.Tensor
Input tensor (#batch, time, idim).
masks : paddle.Tensor
Mask tensor (#batch, time).
Returns
----------
paddle.Tensor
Output tensor (#batch, time, attention_dim).
paddle.Tensor
Mask tensor (#batch, time).
"""
xs = self.embed(xs)
xs, masks = self.encoders(xs, masks)
if self.normalize_before:
xs = self.after_norm(xs)
return xs, masks
def forward_one_step(self, xs, masks, cache=None):
"""Encode input frame.
Parameters
----------
xs : paddle.Tensor
Input tensor.
masks : paddle.Tensor
Mask tensor.
cache : List[paddle.Tensor]
List of cache tensors.
Returns
----------
paddle.Tensor
Output tensor.
paddle.Tensor
Mask tensor.
List[paddle.Tensor]
List of new cache tensors.
"""
xs = self.embed(xs)
if cache is None:
cache = [None for _ in range(len(self.encoders))]
new_cache = []
for c, e in zip(cache, self.encoders):
xs, masks = e(xs, masks, cache=c)
new_cache.append(xs)
if self.normalize_before:
xs = self.after_norm(xs)
return xs, masks, new_cache

@ -13,9 +13,10 @@
# limitations under the License. # limitations under the License.
"""Layer normalization module.""" """Layer normalization module."""
import paddle import paddle
from paddle import nn
class LayerNorm(paddle.nn.LayerNorm): class LayerNorm(nn.LayerNorm):
"""Layer normalization module. """Layer normalization module.
Parameters Parameters
@ -28,7 +29,7 @@ class LayerNorm(paddle.nn.LayerNorm):
def __init__(self, nout, dim=-1): def __init__(self, nout, dim=-1):
"""Construct an LayerNorm object.""" """Construct an LayerNorm object."""
super(LayerNorm, self).__init__(nout) super().__init__(nout)
self.dim = dim self.dim = dim
def forward(self, x): def forward(self, x):

@ -11,18 +11,16 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import math
import paddle import paddle
from paddle import nn
from paddle.fluid.layers import sequence_mask from paddle.fluid.layers import sequence_mask
from paddle.nn import functional as F from paddle.nn import functional as F
from scipy import signal
__all__ = [
"guided_attention_loss",
"weighted_mean",
"masked_l1_loss",
"masked_softmax_with_cross_entropy",
]
# Loss for Tacotron2
def attention_guide(dec_lens, enc_lens, N, T, g, dtype=None): def attention_guide(dec_lens, enc_lens, N, T, g, dtype=None):
"""Build that W matrix. shape(B, T_dec, T_enc) """Build that W matrix. shape(B, T_dec, T_enc)
W[i, n, t] = 1 - exp(-(n/dec_lens[i] - t/enc_lens[i])**2 / (2g**2)) W[i, n, t] = 1 - exp(-(n/dec_lens[i] - t/enc_lens[i])**2 / (2g**2))
@ -57,6 +55,367 @@ def guided_attention_loss(attention_weight, dec_lens, enc_lens, g):
return loss return loss
# Losses for GAN Vocoder
def stft(x,
fft_size,
hop_length=None,
win_length=None,
window='hann',
center=True,
pad_mode='reflect'):
"""Perform STFT and convert to magnitude spectrogram.
Parameters
----------
x : Tensor
Input signal tensor (B, T).
fft_size : int
FFT size.
hop_size : int
Hop size.
win_length : int
window : str, optional
window : str
Name of window function, see `scipy.signal.get_window` for more
details. Defaults to "hann".
center : bool, optional
center (bool, optional): Whether to pad `x` to make that the
:math:`t \times hop\_length` at the center of :math:`t`-th frame. Default: `True`.
pad_mode : str, optional
Choose padding pattern when `center` is `True`.
Returns
----------
Tensor:
Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
"""
# calculate window
window = signal.get_window(window, win_length, fftbins=True)
window = paddle.to_tensor(window)
x_stft = paddle.signal.stft(
x,
fft_size,
hop_length,
win_length,
window=window,
center=center,
pad_mode=pad_mode)
real = x_stft.real()
imag = x_stft.imag()
return paddle.sqrt(paddle.clip(real**2 + imag**2, min=1e-7)).transpose(
[0, 2, 1])
class SpectralConvergenceLoss(nn.Layer):
"""Spectral convergence loss module."""
def __init__(self):
"""Initilize spectral convergence loss module."""
super().__init__()
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Parameters
----------
x_mag : Tensor
Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag : Tensor)
Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns
----------
Tensor
Spectral convergence loss value.
"""
return paddle.norm(
y_mag - x_mag, p="fro") / paddle.clip(
paddle.norm(y_mag, p="fro"), min=1e-10)
class LogSTFTMagnitudeLoss(nn.Layer):
"""Log STFT magnitude loss module."""
def __init__(self, epsilon=1e-7):
"""Initilize los STFT magnitude loss module."""
super().__init__()
self.epsilon = epsilon
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Parameters
----------
x_mag : Tensor
Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag : Tensor
Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns
----------
Tensor
Log STFT magnitude loss value.
"""
return F.l1_loss(
paddle.log(paddle.clip(y_mag, min=self.epsilon)),
paddle.log(paddle.clip(x_mag, min=self.epsilon)))
class STFTLoss(nn.Layer):
"""STFT loss module."""
def __init__(self,
fft_size=1024,
shift_size=120,
win_length=600,
window="hann"):
"""Initialize STFT loss module."""
super().__init__()
self.fft_size = fft_size
self.shift_size = shift_size
self.win_length = win_length
self.window = window
self.spectral_convergence_loss = SpectralConvergenceLoss()
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
def forward(self, x, y):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Predicted signal (B, T).
y : Tensor
Groundtruth signal (B, T).
Returns
----------
Tensor
Spectral convergence loss value.
Tensor
Log STFT magnitude loss value.
"""
x_mag = stft(x, self.fft_size, self.shift_size, self.win_length,
self.window)
y_mag = stft(y, self.fft_size, self.shift_size, self.win_length,
self.window)
sc_loss = self.spectral_convergence_loss(x_mag, y_mag)
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
return sc_loss, mag_loss
class MultiResolutionSTFTLoss(nn.Layer):
"""Multi resolution STFT loss module."""
def __init__(
self,
fft_sizes=[1024, 2048, 512],
hop_sizes=[120, 240, 50],
win_lengths=[600, 1200, 240],
window="hann", ):
"""Initialize Multi resolution STFT loss module.
Parameters
----------
fft_sizes : list
List of FFT sizes.
hop_sizes : list
List of hop sizes.
win_lengths : list
List of window lengths.
window : str
Window function type.
"""
super().__init__()
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
self.stft_losses = nn.LayerList()
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
self.stft_losses.append(STFTLoss(fs, ss, wl, window))
def forward(self, x, y):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Predicted signal (B, T) or (B, #subband, T).
y : Tensor
Groundtruth signal (B, T) or (B, #subband, T).
Returns
----------
Tensor
Multi resolution spectral convergence loss value.
Tensor
Multi resolution log STFT magnitude loss value.
"""
if len(x.shape) == 3:
# (B, C, T) -> (B x C, T)
x = x.reshape([-1, x.shape[2]])
# (B, C, T) -> (B x C, T)
y = y.reshape([-1, y.shape[2]])
sc_loss = 0.0
mag_loss = 0.0
for f in self.stft_losses:
sc_l, mag_l = f(x, y)
sc_loss += sc_l
mag_loss += mag_l
sc_loss /= len(self.stft_losses)
mag_loss /= len(self.stft_losses)
return sc_loss, mag_loss
class GeneratorAdversarialLoss(nn.Layer):
"""Generator adversarial loss module."""
def __init__(
self,
average_by_discriminators=True,
loss_type="mse", ):
"""Initialize GeneratorAversarialLoss module."""
super().__init__()
self.average_by_discriminators = average_by_discriminators
assert loss_type in ["mse", "hinge"], f"{loss_type} is not supported."
if loss_type == "mse":
self.criterion = self._mse_loss
else:
self.criterion = self._hinge_loss
def forward(self, outputs):
"""Calcualate generator adversarial loss.
Parameters
----------
outputs: Tensor or List
Discriminator outputs or list of discriminator outputs.
Returns
----------
Tensor
Generator adversarial loss value.
"""
if isinstance(outputs, (tuple, list)):
adv_loss = 0.0
for i, outputs_ in enumerate(outputs):
if isinstance(outputs_, (tuple, list)):
# case including feature maps
outputs_ = outputs_[-1]
adv_loss += self.criterion(outputs_)
if self.average_by_discriminators:
adv_loss /= i + 1
else:
adv_loss = self.criterion(outputs)
return adv_loss
def _mse_loss(self, x):
return F.mse_loss(x, paddle.ones_like(x))
def _hinge_loss(self, x):
return -x.mean()
class DiscriminatorAdversarialLoss(nn.Layer):
"""Discriminator adversarial loss module."""
def __init__(
self,
average_by_discriminators=True,
loss_type="mse", ):
"""Initialize DiscriminatorAversarialLoss module."""
super().__init__()
self.average_by_discriminators = average_by_discriminators
assert loss_type in ["mse"], f"{loss_type} is not supported."
if loss_type == "mse":
self.fake_criterion = self._mse_fake_loss
self.real_criterion = self._mse_real_loss
def forward(self, outputs_hat, outputs):
"""Calcualate discriminator adversarial loss.
Parameters
----------
outputs_hat : Tensor or list
Discriminator outputs or list of
discriminator outputs calculated from generator outputs.
outputs : Tensor or list
Discriminator outputs or list of
discriminator outputs calculated from groundtruth.
Returns
----------
Tensor
Discriminator real loss value.
Tensor
Discriminator fake loss value.
"""
if isinstance(outputs, (tuple, list)):
real_loss = 0.0
fake_loss = 0.0
for i, (outputs_hat_,
outputs_) in enumerate(zip(outputs_hat, outputs)):
if isinstance(outputs_hat_, (tuple, list)):
# case including feature maps
outputs_hat_ = outputs_hat_[-1]
outputs_ = outputs_[-1]
real_loss += self.real_criterion(outputs_)
fake_loss += self.fake_criterion(outputs_hat_)
if self.average_by_discriminators:
fake_loss /= i + 1
real_loss /= i + 1
else:
real_loss = self.real_criterion(outputs)
fake_loss = self.fake_criterion(outputs_hat)
return real_loss, fake_loss
def _mse_real_loss(self, x):
return F.mse_loss(x, paddle.ones_like(x))
def _mse_fake_loss(self, x):
return F.mse_loss(x, paddle.zeros_like(x))
# Losses for SpeedySpeech
# Structural Similarity Index Measure (SSIM)
def gaussian(window_size, sigma):
gauss = paddle.to_tensor([
math.exp(-(x - window_size // 2)**2 / float(2 * sigma**2))
for x in range(window_size)
])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = paddle.matmul(_1D_window, paddle.transpose(
_1D_window, [1, 0])).unsqueeze([0, 1])
window = paddle.expand(_2D_window, [channel, 1, window_size, window_size])
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(
img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(
img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(
img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) \
/ ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
def ssim(img1, img2, window_size=11, size_average=True):
(_, channel, _, _) = img1.shape
window = create_window(window_size, channel)
return _ssim(img1, img2, window, window_size, channel, size_average)
def weighted_mean(input, weight): def weighted_mean(input, weight):
"""Weighted mean. It can also be used as masked mean. """Weighted mean. It can also be used as masked mean.
@ -98,28 +457,3 @@ def masked_l1_loss(prediction, target, mask):
abs_error = F.l1_loss(prediction, target, reduction='none') abs_error = F.l1_loss(prediction, target, reduction='none')
loss = weighted_mean(abs_error, mask) loss = weighted_mean(abs_error, mask)
return loss return loss
def masked_softmax_with_cross_entropy(logits, label, mask, axis=-1):
"""Compute masked softmax with cross entropy loss.
Parameters
----------
logits : Tensor
The logits. The ``axis``-th axis is the class dimension.
label : Tensor [dtype: int]
The label. The size of the ``axis``-th axis should be 1.
mask : Tensor
The mask. The shape should be broadcastable to ``label``.
axis : int, optional
The index of the class dimension in the shape of ``logits``, by default
-1.
Returns
-------
Tensor [shape=(1,)]
The masked softmax with cross entropy loss.
"""
ce = F.softmax_with_cross_entropy(logits, label, axis=axis)
loss = weighted_mean(ce, mask)
return loss

