parent
ff539ef007
commit
2985c4daea
@ -0,0 +1,96 @@
|
||||
############################################
|
||||
# Network Architecture #
|
||||
############################################
|
||||
cmvn_file:
|
||||
cmvn_file_type: "json"
|
||||
# encoder related
|
||||
encoder: conformer
|
||||
encoder_conf:
|
||||
output_size: 512 # dimension of attention
|
||||
attention_heads: 8
|
||||
linear_units: 2048 # the number of units of position-wise feed forward
|
||||
num_blocks: 12 # the number of encoder blocks
|
||||
dropout_rate: 0.1 # sublayer output dropout
|
||||
positional_dropout_rate: 0.1
|
||||
attention_dropout_rate: 0.0
|
||||
input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8
|
||||
normalize_before: True
|
||||
cnn_module_kernel: 15
|
||||
use_cnn_module: True
|
||||
activation_type: 'swish'
|
||||
pos_enc_layer_type: 'rel_pos'
|
||||
selfattention_layer_type: 'rel_selfattn'
|
||||
causal: true
|
||||
use_dynamic_chunk: true
|
||||
cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster
|
||||
use_dynamic_left_chunk: false
|
||||
# decoder related
|
||||
decoder: transformer
|
||||
decoder_conf:
|
||||
attention_heads: 8
|
||||
linear_units: 2048
|
||||
num_blocks: 6
|
||||
dropout_rate: 0.1 # sublayer output dropout
|
||||
positional_dropout_rate: 0.1
|
||||
self_attention_dropout_rate: 0.0
|
||||
src_attention_dropout_rate: 0.0
|
||||
# hybrid CTC/attention
|
||||
model_conf:
|
||||
ctc_weight: 0.3
|
||||
lsm_weight: 0.1 # label smoothing option
|
||||
length_normalized_loss: false
|
||||
init_type: 'kaiming_uniform' # !Warning: need to convergence
|
||||
|
||||
###########################################
|
||||
# Data #
|
||||
###########################################
|
||||
|
||||
train_manifest: data/manifest.train
|
||||
dev_manifest: data/manifest.dev
|
||||
test_manifest: data/manifest.test
|
||||
|
||||
|
||||
###########################################
|
||||
# Dataloader #
|
||||
###########################################
|
||||
|
||||
vocab_filepath: data/lang_char/vocab.txt
|
||||
spm_model_prefix: 'data/lang_char/bpe_bpe_11297'
|
||||
unit_type: 'spm'
|
||||
preprocess_config: conf/preprocess.yaml
|
||||
feat_dim: 80
|
||||
stride_ms: 20.0
|
||||
window_ms: 30.0
|
||||
sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs
|
||||
batch_size: 32
|
||||
maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced
|
||||
maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced
|
||||
minibatches: 0 # for debug
|
||||
batch_count: auto
|
||||
batch_bins: 0
|
||||
batch_frames_in: 0
|
||||
batch_frames_out: 0
|
||||
batch_frames_inout: 0
|
||||
num_workers: 2
|
||||
subsampling_factor: 1
|
||||
num_encs: 1
|
||||
|
||||
###########################################
|
||||
# Training #
|
||||
###########################################
|
||||
n_epoch: 100
|
||||
accum_grad: 4
|
||||
global_grad_clip: 5.0
|
||||
dist_sampler: False
|
||||
optim: adam
|
||||
optim_conf:
|
||||
lr: 0.002
|
||||
weight_decay: 1.0e-6
|
||||
scheduler: warmuplr
|
||||
scheduler_conf:
|
||||
warmup_steps: 25000
|
||||
lr_decay: 1.0
|
||||
log_interval: 100
|
||||
checkpoint:
|
||||
kbest_n: 50
|
||||
latest_n: 5
|
Loading…
Reference in new issue