diff --git a/examples/tal_cs/asr1/conf/chunk_conformer.yaml b/examples/tal_cs/asr1/conf/chunk_conformer.yaml new file mode 100644 index 000000000..ba0dbb49b --- /dev/null +++ b/examples/tal_cs/asr1/conf/chunk_conformer.yaml @@ -0,0 +1,96 @@ +############################################ +# Network Architecture # +############################################ +cmvn_file: +cmvn_file_type: "json" +# encoder related +encoder: conformer +encoder_conf: + output_size: 512 # dimension of attention + attention_heads: 8 + linear_units: 2048 # the number of units of position-wise feed forward + num_blocks: 12 # the number of encoder blocks + dropout_rate: 0.1 # sublayer output dropout + positional_dropout_rate: 0.1 + attention_dropout_rate: 0.0 + input_layer: conv2d # encoder input type, you can chose conv2d, conv2d6 and conv2d8 + normalize_before: True + cnn_module_kernel: 15 + use_cnn_module: True + activation_type: 'swish' + pos_enc_layer_type: 'rel_pos' + selfattention_layer_type: 'rel_selfattn' + causal: true + use_dynamic_chunk: true + cnn_module_norm: 'layer_norm' # using nn.LayerNorm makes model converge faster + use_dynamic_left_chunk: false +# decoder related +decoder: transformer +decoder_conf: + attention_heads: 8 + linear_units: 2048 + num_blocks: 6 + dropout_rate: 0.1 # sublayer output dropout + positional_dropout_rate: 0.1 + self_attention_dropout_rate: 0.0 + src_attention_dropout_rate: 0.0 +# hybrid CTC/attention +model_conf: + ctc_weight: 0.3 + lsm_weight: 0.1 # label smoothing option + length_normalized_loss: false + init_type: 'kaiming_uniform' # !Warning: need to convergence + +########################################### +# Data # +########################################### + +train_manifest: data/manifest.train +dev_manifest: data/manifest.dev +test_manifest: data/manifest.test + + +########################################### +# Dataloader # +########################################### + +vocab_filepath: data/lang_char/vocab.txt +spm_model_prefix: 'data/lang_char/bpe_bpe_11297' +unit_type: 'spm' +preprocess_config: conf/preprocess.yaml +feat_dim: 80 +stride_ms: 20.0 +window_ms: 30.0 +sortagrad: 0 # Feed samples from shortest to longest ; -1: enabled for all epochs, 0: disabled, other: enabled for 'other' epochs +batch_size: 32 +maxlen_in: 512 # if input length > maxlen-in, batchsize is automatically reduced +maxlen_out: 150 # if output length > maxlen-out, batchsize is automatically reduced +minibatches: 0 # for debug +batch_count: auto +batch_bins: 0 +batch_frames_in: 0 +batch_frames_out: 0 +batch_frames_inout: 0 +num_workers: 2 +subsampling_factor: 1 +num_encs: 1 + +########################################### +# Training # +########################################### +n_epoch: 100 +accum_grad: 4 +global_grad_clip: 5.0 +dist_sampler: False +optim: adam +optim_conf: + lr: 0.002 + weight_decay: 1.0e-6 +scheduler: warmuplr +scheduler_conf: + warmup_steps: 25000 + lr_decay: 1.0 +log_interval: 100 +checkpoint: + kbest_n: 50 + latest_n: 5