@ -1,120 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
__all__ = [
"id_mask",
"feature_mask",
"combine_mask",
"future_mask",
]
def id_mask(input, padding_index=0, dtype="bool"):
"""Generate mask with input ids.
Those positions where the value equals ``padding_index`` correspond to 0 or
``False``, otherwise, 1 or ``True``.
Parameters
----------
input : Tensor [dtype: int]
The input tensor. It represents the ids.
padding_index : int, optional
The id which represents padding, by default 0.
dtype : str, optional
Data type of the returned mask, by default "bool".
Returns
-------
Tensor
The generate mask. It has the same shape as ``input`` does.
"""
return paddle.cast(input != padding_index, dtype)
def feature_mask(input, axis, dtype="bool"):
"""Compute mask from input features.
For a input features, represented as batched feature vectors, those vectors
which all zeros are considerd padding vectors.
Parameters
----------
input : Tensor [dtype: float]
The input tensor which represents featues.
axis : int
The index of the feature dimension in ``input``. Other dimensions are
considered ``spatial`` dimensions.
dtype : str, optional
Data type of the generated mask, by default "bool"
Returns
-------
Tensor
The geenrated mask with ``spatial`` shape as mentioned above.
It has one less dimension than ``input`` does.
"""
feature_sum = paddle.sum(paddle.abs(input), axis)
return paddle.cast(feature_sum != 0, dtype)
def combine_mask(mask1, mask2):
"""Combine two mask with multiplication or logical and.
Parameters
-----------
mask1 : Tensor
The first mask.
mask2 : Tensor
The second mask with broadcastable shape with ``mask1``.
Returns
--------
Tensor
Combined mask.
Notes
------
It is mainly used to combine the padding mask and no future mask for
transformer decoder.
Padding mask is used to mask padding positions of the decoder inputs and
no future mask is used to prevent the decoder to see future information.
"""
if mask1.dtype == paddle.fluid.core.VarDesc.VarType.BOOL:
return paddle.logical_and(mask1, mask2)
else:
return mask1 * mask2
def future_mask(time_steps, dtype="bool"):
"""Generate lower triangular mask.
It is used at transformer decoder to prevent the decoder to see future
information.
Parameters
----------
time_steps : int
Decoder time steps.
dtype : str, optional
The data type of the generate mask, by default "bool".
Returns
-------
Tensor
The generated mask.
"""
mask = paddle.tril(paddle.ones([time_steps, time_steps]))
return paddle.cast(mask, dtype)

@ -129,7 +129,7 @@ def initialize(model: nn.Layer, init: str):
Parameters Parameters
---------- ----------
model : paddle.nn.Layer model : nn.Layer
Target. Target.
init : str init : str
Method of initialization. Method of initialization.

@ -16,6 +16,7 @@
import numpy as np import numpy as np
import paddle import paddle
import paddle.nn.functional as F import paddle.nn.functional as F
from paddle import nn
from scipy.signal import kaiser from scipy.signal import kaiser
@ -56,7 +57,7 @@ def design_prototype_filter(taps=62, cutoff_ratio=0.142, beta=9.0):
return h return h
class PQMF(paddle.nn.Layer): class PQMF(nn.Layer):
"""PQMF module. """PQMF module.
This module is based on `Near-perfect-reconstruction pseudo-QMF banks`_. This module is based on `Near-perfect-reconstruction pseudo-QMF banks`_.
.. _`Near-perfect-reconstruction pseudo-QMF banks`: .. _`Near-perfect-reconstruction pseudo-QMF banks`:
@ -105,7 +106,7 @@ class PQMF(paddle.nn.Layer):
self.updown_filter = updown_filter self.updown_filter = updown_filter
self.subbands = subbands self.subbands = subbands
# keep padding info # keep padding info
self.pad_fn = paddle.nn.Pad1D(taps // 2, mode='constant', value=0.0) self.pad_fn = nn.Pad1D(taps // 2, mode='constant', value=0.0)
def analysis(self, x): def analysis(self, x):
"""Analysis with PQMF. """Analysis with PQMF.

@ -65,7 +65,7 @@ class DurationPredictor(nn.Layer):
Offset value to avoid nan in log domain. Offset value to avoid nan in log domain.
""" """
super(DurationPredictor, self).__init__() super().__init__()
self.offset = offset self.offset = offset
self.conv = nn.LayerList() self.conv = nn.LayerList()
for idx in range(n_layers): for idx in range(n_layers):
@ -155,7 +155,7 @@ class DurationPredictorLoss(nn.Layer):
reduction : str reduction : str
Reduction type in loss calculation. Reduction type in loss calculation.
""" """
super(DurationPredictorLoss, self).__init__() super().__init__()
self.criterion = nn.MSELoss(reduction=reduction) self.criterion = nn.MSELoss(reduction=reduction)
self.offset = offset self.offset = offset

@ -1,80 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from math import exp
import paddle
import paddle.nn.functional as F
from paddle import nn
def gaussian(window_size, sigma):
gauss = paddle.to_tensor([
exp(-(x - window_size // 2)**2 / float(2 * sigma**2))
for x in range(window_size)
])
return gauss / gauss.sum()
def create_window(window_size, channel):
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
_2D_window = paddle.matmul(_1D_window, paddle.transpose(
_1D_window, [1, 0])).unsqueeze([0, 1])
window = paddle.expand(_2D_window, [channel, 1, window_size, window_size])
return window
def _ssim(img1, img2, window, window_size, channel, size_average=True):
mu1 = F.conv2d(img1, window, padding=window_size // 2, groups=channel)
mu2 = F.conv2d(img2, window, padding=window_size // 2, groups=channel)
mu1_sq = mu1.pow(2)
mu2_sq = mu2.pow(2)
mu1_mu2 = mu1 * mu2
sigma1_sq = F.conv2d(
img1 * img1, window, padding=window_size // 2, groups=channel) - mu1_sq
sigma2_sq = F.conv2d(
img2 * img2, window, padding=window_size // 2, groups=channel) - mu2_sq
sigma12 = F.conv2d(
img1 * img2, window, padding=window_size // 2, groups=channel) - mu1_mu2
C1 = 0.01**2
C2 = 0.03**2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) \
/ ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2))
if size_average:
return ssim_map.mean()
else:
return ssim_map.mean(1).mean(1).mean(1)
class SSIM(nn.Layer):
def __init__(self, window_size=11, size_average=True):
super().__init__()
self.window_size = window_size
self.size_average = size_average
self.channel = 1
self.window = create_window(window_size, self.channel)
def forward(self, img1, img2):
return _ssim(img1, img2, self.window, self.window_size, self.channel,
self.size_average)
def ssim(img1, img2, window_size=11, size_average=True):
(_, channel, _, _) = img1.shape
window = create_window(window_size, channel)
return _ssim(img1, img2, window, window_size, channel, size_average)

@ -1,220 +0,0 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
import paddle
from paddle import nn
from paddle.nn import functional as F
from scipy import signal
def stft(x,
fft_size,
hop_length=None,
win_length=None,
window='hann',
center=True,
pad_mode='reflect'):
"""Perform STFT and convert to magnitude spectrogram.
Parameters
----------
x : Tensor
Input signal tensor (B, T).
fft_size : int
FFT size.
hop_size : int
Hop size.
win_length : int
window : str, optional
window : str
Name of window function, see `scipy.signal.get_window` for more
details. Defaults to "hann".
center : bool, optional
center (bool, optional): Whether to pad `x` to make that the
:math:`t \times hop\_length` at the center of :math:`t`-th frame. Default: `True`.
pad_mode : str, optional
Choose padding pattern when `center` is `True`.
Returns
----------
Tensor:
Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
"""
# calculate window
window = signal.get_window(window, win_length, fftbins=True)
window = paddle.to_tensor(window)
x_stft = paddle.signal.stft(
x,
fft_size,
hop_length,
win_length,
window=window,
center=center,
pad_mode=pad_mode)
real = x_stft.real()
imag = x_stft.imag()
return paddle.sqrt(paddle.clip(real**2 + imag**2, min=1e-7)).transpose(
[0, 2, 1])
class SpectralConvergenceLoss(nn.Layer):
"""Spectral convergence loss module."""
def __init__(self):
"""Initilize spectral convergence loss module."""
super().__init__()
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Parameters
----------
x_mag : Tensor
Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag : Tensor)
Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns
----------
Tensor
Spectral convergence loss value.
"""
return paddle.norm(
y_mag - x_mag, p="fro") / paddle.clip(
paddle.norm(y_mag, p="fro"), min=1e-10)
class LogSTFTMagnitudeLoss(nn.Layer):
"""Log STFT magnitude loss module."""
def __init__(self, epsilon=1e-7):
"""Initilize los STFT magnitude loss module."""
super().__init__()
self.epsilon = epsilon
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Parameters
----------
x_mag : Tensor
Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag : Tensor
Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns
----------
Tensor
Log STFT magnitude loss value.
"""
return F.l1_loss(
paddle.log(paddle.clip(y_mag, min=self.epsilon)),
paddle.log(paddle.clip(x_mag, min=self.epsilon)))
class STFTLoss(nn.Layer):
"""STFT loss module."""
def __init__(self,
fft_size=1024,
shift_size=120,
win_length=600,
window="hann"):
"""Initialize STFT loss module."""
super().__init__()
self.fft_size = fft_size
self.shift_size = shift_size
self.win_length = win_length
self.window = window
self.spectral_convergence_loss = SpectralConvergenceLoss()
self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
def forward(self, x, y):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Predicted signal (B, T).
y : Tensor
Groundtruth signal (B, T).
Returns
----------
Tensor
Spectral convergence loss value.
Tensor
Log STFT magnitude loss value.
"""
x_mag = stft(x, self.fft_size, self.shift_size, self.win_length,
self.window)
y_mag = stft(y, self.fft_size, self.shift_size, self.win_length,
self.window)
sc_loss = self.spectral_convergence_loss(x_mag, y_mag)
mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
return sc_loss, mag_loss
class MultiResolutionSTFTLoss(nn.Layer):
"""Multi resolution STFT loss module."""
def __init__(
self,
fft_sizes=[1024, 2048, 512],
hop_sizes=[120, 240, 50],
win_lengths=[600, 1200, 240],
window="hann", ):
"""Initialize Multi resolution STFT loss module.
Parameters
----------
fft_sizes : list
List of FFT sizes.
hop_sizes : list
List of hop sizes.
win_lengths : list
List of window lengths.
window : str
Window function type.
"""
super().__init__()
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
self.stft_losses = nn.LayerList()
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
self.stft_losses.append(STFTLoss(fs, ss, wl, window))
def forward(self, x, y):
"""Calculate forward propagation.
Parameters
----------
x : Tensor
Predicted signal (B, T) or (B, #subband, T).
y : Tensor
Groundtruth signal (B, T) or (B, #subband, T).
Returns
----------
Tensor
Multi resolution spectral convergence loss value.
Tensor
Multi resolution log STFT magnitude loss value.
"""
if len(x.shape) == 3:
# (B, C, T) -> (B x C, T)
x = x.reshape([-1, x.shape[2]])
# (B, C, T) -> (B x C, T)
y = y.reshape([-1, y.shape[2]])
sc_loss = 0.0
mag_loss = 0.0
for f in self.stft_losses:
sc_l, mag_l = f(x, y)
sc_loss += sc_l
mag_loss += mag_l
sc_loss /= len(self.stft_losses)
mag_loss /= len(self.stft_losses)
return sc_loss, mag_loss

@ -19,7 +19,7 @@ import paddle
from paddle import nn from paddle import nn
from typeguard import check_argument_types from typeguard import check_argument_types
from paddlespeech.t2s.modules.fastspeech2_transformer.attention import MultiHeadedAttention as BaseMultiHeadedAttention from paddlespeech.t2s.modules.transformer.attention import MultiHeadedAttention as BaseMultiHeadedAttention
class StyleEncoder(nn.Layer): class StyleEncoder(nn.Layer):
@ -74,7 +74,7 @@ class StyleEncoder(nn.Layer):
gru_units: int=128, ): gru_units: int=128, ):
"""Initilize global style encoder module.""" """Initilize global style encoder module."""
assert check_argument_types() assert check_argument_types()
super(StyleEncoder, self).__init__() super().__init__()
self.ref_enc = ReferenceEncoder( self.ref_enc = ReferenceEncoder(
idim=idim, idim=idim,
@ -93,11 +93,15 @@ class StyleEncoder(nn.Layer):
def forward(self, speech: paddle.Tensor) -> paddle.Tensor: def forward(self, speech: paddle.Tensor) -> paddle.Tensor:
"""Calculate forward propagation. """Calculate forward propagation.
Args: Parameters
speech (Tensor): Batch of padded target features (B, Lmax, odim). ----------
speech : Tensor
Batch of padded target features (B, Lmax, odim).
Returns: Returns
Tensor: Style token embeddings (B, token_dim). ----------
Tensor:
Style token embeddings (B, token_dim).
""" """
ref_embs = self.ref_enc(speech) ref_embs = self.ref_enc(speech)
@ -145,7 +149,7 @@ class ReferenceEncoder(nn.Layer):
gru_units: int=128, ): gru_units: int=128, ):
"""Initilize reference encoder module.""" """Initilize reference encoder module."""
assert check_argument_types() assert check_argument_types()
super(ReferenceEncoder, self).__init__() super().__init__()
# check hyperparameters are valid # check hyperparameters are valid
assert conv_kernel_size % 2 == 1, "kernel size must be odd." assert conv_kernel_size % 2 == 1, "kernel size must be odd."
@ -249,7 +253,7 @@ class StyleTokenLayer(nn.Layer):
dropout_rate: float=0.0, ): dropout_rate: float=0.0, ):
"""Initilize style token layer module.""" """Initilize style token layer module."""
assert check_argument_types() assert check_argument_types()
super(StyleTokenLayer, self).__init__() super().__init__()
gst_embs = paddle.randn(shape=[gst_tokens, gst_token_dim // gst_heads]) gst_embs = paddle.randn(shape=[gst_tokens, gst_token_dim // gst_heads])
self.gst_embs = paddle.create_parameter( self.gst_embs = paddle.create_parameter(

@ -73,7 +73,7 @@ class Encoder(nn.Layer):
Dropout rate. Dropout rate.
""" """
super(Encoder, self).__init__() super().__init__()
# store the hyperparameters # store the hyperparameters
self.idim = idim self.idim = idim
self.use_residual = use_residual self.use_residual = use_residual

@ -1,208 +0,0 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddle import nn
from paddle.nn import functional as F
from paddlespeech.t2s.modules import attention as attn
__all__ = [
"PositionwiseFFN",
"TransformerEncoderLayer",
"TransformerDecoderLayer",
]
class PositionwiseFFN(nn.Layer):
"""A faithful implementation of Position-wise Feed-Forward Network
in `Attention is All You Need <https://arxiv.org/abs/1706.03762>`_.
It is basically a 2-layer MLP, with relu actication and dropout in between.
Parameters
----------
input_size: int
The feature size of the intput. It is also the feature size of the
output.
hidden_size: int
The hidden size.
dropout: float
The probability of the Dropout applied to the output of the first
layer, by default 0.
"""
def __init__(self, input_size: int, hidden_size: int, dropout=0.0):
super(PositionwiseFFN, self).__init__()
self.linear1 = nn.Linear(input_size, hidden_size)
self.linear2 = nn.Linear(hidden_size, input_size)
self.dropout = nn.Dropout(dropout)
self.input_size = input_size
self.hidden_szie = hidden_size
def forward(self, x):
r"""Forward pass of positionwise feed forward network.
Parameters
----------
x : Tensor [shape=(\*, input_size)]
The input tensor, where ``\*`` means arbitary shape.
Returns
-------
Tensor [shape=(\*, input_size)]
The output tensor.
"""
l1 = self.dropout(F.relu(self.linear1(x)))
l2 = self.linear2(l1)
return l2
class TransformerEncoderLayer(nn.Layer):
"""A faithful implementation of Transformer encoder layer in
`Attention is All You Need <https://arxiv.org/abs/1706.03762>`_.
Parameters
----------
d_model :int
The feature size of the input. It is also the feature size of the
output.
n_heads : int
The number of heads of self attention (a ``MultiheadAttention``
layer).
d_ffn : int
The hidden size of the positional feed forward network (a
``PositionwiseFFN`` layer).
dropout : float, optional
The probability of the dropout in MultiHeadAttention and
PositionwiseFFN, by default 0.
Notes
------
It uses the PostLN (post layer norm) scheme.
"""
def __init__(self, d_model, n_heads, d_ffn, dropout=0.):
super(TransformerEncoderLayer, self).__init__()
self.self_mha = attn.MultiheadAttention(d_model, n_heads, dropout)
self.layer_norm1 = nn.LayerNorm([d_model], epsilon=1e-6)
self.ffn = PositionwiseFFN(d_model, d_ffn, dropout)
self.layer_norm2 = nn.LayerNorm([d_model], epsilon=1e-6)
self.dropout = dropout
def forward(self, x, mask):
"""Forward pass of TransformerEncoderLayer.
Parameters
----------
x : Tensor [shape=(batch_size, time_steps, d_model)]
The input.
mask : Tensor
The padding mask. The shape is (batch_size, time_steps,
time_steps) or broadcastable shape.
Returns
-------
x :Tensor [shape=(batch_size, time_steps, d_model)]
The encoded output.
attn_weights : Tensor [shape=(batch_size, n_heads, time_steps, time_steps)]
The attention weights of the self attention.
"""
context_vector, attn_weights = self.self_mha(x, x, x, mask)
x = self.layer_norm1(
F.dropout(x + context_vector, self.dropout, training=self.training))
x = self.layer_norm2(
F.dropout(x + self.ffn(x), self.dropout, training=self.training))
return x, attn_weights
class TransformerDecoderLayer(nn.Layer):
"""A faithful implementation of Transformer decoder layer in
`Attention is All You Need <https://arxiv.org/abs/1706.03762>`_.
Parameters
----------
d_model :int
The feature size of the input. It is also the feature size of the
output.
n_heads : int
The number of heads of attentions (``MultiheadAttention``
layers).
d_ffn : int
The hidden size of the positional feed forward network (a
``PositionwiseFFN`` layer).
dropout : float, optional
The probability of the dropout in MultiHeadAttention and
PositionwiseFFN, by default 0.
Notes
------
It uses the PostLN (post layer norm) scheme.
"""
def __init__(self, d_model, n_heads, d_ffn, dropout=0.):
super(TransformerDecoderLayer, self).__init__()
self.self_mha = attn.MultiheadAttention(d_model, n_heads, dropout)
self.layer_norm1 = nn.LayerNorm([d_model], epsilon=1e-6)
self.cross_mha = attn.MultiheadAttention(d_model, n_heads, dropout)
self.layer_norm2 = nn.LayerNorm([d_model], epsilon=1e-6)
self.ffn = PositionwiseFFN(d_model, d_ffn, dropout)
self.layer_norm3 = nn.LayerNorm([d_model], epsilon=1e-6)
self.dropout = dropout
def forward(self, q, k, v, encoder_mask, decoder_mask):
"""Forward pass of TransformerEncoderLayer.
Parameters
----------
q : Tensor [shape=(batch_size, time_steps_q, d_model)]
The decoder input.
k : Tensor [shape=(batch_size, time_steps_k, d_model)]
The keys.
v : Tensor [shape=(batch_size, time_steps_k, d_model)]
The values
encoder_mask : Tensor
Encoder padding mask, shape is ``(batch_size, time_steps_k,
time_steps_k)`` or broadcastable shape.
decoder_mask : Tensor
Decoder mask, shape is ``(batch_size, time_steps_q, time_steps_k)``
or broadcastable shape.
Returns
--------
q : Tensor [shape=(batch_size, time_steps_q, d_model)]
The decoder output.
self_attn_weights : Tensor [shape=(batch_size, n_heads, time_steps_q, time_steps_q)]
Decoder self attention.
cross_attn_weights : Tensor [shape=(batch_size, n_heads, time_steps_q, time_steps_k)]
Decoder-encoder cross attention.
"""
context_vector, self_attn_weights = self.self_mha(q, q, q, decoder_mask)
q = self.layer_norm1(
F.dropout(q + context_vector, self.dropout, training=self.training))
context_vector, cross_attn_weights = self.cross_mha(q, k, v,
encoder_mask)
q = self.layer_norm2(
F.dropout(q + context_vector, self.dropout, training=self.training))
q = self.layer_norm3(
F.dropout(q + self.ffn(q), self.dropout, training=self.training))
return q, self_attn_weights, cross_attn_weights

@ -37,7 +37,7 @@ class MultiHeadedAttention(nn.Layer):
def __init__(self, n_head, n_feat, dropout_rate): def __init__(self, n_head, n_feat, dropout_rate):
"""Construct an MultiHeadedAttention object.""" """Construct an MultiHeadedAttention object."""
super(MultiHeadedAttention, self).__init__() super().__init__()
assert n_feat % n_head == 0 assert n_feat % n_head == 0
# We assume d_v always equals d_k # We assume d_v always equals d_k
self.d_k = n_feat // n_head self.d_k = n_feat // n_head
@ -70,7 +70,7 @@ class MultiHeadedAttention(nn.Layer):
paddle.Tensor paddle.Tensor
Transformed value tensor (#batch, n_head, time2, d_k). Transformed value tensor (#batch, n_head, time2, d_k).
""" """
n_batch = query.shape[0] n_batch = paddle.shape(query)[0]
q = paddle.reshape( q = paddle.reshape(
self.linear_q(query), [n_batch, -1, self.h, self.d_k]) self.linear_q(query), [n_batch, -1, self.h, self.d_k])
@ -104,7 +104,7 @@ class MultiHeadedAttention(nn.Layer):
Transformed value (#batch, time1, d_model) Transformed value (#batch, time1, d_model)
weighted by the attention score (#batch, time1, time2). weighted by the attention score (#batch, time1, time2).
""" """
n_batch = value.shape[0] n_batch = paddle.shape(value)[0]
softmax = paddle.nn.Softmax(axis=-1) softmax = paddle.nn.Softmax(axis=-1)
if mask is not None: if mask is not None:
mask = mask.unsqueeze(1) mask = mask.unsqueeze(1)
@ -126,8 +126,8 @@ class MultiHeadedAttention(nn.Layer):
# (batch, time1, d_model) # (batch, time1, d_model)
x = (paddle.reshape( x = (paddle.reshape(
x.transpose((0, 2, 1, 3)), (n_batch, -1, self.h * self.d_k))) x.transpose((0, 2, 1, 3)), (n_batch, -1, self.h * self.d_k)))
# (batch, time1, d_model)
return self.linear_out(x) # (batch, time1, d_model) return self.linear_out(x)
def forward(self, query, key, value, mask=None): def forward(self, query, key, value, mask=None):
"""Compute scaled dot product attention. """Compute scaled dot product attention.
@ -153,3 +153,113 @@ class MultiHeadedAttention(nn.Layer):
(0, 1, 3, 2))) / math.sqrt(self.d_k) (0, 1, 3, 2))) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask) return self.forward_attention(v, scores, mask)
class RelPositionMultiHeadedAttention(MultiHeadedAttention):
"""Multi-Head Attention layer with relative position encoding (new implementation).
Details can be found in https://github.com/espnet/espnet/pull/2816.
Paper: https://arxiv.org/abs/1901.02860
Parameters
----------
n_head : int
The number of heads.
n_feat : int
The number of features.
dropout_rate : float
Dropout rate.
zero_triu : bool
Whether to zero the upper triangular part of attention matrix.
"""
def __init__(self, n_head, n_feat, dropout_rate, zero_triu=False):
"""Construct an RelPositionMultiHeadedAttention object."""
super().__init__(n_head, n_feat, dropout_rate)
self.zero_triu = zero_triu
# linear transformation for positional encoding
self.linear_pos = nn.Linear(n_feat, n_feat, bias_attr=False)
# these two learnable bias are used in matrix c and matrix d
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
self.pos_bias_u = paddle.create_parameter(
shape=(self.h, self.d_k),
dtype='float32',
default_initializer=paddle.nn.initializer.XavierUniform())
self.pos_bias_v = paddle.create_parameter(
shape=(self.h, self.d_k),
dtype='float32',
default_initializer=paddle.nn.initializer.XavierUniform())
def rel_shift(self, x):
"""Compute relative positional encoding.
Parameters
----------
x : paddle.Tensor
Input tensor (batch, head, time1, 2*time1-1).
time1 means the length of query vector.
Returns
----------
paddle.Tensor
Output tensor.
"""
b, h, t1, t2 = paddle.shape(x)
zero_pad = paddle.zeros((b, h, t1, 1))
x_padded = paddle.concat([zero_pad, x], axis=-1)
x_padded = x_padded.reshape([b, h, t2 + 1, t1])
# only keep the positions from 0 to time2
x = x_padded[:, :, 1:].reshape([b, h, t1, t2])[:, :, :, :t2 // 2 + 1]
if self.zero_triu:
ones = paddle.ones((t1, t2))
x = x * paddle.tril(ones, t2 - 1)[None, None, :, :]
return x
def forward(self, query, key, value, pos_emb, mask):
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding.
Parameters
----------
query : paddle.Tensor
Query tensor (#batch, time1, size).
key : paddle.Tensor
Key tensor (#batch, time2, size).
value : paddle.Tensor
Value tensor (#batch, time2, size).
pos_emb : paddle.Tensor
Positional embedding tensor
(#batch, 2*time1-1, size).
mask : paddle.Tensor
Mask tensor (#batch, 1, time2) or
(#batch, time1, time2).
Returns
----------
paddle.Tensor
Output tensor (#batch, time1, d_model).
"""
q, k, v = self.forward_qkv(query, key, value)
# (batch, time1, head, d_k)
q = q.transpose([0, 2, 1, 3])
n_batch_pos = paddle.shape(pos_emb)[0]
p = self.linear_pos(pos_emb).reshape(
[n_batch_pos, -1, self.h, self.d_k])
# (batch, head, 2*time1-1, d_k)
p = p.transpose([0, 2, 1, 3])
# (batch, head, time1, d_k)
q_with_bias_u = (q + self.pos_bias_u).transpose([0, 2, 1, 3])
# (batch, head, time1, d_k)
q_with_bias_v = (q + self.pos_bias_v).transpose([0, 2, 1, 3])
# compute attention score
# first compute matrix a and matrix c
# as described in https://arxiv.org/abs/1901.02860 Section 3.3
# (batch, head, time1, time2)
matrix_ac = paddle.matmul(q_with_bias_u, k.transpose([0, 1, 3, 2]))
# compute matrix b and matrix d
# (batch, head, time1, 2*time1-1)
matrix_bd = paddle.matmul(q_with_bias_v, p.transpose([0, 1, 3, 2]))
matrix_bd = self.rel_shift(matrix_bd)
# (batch, head, time1, time2)
scores = (matrix_ac + matrix_bd) / math.sqrt(self.d_k)
return self.forward_attention(v, scores, mask)

@ -23,14 +23,14 @@ import paddle
import paddle.nn.functional as F import paddle.nn.functional as F
from paddle import nn from paddle import nn
from paddlespeech.t2s.modules.fastspeech2_transformer.attention import MultiHeadedAttention
from paddlespeech.t2s.modules.fastspeech2_transformer.decoder_layer import DecoderLayer
from paddlespeech.t2s.modules.fastspeech2_transformer.embedding import PositionalEncoding
from paddlespeech.t2s.modules.fastspeech2_transformer.lightconv import LightweightConvolution
from paddlespeech.t2s.modules.fastspeech2_transformer.mask import subsequent_mask
from paddlespeech.t2s.modules.fastspeech2_transformer.positionwise_feed_forward import PositionwiseFeedForward
from paddlespeech.t2s.modules.fastspeech2_transformer.repeat import repeat
from paddlespeech.t2s.modules.layer_norm import LayerNorm from paddlespeech.t2s.modules.layer_norm import LayerNorm
from paddlespeech.t2s.modules.transformer.attention import MultiHeadedAttention
from paddlespeech.t2s.modules.transformer.decoder_layer import DecoderLayer
from paddlespeech.t2s.modules.transformer.embedding import PositionalEncoding
from paddlespeech.t2s.modules.transformer.lightconv import LightweightConvolution
from paddlespeech.t2s.modules.transformer.mask import subsequent_mask
from paddlespeech.t2s.modules.transformer.positionwise_feed_forward import PositionwiseFeedForward
from paddlespeech.t2s.modules.transformer.repeat import repeat
class Decoder(nn.Layer): class Decoder(nn.Layer):
@ -67,11 +67,11 @@ class Decoder(nn.Layer):
Dropout rate in self-attention. Dropout rate in self-attention.
src_attention_dropout_rate : float src_attention_dropout_rate : float
Dropout rate in source-attention. Dropout rate in source-attention.
input_layer : (Union[str, paddle.nn.Layer]) input_layer : (Union[str, nn.Layer])
Input layer type. Input layer type.
use_output_layer : bool use_output_layer : bool
Whether to use output layer. Whether to use output layer.
pos_enc_class : paddle.nn.Layer pos_enc_class : nn.Layer
Positional encoding module class. Positional encoding module class.
`PositionalEncoding `or `ScaledPositionalEncoding` `PositionalEncoding `or `ScaledPositionalEncoding`
normalize_before : bool normalize_before : bool
@ -122,8 +122,7 @@ class Decoder(nn.Layer):
input_layer, input_layer,
pos_enc_class(attention_dim, positional_dropout_rate)) pos_enc_class(attention_dim, positional_dropout_rate))
else: else:
raise NotImplementedError( raise NotImplementedError("only `embed` or nn.Layer is supported.")
"only `embed` or paddle.nn.Layer is supported.")
self.normalize_before = normalize_before self.normalize_before = normalize_before
# self-attention module definition # self-attention module definition

@ -26,13 +26,13 @@ class DecoderLayer(nn.Layer):
---------- ----------
size : int size : int
Input dimension. Input dimension.
self_attn : paddle.nn.Layer self_attn : nn.Layer
Self-attention module instance. Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument. `MultiHeadedAttention` instance can be used as the argument.
src_attn : paddle.nn.Layer src_attn : nn.Layer
Self-attention module instance. Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument. `MultiHeadedAttention` instance can be used as the argument.
feed_forward : paddle.nn.Layer feed_forward : nn.Layer
Feed-forward module instance. Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument.
dropout_rate : float dropout_rate : float

@ -43,7 +43,7 @@ class PositionalEncoding(nn.Layer):
dtype="float32", dtype="float32",
reverse=False): reverse=False):
"""Construct an PositionalEncoding object.""" """Construct an PositionalEncoding object."""
super(PositionalEncoding, self).__init__() super().__init__()
self.d_model = d_model self.d_model = d_model
self.reverse = reverse self.reverse = reverse
self.xscale = math.sqrt(self.d_model) self.xscale = math.sqrt(self.d_model)
@ -117,7 +117,7 @@ class ScaledPositionalEncoding(PositionalEncoding):
self.alpha = paddle.create_parameter( self.alpha = paddle.create_parameter(
shape=x.shape, shape=x.shape,
dtype=self.dtype, dtype=self.dtype,
default_initializer=paddle.nn.initializer.Assign(x)) default_initializer=nn.initializer.Assign(x))
def reset_parameters(self): def reset_parameters(self):
"""Reset parameters.""" """Reset parameters."""
@ -139,3 +139,76 @@ class ScaledPositionalEncoding(PositionalEncoding):
T = paddle.shape(x)[1] T = paddle.shape(x)[1]
x = x + self.alpha * self.pe[:, :T] x = x + self.alpha * self.pe[:, :T]
return self.dropout(x) return self.dropout(x)
class RelPositionalEncoding(nn.Layer):
"""Relative positional encoding module (new implementation).
Details can be found in https://github.com/espnet/espnet/pull/2816.
See : Appendix B in https://arxiv.org/abs/1901.02860
Parameters
----------
d_model : int
Embedding dimension.
dropout_rate : float
Dropout rate.
max_len : int
Maximum input length.
"""
def __init__(self, d_model, dropout_rate, max_len=5000, dtype="float32"):
"""Construct an PositionalEncoding object."""
super().__init__()
self.d_model = d_model
self.xscale = math.sqrt(self.d_model)
self.dropout = nn.Dropout(p=dropout_rate)
self.pe = None
self.dtype = dtype
self.extend_pe(paddle.expand(paddle.zeros([1]), (1, max_len)))
def extend_pe(self, x):
"""Reset the positional encodings."""
if self.pe is not None:
# self.pe contains both positive and negative parts
# the length of self.pe is 2 * input_len - 1
if paddle.shape(self.pe)[1] >= paddle.shape(x)[1] * 2 - 1:
return
# Suppose `i` means to the position of query vecotr and `j` means the
# position of key vector. We use position relative positions when keys
# are to the left (i>j) and negative relative positions otherwise (i<j).
x_shape = paddle.shape(x)
pe_positive = paddle.zeros([x_shape[1], self.d_model])
pe_negative = paddle.zeros([x_shape[1], self.d_model])
position = paddle.arange(0, x_shape[1], dtype=self.dtype).unsqueeze(1)
div_term = paddle.exp(
paddle.arange(0, self.d_model, 2, dtype=self.dtype) *
-(math.log(10000.0) / self.d_model))
pe_positive[:, 0::2] = paddle.sin(position * div_term)
pe_positive[:, 1::2] = paddle.cos(position * div_term)
pe_negative[:, 0::2] = paddle.sin(-1 * position * div_term)
pe_negative[:, 1::2] = paddle.cos(-1 * position * div_term)
# Reserve the order of positive indices and concat both positive and
# negative indices. This is used to support the shifting trick
# as in https://arxiv.org/abs/1901.02860
pe_positive = paddle.flip(pe_positive, [0]).unsqueeze(0)
pe_negative = pe_negative[1:].unsqueeze(0)
pe = paddle.concat([pe_positive, pe_negative], axis=1)
self.pe = pe
def forward(self, x: paddle.Tensor):
"""Add positional encoding.
Parameters
----------
x : paddle.Tensor
Input tensor (batch, time, `*`).
Returns
----------
paddle.Tensor
Encoded tensor (batch, time, `*`).
"""
self.extend_pe(x)
x = x * self.xscale
T = paddle.shape(x)[1]
pe_size = paddle.shape(self.pe)
pos_emb = self.pe[:, pe_size[1] // 2 - T + 1:pe_size[1] // 2 + T, ]
return self.dropout(x), self.dropout(pos_emb)

@ -0,0 +1,609 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
from typing import List
from typing import Union
from paddle import nn
from paddlespeech.t2s.modules.activation import get_activation
from paddlespeech.t2s.modules.conformer.convolution import ConvolutionModule
from paddlespeech.t2s.modules.conformer.encoder_layer import EncoderLayer as ConformerEncoderLayer
from paddlespeech.t2s.modules.layer_norm import LayerNorm
from paddlespeech.t2s.modules.transformer.attention import MultiHeadedAttention
from paddlespeech.t2s.modules.transformer.attention import RelPositionMultiHeadedAttention
from paddlespeech.t2s.modules.transformer.embedding import PositionalEncoding
from paddlespeech.t2s.modules.transformer.embedding import RelPositionalEncoding
from paddlespeech.t2s.modules.transformer.embedding import ScaledPositionalEncoding
from paddlespeech.t2s.modules.transformer.encoder_layer import EncoderLayer
from paddlespeech.t2s.modules.transformer.multi_layer_conv import Conv1dLinear
from paddlespeech.t2s.modules.transformer.multi_layer_conv import MultiLayeredConv1d
from paddlespeech.t2s.modules.transformer.positionwise_feed_forward import PositionwiseFeedForward
from paddlespeech.t2s.modules.transformer.repeat import repeat
from paddlespeech.t2s.modules.transformer.subsampling import Conv2dSubsampling
class BaseEncoder(nn.Layer):
"""Base Encoder module.
Parameters
----------
idim : int
Input dimension.
attention_dim : int
Dimention of attention.
attention_heads : int
The number of heads of multi head attention.
linear_units : int
The number of units of position-wise feed forward.
num_blocks : int
The number of decoder blocks.
dropout_rate : float
Dropout rate.
positional_dropout_rate : float
Dropout rate after adding positional encoding.
attention_dropout_rate : float
Dropout rate in attention.
input_layer : Union[str, nn.Layer]
Input layer type.
normalize_before : bool
Whether to use layer_norm before the first block.
concat_after : bool
Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
positionwise_layer_type : str
"linear", "conv1d", or "conv1d-linear".
positionwise_conv_kernel_size : int
Kernel size of positionwise conv1d layer.
macaron_style : bool
Whether to use macaron style for positionwise layer.
pos_enc_layer_type : str
Encoder positional encoding layer type.
selfattention_layer_type : str
Encoder attention layer type.
activation_type : str
Encoder activation function type.
use_cnn_module : bool
Whether to use convolution module.
zero_triu : bool
Whether to zero the upper triangular part of attention matrix.
cnn_module_kernel : int
Kernerl size of convolution module.
padding_idx : int
Padding idx for input_layer=embed.
stochastic_depth_rate : float
Maximum probability to skip the encoder layer.
intermediate_layers : Union[List[int], None]
indices of intermediate CTC layer.
indices start from 1.
if not None, intermediate outputs are returned (which changes return type
signature.)
encoder_type: str
"transformer", or "conformer".
"""
def __init__(self,
idim: int,
attention_dim: int=256,
attention_heads: int=4,
linear_units: int=2048,
num_blocks: int=6,
dropout_rate: float=0.1,
positional_dropout_rate: float=0.1,
attention_dropout_rate: float=0.0,
input_layer: str="conv2d",
normalize_before: bool=True,
concat_after: bool=False,
positionwise_layer_type: str="linear",
positionwise_conv_kernel_size: int=1,
macaron_style: bool=False,
pos_enc_layer_type: str="abs_pos",
selfattention_layer_type: str="selfattn",
activation_type: str="swish",
use_cnn_module: bool=False,
zero_triu: bool=False,
cnn_module_kernel: int=31,
padding_idx: int=-1,
stochastic_depth_rate: float=0.0,
intermediate_layers: Union[List[int], None]=None,
encoder_type: str="transformer"):
"""Construct an Base Encoder object."""
super().__init__()
activation = get_activation(activation_type)
pos_enc_class = self.get_pos_enc_class(pos_enc_layer_type,
selfattention_layer_type)
self.encoder_type = encoder_type
self.conv_subsampling_factor = 1
self.embed = self.get_embed(
idim=idim,
input_layer=input_layer,
attention_dim=attention_dim,
pos_enc_class=pos_enc_class,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
padding_idx=padding_idx)
self.normalize_before = normalize_before
# self-attention module definition
encoder_selfattn_layer, encoder_selfattn_layer_args = self.get_encoder_selfattn_layer(
selfattention_layer_type=selfattention_layer_type,
attention_heads=attention_heads,
attention_dim=attention_dim,
attention_dropout_rate=attention_dropout_rate,
zero_triu=zero_triu,
pos_enc_layer_type=pos_enc_layer_type)
# feed-forward module definition
positionwise_layer, positionwise_layer_args = self.get_positionwise_layer(
positionwise_layer_type, attention_dim, linear_units, dropout_rate,
positionwise_conv_kernel_size, activation)
# convolution module definition
convolution_layer = ConvolutionModule
convolution_layer_args = (attention_dim, cnn_module_kernel, activation)
if self.encoder_type == "transformer":
self.encoders = repeat(
num_blocks,
lambda lnum: EncoderLayer(
attention_dim,
encoder_selfattn_layer(*encoder_selfattn_layer_args),
positionwise_layer(*positionwise_layer_args),
dropout_rate,
normalize_before,
concat_after, ), )
elif self.encoder_type == "conformer":
self.encoders = repeat(
num_blocks,
lambda lnum: ConformerEncoderLayer(
attention_dim,
encoder_selfattn_layer(*encoder_selfattn_layer_args),
positionwise_layer(*positionwise_layer_args),
positionwise_layer(*positionwise_layer_args) if macaron_style else None,
convolution_layer(*convolution_layer_args) if use_cnn_module else None,
dropout_rate,
normalize_before,
concat_after,
stochastic_depth_rate * float(1 + lnum) / num_blocks, ), )
self.intermediate_layers = intermediate_layers
else:
raise NotImplementedError("Support only linear or conv1d.")
if self.normalize_before:
self.after_norm = LayerNorm(attention_dim)
def get_positionwise_layer(self,
positionwise_layer_type: str="linear",
attention_dim: int=256,
linear_units: int=2048,
dropout_rate: float=0.1,
positionwise_conv_kernel_size: int=1,
activation: nn.Layer=nn.ReLU()):
"""Define positionwise layer."""
if positionwise_layer_type == "linear":
positionwise_layer = PositionwiseFeedForward
positionwise_layer_args = (attention_dim, linear_units,
dropout_rate, activation)
elif positionwise_layer_type == "conv1d":
positionwise_layer = MultiLayeredConv1d
positionwise_layer_args = (attention_dim, linear_units,
positionwise_conv_kernel_size,
dropout_rate, )
elif positionwise_layer_type == "conv1d-linear":
positionwise_layer = Conv1dLinear
positionwise_layer_args = (attention_dim, linear_units,
positionwise_conv_kernel_size,
dropout_rate, )
else:
raise NotImplementedError("Support only linear or conv1d.")
return positionwise_layer, positionwise_layer_args
def get_encoder_selfattn_layer(self,
selfattention_layer_type: str="selfattn",
attention_heads: int=4,
attention_dim: int=256,
attention_dropout_rate: float=0.0,
zero_triu: bool=False,
pos_enc_layer_type: str="abs_pos"):
if selfattention_layer_type == "selfattn":
encoder_selfattn_layer = MultiHeadedAttention
encoder_selfattn_layer_args = (attention_heads, attention_dim,
attention_dropout_rate, )
elif selfattention_layer_type == "rel_selfattn":
assert pos_enc_layer_type == "rel_pos"
encoder_selfattn_layer = RelPositionMultiHeadedAttention
encoder_selfattn_layer_args = (attention_heads, attention_dim,
attention_dropout_rate, zero_triu, )
else:
raise ValueError("unknown encoder_attn_layer: " +
selfattention_layer_type)
return encoder_selfattn_layer, encoder_selfattn_layer_args
def get_pos_enc_class(self,
pos_enc_layer_type: str="abs_pos",
selfattention_layer_type: str="selfattn"):
if pos_enc_layer_type == "abs_pos":
pos_enc_class = PositionalEncoding
elif pos_enc_layer_type == "scaled_abs_pos":
pos_enc_class = ScaledPositionalEncoding
elif pos_enc_layer_type == "rel_pos":
assert selfattention_layer_type == "rel_selfattn"
pos_enc_class = RelPositionalEncoding
else:
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type)
return pos_enc_class
def get_embed(self,
idim,
input_layer="conv2d",
attention_dim: int=256,
pos_enc_class=PositionalEncoding,
dropout_rate: int=0.1,
positional_dropout_rate: int=0.1,
padding_idx: int=-1):
if input_layer == "linear":
embed = nn.Sequential(
nn.Linear(idim, attention_dim),
nn.LayerNorm(attention_dim),
nn.Dropout(dropout_rate),
nn.ReLU(),
pos_enc_class(attention_dim, positional_dropout_rate), )
elif input_layer == "conv2d":
embed = Conv2dSubsampling(
idim,
attention_dim,
dropout_rate,
pos_enc_class(attention_dim, positional_dropout_rate), )
self.conv_subsampling_factor = 4
elif input_layer == "embed":
embed = nn.Sequential(
nn.Embedding(idim, attention_dim, padding_idx=padding_idx),
pos_enc_class(attention_dim, positional_dropout_rate), )
elif isinstance(input_layer, nn.Layer):
embed = nn.Sequential(
input_layer,
pos_enc_class(attention_dim, positional_dropout_rate), )
elif input_layer is None:
embed = nn.Sequential(
pos_enc_class(attention_dim, positional_dropout_rate))
else:
raise ValueError("unknown input_layer: " + input_layer)
return embed
def forward(self, xs, masks):
"""Encode input sequence.
Parameters
----------
xs : paddle.Tensor
Input tensor (#batch, time, idim).
masks : paddle.Tensor
Mask tensor (#batch, 1, time).
Returns
----------
paddle.Tensor
Output tensor (#batch, time, attention_dim).
paddle.Tensor
Mask tensor (#batch, 1, time).
"""
xs = self.embed(xs)
xs, masks = self.encoders(xs, masks)
if self.normalize_before:
xs = self.after_norm(xs)
return xs, masks
class TransformerEncoder(BaseEncoder):
"""Transformer encoder module.
Parameters
----------
idim : int
Input dimension.
attention_dim : int
Dimention of attention.
attention_heads : int
The number of heads of multi head attention.
linear_units : int
The number of units of position-wise feed forward.
num_blocks : int
The number of decoder blocks.
dropout_rate : float
Dropout rate.
positional_dropout_rate : float
Dropout rate after adding positional encoding.
attention_dropout_rate : float
Dropout rate in attention.
input_layer : Union[str, paddle.nn.Layer]
Input layer type.
pos_enc_layer_type : str
Encoder positional encoding layer type.
normalize_before : bool
Whether to use layer_norm before the first block.
concat_after : bool
Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
positionwise_layer_type : str
"linear", "conv1d", or "conv1d-linear".
positionwise_conv_kernel_size : int
Kernel size of positionwise conv1d layer.
selfattention_layer_type : str
Encoder attention layer type.
activation_type : str
Encoder activation function type.
padding_idx : int
Padding idx for input_layer=embed.
"""
def __init__(
self,
idim,
attention_dim: int=256,
attention_heads: int=4,
linear_units: int=2048,
num_blocks: int=6,
dropout_rate: float=0.1,
positional_dropout_rate: float=0.1,
attention_dropout_rate: float=0.0,
input_layer: str="conv2d",
pos_enc_layer_type: str="abs_pos",
normalize_before: bool=True,
concat_after: bool=False,
positionwise_layer_type: str="linear",
positionwise_conv_kernel_size: int=1,
selfattention_layer_type: str="selfattn",
activation_type: str="relu",
padding_idx: int=-1, ):
"""Construct an Transformer Encoder object."""
super().__init__(
idim,
attention_dim=attention_dim,
attention_heads=attention_heads,
linear_units=linear_units,
num_blocks=num_blocks,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
attention_dropout_rate=attention_dropout_rate,
input_layer=input_layer,
pos_enc_layer_type=pos_enc_layer_type,
normalize_before=normalize_before,
concat_after=concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
selfattention_layer_type=selfattention_layer_type,
activation_type=activation_type,
padding_idx=padding_idx,
encoder_type="transformer")
def forward(self, xs, masks):
"""Encode input sequence.
Parameters
----------
xs : paddle.Tensor
Input tensor (#batch, time, idim).
masks : paddle.Tensor
Mask tensor (#batch, 1, time).
Returns
----------
paddle.Tensor
Output tensor (#batch, time, attention_dim).
paddle.Tensor
Mask tensor (#batch, 1, time).
"""
xs = self.embed(xs)
xs, masks = self.encoders(xs, masks)
if self.normalize_before:
xs = self.after_norm(xs)
return xs, masks
def forward_one_step(self, xs, masks, cache=None):
"""Encode input frame.
Parameters
----------
xs : paddle.Tensor
Input tensor.
masks : paddle.Tensor
Mask tensor.
cache : List[paddle.Tensor]
List of cache tensors.
Returns
----------
paddle.Tensor
Output tensor.
paddle.Tensor
Mask tensor.
List[paddle.Tensor]
List of new cache tensors.
"""
xs = self.embed(xs)
if cache is None:
cache = [None for _ in range(len(self.encoders))]
new_cache = []
for c, e in zip(cache, self.encoders):
xs, masks = e(xs, masks, cache=c)
new_cache.append(xs)
if self.normalize_before:
xs = self.after_norm(xs)
return xs, masks, new_cache
class ConformerEncoder(BaseEncoder):
"""Conformer encoder module.
Parameters
----------
idim : int
Input dimension.
attention_dim : int
Dimention of attention.
attention_heads : int
The number of heads of multi head attention.
linear_units : int
The number of units of position-wise feed forward.
num_blocks : int
The number of decoder blocks.
dropout_rate : float
Dropout rate.
positional_dropout_rate : float
Dropout rate after adding positional encoding.
attention_dropout_rate : float
Dropout rate in attention.
input_layer : Union[str, nn.Layer]
Input layer type.
normalize_before : bool
Whether to use layer_norm before the first block.
concat_after : bool
Whether to concat attention layer's input and output.
if True, additional linear will be applied.
i.e. x -> x + linear(concat(x, att(x)))
if False, no additional linear will be applied. i.e. x -> x + att(x)
positionwise_layer_type : str
"linear", "conv1d", or "conv1d-linear".
positionwise_conv_kernel_size : int
Kernel size of positionwise conv1d layer.
macaron_style : bool
Whether to use macaron style for positionwise layer.
pos_enc_layer_type : str
Encoder positional encoding layer type.
selfattention_layer_type : str
Encoder attention layer type.
activation_type : str
Encoder activation function type.
use_cnn_module : bool
Whether to use convolution module.
zero_triu : bool
Whether to zero the upper triangular part of attention matrix.
cnn_module_kernel : int
Kernerl size of convolution module.
padding_idx : int
Padding idx for input_layer=embed.
stochastic_depth_rate : float
Maximum probability to skip the encoder layer.
intermediate_layers : Union[List[int], None]
indices of intermediate CTC layer.
indices start from 1.
if not None, intermediate outputs are returned (which changes return type
signature.)
"""
def __init__(
self,
idim: int,
attention_dim: int=256,
attention_heads: int=4,
linear_units: int=2048,
num_blocks: int=6,
dropout_rate: float=0.1,
positional_dropout_rate: float=0.1,
attention_dropout_rate: float=0.0,
input_layer: str="conv2d",
normalize_before: bool=True,
concat_after: bool=False,
positionwise_layer_type: str="linear",
positionwise_conv_kernel_size: int=1,
macaron_style: bool=False,
pos_enc_layer_type: str="rel_pos",
selfattention_layer_type: str="rel_selfattn",
activation_type: str="swish",
use_cnn_module: bool=False,
zero_triu: bool=False,
cnn_module_kernel: int=31,
padding_idx: int=-1,
stochastic_depth_rate: float=0.0,
intermediate_layers: Union[List[int], None]=None, ):
"""Construct an Conformer Encoder object."""
super().__init__(
idim=idim,
attention_dim=attention_dim,
attention_heads=attention_heads,
linear_units=linear_units,
num_blocks=num_blocks,
dropout_rate=dropout_rate,
positional_dropout_rate=positional_dropout_rate,
attention_dropout_rate=attention_dropout_rate,
input_layer=input_layer,
normalize_before=normalize_before,
concat_after=concat_after,
positionwise_layer_type=positionwise_layer_type,
positionwise_conv_kernel_size=positionwise_conv_kernel_size,
macaron_style=macaron_style,
pos_enc_layer_type=pos_enc_layer_type,
selfattention_layer_type=selfattention_layer_type,
activation_type=activation_type,
use_cnn_module=use_cnn_module,
zero_triu=zero_triu,
cnn_module_kernel=cnn_module_kernel,
padding_idx=padding_idx,
stochastic_depth_rate=stochastic_depth_rate,
intermediate_layers=intermediate_layers,
encoder_type="conformer")
def forward(self, xs, masks):
"""Encode input sequence.
Parameters
----------
xs : paddle.Tensor
Input tensor (#batch, time, idim).
masks : paddle.Tensor
Mask tensor (#batch, 1, time).
Returns
----------
paddle.Tensor
Output tensor (#batch, time, attention_dim).
paddle.Tensor
Mask tensor (#batch, 1, time).
"""
if isinstance(self.embed, (Conv2dSubsampling)):
xs, masks = self.embed(xs, masks)
else:
xs = self.embed(xs)
if self.intermediate_layers is None:
xs, masks = self.encoders(xs, masks)
else:
intermediate_outputs = []
for layer_idx, encoder_layer in enumerate(self.encoders):
xs, masks = encoder_layer(xs, masks)
if (self.intermediate_layers is not None and
layer_idx + 1 in self.intermediate_layers):
# intermediate branches also require normalization.
encoder_output = xs
if isinstance(encoder_output, tuple):
encoder_output = encoder_output[0]
if self.normalize_before:
encoder_output = self.after_norm(encoder_output)
intermediate_outputs.append(encoder_output)
if isinstance(xs, tuple):
xs = xs[0]
if self.normalize_before:
xs = self.after_norm(xs)
if self.intermediate_layers is not None:
return xs, masks, intermediate_outputs
return xs, masks

@ -24,10 +24,10 @@ class EncoderLayer(nn.Layer):
---------- ----------
size : int size : int
Input dimension. Input dimension.
self_attn : paddle.nn.Layer self_attn : nn.Layer
Self-attention module instance. Self-attention module instance.
`MultiHeadedAttention` instance can be used as the argument. `MultiHeadedAttention` instance can be used as the argument.
feed_forward : paddle.nn.Layer feed_forward : nn.Layer
Feed-forward module instance. Feed-forward module instance.
`PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument. `PositionwiseFeedForward`, `MultiLayeredConv1d`, or `Conv1dLinear` instance can be used as the argument.
dropout_rate : float dropout_rate : float
@ -50,7 +50,7 @@ class EncoderLayer(nn.Layer):
normalize_before=True, normalize_before=True,
concat_after=False, ): concat_after=False, ):
"""Construct an EncoderLayer object.""" """Construct an EncoderLayer object."""
super(EncoderLayer, self).__init__() super().__init__()
self.self_attn = self_attn self.self_attn = self_attn
self.feed_forward = feed_forward self.feed_forward = feed_forward
self.norm1 = nn.LayerNorm(size) self.norm1 = nn.LayerNorm(size)

@ -18,7 +18,7 @@ import paddle
import paddle.nn.functional as F import paddle.nn.functional as F
from paddle import nn from paddle import nn
from paddlespeech.t2s.modules.glu import GLU from paddlespeech.t2s.modules.activation import get_activation
from paddlespeech.t2s.modules.masked_fill import masked_fill from paddlespeech.t2s.modules.masked_fill import masked_fill
MIN_VALUE = float(numpy.finfo(numpy.float32).min) MIN_VALUE = float(numpy.finfo(numpy.float32).min)
@ -56,7 +56,7 @@ class LightweightConvolution(nn.Layer):
use_kernel_mask=False, use_kernel_mask=False,
use_bias=False, ): use_bias=False, ):
"""Construct Lightweight Convolution layer.""" """Construct Lightweight Convolution layer."""
super(LightweightConvolution, self).__init__() super().__init__()
assert n_feat % wshare == 0 assert n_feat % wshare == 0
self.wshare = wshare self.wshare = wshare
@ -68,7 +68,7 @@ class LightweightConvolution(nn.Layer):
# linear -> GLU -> lightconv -> linear # linear -> GLU -> lightconv -> linear
self.linear1 = nn.Linear(n_feat, n_feat * 2) self.linear1 = nn.Linear(n_feat, n_feat * 2)
self.linear2 = nn.Linear(n_feat, n_feat) self.linear2 = nn.Linear(n_feat, n_feat)
self.act = GLU() self.act = get_activation("glu")
# lightconv related # lightconv related
self.uniform_ = nn.initializer.Uniform() self.uniform_ = nn.initializer.Uniform()

@ -12,10 +12,10 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
"""Layer modules for FFT block in FastSpeech (Feed-forward Transformer).""" """Layer modules for FFT block in FastSpeech (Feed-forward Transformer)."""
import paddle from paddle import nn
class MultiLayeredConv1d(paddle.nn.Layer): class MultiLayeredConv1d(nn.Layer):
"""Multi-layered conv1d for Transformer block. """Multi-layered conv1d for Transformer block.
This is a module of multi-leyered conv1d designed This is a module of multi-leyered conv1d designed
@ -43,21 +43,21 @@ class MultiLayeredConv1d(paddle.nn.Layer):
Dropout rate. Dropout rate.
""" """
super(MultiLayeredConv1d, self).__init__() super().__init__()
self.w_1 = paddle.nn.Conv1D( self.w_1 = nn.Conv1D(
in_chans, in_chans,
hidden_chans, hidden_chans,
kernel_size, kernel_size,
stride=1, stride=1,
padding=(kernel_size - 1) // 2, ) padding=(kernel_size - 1) // 2, )
self.w_2 = paddle.nn.Conv1D( self.w_2 = nn.Conv1D(
hidden_chans, hidden_chans,
in_chans, in_chans,
kernel_size, kernel_size,
stride=1, stride=1,
padding=(kernel_size - 1) // 2, ) padding=(kernel_size - 1) // 2, )
self.dropout = paddle.nn.Dropout(dropout_rate) self.dropout = nn.Dropout(dropout_rate)
self.relu = paddle.nn.ReLU() self.relu = nn.ReLU()
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.
@ -77,7 +77,7 @@ class MultiLayeredConv1d(paddle.nn.Layer):
[0, 2, 1]) [0, 2, 1])
class Conv1dLinear(paddle.nn.Layer): class Conv1dLinear(nn.Layer):
"""Conv1D + Linear for Transformer block. """Conv1D + Linear for Transformer block.
A variant of MultiLayeredConv1d, which replaces second conv-layer to linear. A variant of MultiLayeredConv1d, which replaces second conv-layer to linear.
@ -98,16 +98,16 @@ class Conv1dLinear(paddle.nn.Layer):
dropout_rate : float dropout_rate : float
Dropout rate. Dropout rate.
""" """
super(Conv1dLinear, self).__init__() super().__init__()
self.w_1 = paddle.nn.Conv1D( self.w_1 = nn.Conv1D(
in_chans, in_chans,
hidden_chans, hidden_chans,
kernel_size, kernel_size,
stride=1, stride=1,
padding=(kernel_size - 1) // 2, ) padding=(kernel_size - 1) // 2, )
self.w_2 = paddle.nn.Linear(hidden_chans, in_chans, bias_attr=True) self.w_2 = nn.Linear(hidden_chans, in_chans, bias_attr=True)
self.dropout = paddle.nn.Dropout(dropout_rate) self.dropout = nn.Dropout(dropout_rate)
self.relu = paddle.nn.ReLU() self.relu = nn.ReLU()
def forward(self, x): def forward(self, x):
"""Calculate forward propagation. """Calculate forward propagation.

@ -14,9 +14,10 @@
# Modified from espnet(https://github.com/espnet/espnet) # Modified from espnet(https://github.com/espnet/espnet)
"""Positionwise feed forward layer definition.""" """Positionwise feed forward layer definition."""
import paddle import paddle
from paddle import nn
class PositionwiseFeedForward(paddle.nn.Layer): class PositionwiseFeedForward(nn.Layer):
"""Positionwise feed forward layer. """Positionwise feed forward layer.
Parameters Parameters
@ -35,7 +36,7 @@ class PositionwiseFeedForward(paddle.nn.Layer):
dropout_rate, dropout_rate,
activation=paddle.nn.ReLU()): activation=paddle.nn.ReLU()):
"""Construct an PositionwiseFeedForward object.""" """Construct an PositionwiseFeedForward object."""
super(PositionwiseFeedForward, self).__init__() super().__init__()
self.w_1 = paddle.nn.Linear(idim, hidden_units, bias_attr=True) self.w_1 = paddle.nn.Linear(idim, hidden_units, bias_attr=True)
self.w_2 = paddle.nn.Linear(hidden_units, idim, bias_attr=True) self.w_2 = paddle.nn.Linear(hidden_units, idim, bias_attr=True)
self.dropout = paddle.nn.Dropout(dropout_rate) self.dropout = paddle.nn.Dropout(dropout_rate)

@ -0,0 +1,83 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from espnet(https://github.com/espnet/espnet)
"""Subsampling layer definition."""
import paddle
from paddle import nn
from paddlespeech.t2s.modules.transformer.embedding import PositionalEncoding
class Conv2dSubsampling(nn.Layer):
"""Convolutional 2D subsampling (to 1/4 length).
Parameters
----------
idim : int
Input dimension.
odim : int
Output dimension.
dropout_rate : float
Dropout rate.
pos_enc : nn.Layer
Custom position encoding layer.
"""
def __init__(self, idim, odim, dropout_rate, pos_enc=None):
"""Construct an Conv2dSubsampling object."""
super().__init__()
self.conv = nn.Sequential(
nn.Conv2D(1, odim, 3, 2),
nn.ReLU(),
nn.Conv2D(odim, odim, 3, 2),
nn.ReLU(), )
self.out = nn.Sequential(
nn.Linear(odim * (((idim - 1) // 2 - 1) // 2), odim),
pos_enc if pos_enc is not None else
PositionalEncoding(odim, dropout_rate), )
def forward(self, x, x_mask):
"""Subsample x.
Parameters
----------
x : paddle.Tensor
Input tensor (#batch, time, idim).
x_mask : paddle.Tensor
Input mask (#batch, 1, time).
Returns
----------
paddle.Tensor
Subsampled tensor (#batch, time', odim),
where time' = time // 4.
paddle.Tensor
Subsampled mask (#batch, 1, time'),
where time' = time // 4.
"""
# (b, c, t, f)
x = x.unsqueeze(1)
x = self.conv(x)
b, c, t, f = paddle.shape(x)
x = self.out(x.transpose([0, 2, 1, 3]).reshape([b, t, c * f]))
if x_mask is None:
return x, None
return x, x_mask[:, :, :-2:2][:, :, :-2:2]
def __getitem__(self, key):
"""Get item.
When reset_parameters() is called, if use_scaled_pos_enc is used,
return the positioning encoding.
"""
if key != -1:
raise NotImplementedError(
"Support only `-1` (for `reset_parameters`).")
return self.out[key]

@ -12,6 +12,7 @@
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import paddle import paddle
from paddle import nn
optim_classes = dict( optim_classes = dict(
adadelta=paddle.optimizer.Adadelta, adadelta=paddle.optimizer.Adadelta,
@ -25,7 +26,7 @@ optim_classes = dict(
sgd=paddle.optimizer.SGD, ) sgd=paddle.optimizer.SGD, )
def build_optimizers(model: paddle.nn.Layer, def build_optimizers(model: nn.Layer,
optim='adadelta', optim='adadelta',
max_grad_norm=None, max_grad_norm=None,
learning_rate=0.01) -> paddle.optimizer: learning_rate=0.01) -> paddle.optimizer:

@ -11,52 +11,11 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import librosa
import numpy as np
import paddle import paddle
import torch import torch
from parallel_wavegan.losses import stft_loss as sl from parallel_wavegan.losses import stft_loss as sl
from scipy import signal
from paddlespeech.t2s.modules.stft_loss import MultiResolutionSTFTLoss from paddlespeech.t2s.modules.losses import MultiResolutionSTFTLoss
from paddlespeech.t2s.modules.stft_loss import STFT
def test_stft():
stft = STFT(n_fft=1024, hop_length=256, win_length=1024)
x = paddle.uniform([4, 46080])
S = stft.magnitude(x)
window = signal.get_window('hann', 1024, fftbins=True)
D2 = torch.stft(
torch.as_tensor(x.numpy()),
n_fft=1024,
hop_length=256,
win_length=1024,
window=torch.as_tensor(window))
S2 = (D2**2).sum(-1).sqrt()
S3 = np.abs(
librosa.stft(x.numpy()[0], n_fft=1024, hop_length=256, win_length=1024))
print(S2.shape)
print(S.numpy()[0])
print(S2.data.cpu().numpy()[0])
print(S3)
def test_torch_stft():
# NOTE: torch.stft use no window by default
x = np.random.uniform(-1.0, 1.0, size=(46080, ))
window = signal.get_window('hann', 1024, fftbins=True)
D2 = torch.stft(
torch.as_tensor(x),
n_fft=1024,
hop_length=256,
win_length=1024,
window=torch.as_tensor(window))
D3 = librosa.stft(
x, n_fft=1024, hop_length=256, win_length=1024, window='hann')
print(D2[:, :, 0].data.cpu().numpy()[:, 30:60])
print(D3.real[:, 30:60])
# print(D3.imag[:, 30:60])
def test_multi_resolution_stft_loss(): def test_multi_resolution_stft_loss():

Loading…
Cancel
Save